Far East Journal of Mathematical Sciences (FJMS) © 2014 Pushpa Publishing House, Allahabad, India Published Online: January 2015
Available online at http://pphmj.com/journals/fjms.htm Volume 95, Number 2, 2014, Pages 235-248

A CHARACTERIZATION OF SMALL 3-COLORABLE GRAPHS

Wongsakorn Charoenpanitseri and Oranush Poonyakanok
Department of Mathematics
Faculty of Information Technology
Rangsit University
Pathumthani 12000, Thailand
e-mail: wongsakorn.c@rsu.ac.th
oranush.p@rsu.ac.th

Abstract

A k-coloring of a graph is a mapping $f: V(G) \rightarrow\{1,2, \ldots, k\}$. A k-coloring is proper if adjacent vertices receive distinct colors. A graph is called k-colorable if it has a proper k-coloring. It is wellknown that a graph is 2 -colorable if and only if it does not contain any odd cycles as a subgraph. However, there is no result about forbidden subgraphs for 3 -colorable graph.

In this paper, we show nine non-3-colorable graphs and prove that a graph with at most eight vertices is 3 -colorable if and only if it does not contain the nine graphs as a subgraph.

1. Introduction

A k-coloring of a graph is a mapping $f: V(G) \rightarrow\{1,2, \ldots, k\}$. A k-coloring is proper if adjacent vertices receive distinct colors. A graph is called k-colorable if it has a proper k-coloring. The chromatic number of

Received: September 30, 2014; Accepted: October 29, 2014
2010 Mathematics Subject Classification: 05C15.
Keywords and phrases: 3-coloring, coloring, forbidden subgraph.
a graph G, denoted by $\chi(G)$, is the smallest number k such that G is k-colorable.

It is well-known that a graph is 2 -colorable if and only if it is bipartite. In other words, a graph is 2 -colorable if and only if it does not contain any odd cycle as a subgraph. However, there is no characterization of 3-colorable graphs. Someone studies a sufficient condition for planar graph to be 3 -colorable (see [1-3, 5-7]).

In this paper, we focus on forbidden subgraphs for 3-colorable graph. We find nine small non-3-colorable graphs as shown in Figure 1 and show that a graph with at most eight vertices is 3 -colorable if and only if it does not contain the nine subgraphs.

Figure 1. Small non-3-colorable graphs.
Throughout the paper, G denotes a simple, undirected, finite, connected graph; $V(G)$ and $E(G)$ are the vertex set and the edge set of G. Moreover, $G_{7 A}, G_{7 B}, G_{8 A}, G_{8 B}, G_{8 C}$ and $G_{8 D}$ are always the graphs in Figure 1.

An independent set in a graph is a set of pairwise nonadjacent vertices. For $X \subseteq V(G), G-X$ is the graph obtained from deleting all vertices of X from G. In case $X=\{v\}$, we write $G-v$ instead of $G-\{v\}$. The subgraph induced by X, denoted by $G[X]$ is the graph obtained from deleting all vertices of $V(G)$ outside X. A cycle C_{n} is a graph with n vertices which can be placed around a circle so that two vertices are adjacent if and only if they appear consecutively along the circle. We write the cycle $C_{n}=v_{1} v_{2} \cdots v_{n}$ if
$v_{1}, v_{2}, \ldots, v_{n} \in V\left(C_{n}\right)$ and $v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{n} v_{1} \in E(C)$. A complete graph K_{n} is a graph with n vertices such that vertices are pairwise adjacent. A neighborhood of a vertex v, denoted by $N(v)$, is the set of vertices that are adjacent to v. The join of graphs G_{1} and G_{2}, denoted by $G_{1} \vee G_{2}$, is the graph with the vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and the edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right)$ $\bigcup\left\{x y: x \in V\left(G_{1}\right), y \in V\left(G_{2}\right)\right\}$. For example, $C_{5} \vee K_{1}$ and $C_{7} \vee K_{1}$ in Figure 1. An isomorphism from a graph G_{1} to a graph G_{2} is a bijection $f: V\left(G_{1}\right) \rightarrow V\left(G_{2}\right)$ such that $u v \in E\left(G_{1}\right)$ if and only if $f(u) f(v) \in E\left(G_{2}\right)$. If there is an isomorphism from G_{1} to G_{2}, we say G_{1} is isomorphic to G_{2}, denoted by $G_{1} \cong G_{2}$. For example, $G_{7 A}$ and $G_{7 B}$ have isomorphisms as shown in Figure 2.

Figure 2. Isomorphisms of $G_{7 A}$ and $G_{7 B}$.
We start showing that the chromatic number of the nine graphs is four.
Lemma 1.1. If G is a graph in Figure 1, then $\chi(G)=4$.
Proof. Figure 3 shows that $\chi(G) \leq 4$.

Figure 3. 4-colorings of the nine graphs.

It remains to show the nine graphs are not 3-colorable.
(a) All four vertices of K_{4} need distinct colors; hence, K_{4} is not 3-colorable.
(b) Since C_{5} and C_{7} require at least 3 colors and the centers require one more color, both $C_{5} \vee K_{1}$ and $C_{7} \vee K_{1}$ are not 3-colorable.
(c) Suppose that $G_{7 A}$ and $G_{7 B}$ are 3-colorable. Without loss of generality, w_{4}, w_{6}, w_{5} and w_{7} are labeled by colors $1,1,2$ and 3 , respectively (see Figure 2). For $G_{7 A}$, the vertices w_{1}, w_{2}, w_{3} cannot be labeled by color 1 and need three different colors, a contradiction. For $G_{7 B}$, the vertices w_{2}, w_{3} must be labeled by colors 3,2 , respectively. Then w_{1} cannot be labeled by colors 1,2 or 3 , a contradiction.
(d) To prove $G_{8 A}, G_{8 B}, G_{8 C}$ and $G_{8 D}$ are not 3-colorable, we assign names of all vertices as shown in Figure 4.

Figure 4. Assign names to all vertices of $G_{8 A}, G_{8 B}, G_{8 C}, G_{8 D}$.
Suppose that the four graphs are 3-colorable. Without loss of generality, suppose that w_{8}, w_{3}, w_{2} and w_{4} are labeled by colors $1,2,3$ and 3 , respectively. For $G_{8 A}, G_{8 B}$ and $G_{8 C}, w_{1}$ and w_{5} must be labeled by color 2 and color 1, respectively. Hence, the remaining two vertices cannot be labeled, a contradiction. For $G_{8 D}$, the vertex w_{7} must be labeled by color 3 . Then w_{1}, w_{5} and w_{6} cannot be labeled by color 3 . However, the three vertices need three different colors, a contradiction.

To prove our main results, we need the following tools: Lemma 1.3, Theorem 1.4 and Theorem 1.5.

Lemma 1.2. Let $S \subset V(G)$ be an independent set. If G is not 3-colorable, then $G-S$ contains an odd cycle.

Proof. Let $S \subset V(G)$ be an independent set. Assume that $G-S$ does not contain an odd cycle. Then $G-S$ is bipartite; hence, $G-S$ is 2-colorable. All vertices from S can be labeled by the third color. Therefore, G is 3 -colorable.

Lemma 1.3. Let v be a vertex of a graph G. If G is not 3 -colorable, then $N(v)$ contains an odd cycle or $V(G)-N(v)-\{v\}$ is not an independent set.

Proof. Let v be a vertex of a graph G. Assume that $N(v)$ does not contain any odd cycle and $S=V(G)-N(v)-\{v\}$ is an independent set of G. We first label all vertices in $N(v)$ by using two colors and label v and all vertices in S by using the third color. Hence, G is 3 -colorable.

Theorem 1.4 [4]. If G is a connected graph other than a complete graph or an odd cycle, then $\chi(G) \leq \Delta(G)$.

Theorem 1.5. Let G be a graph with at most seven vertices. Then G is 3-colorable if and only if $K_{4}, C_{5} \vee K_{1}, G_{7 A}$ and $G_{7 B}$ are not subgraphs of G.

Proof. Let G be a graph with at most seven vertices.
Necessity. Suppose that $K_{4}, C_{5} \vee K_{1}, G_{7 A}$ or $G_{7 B}$ is a subgraph of G. Since the four graphs are not 3 -colorable, nor is G.

Sufficiency. Let v be a vertex of G with $d(v)=\Delta(G)$ and $S=V(G)-$ $N(v)-\{v\}$. Suppose that G is not 3-colorable. If G is a complete graph, then K_{4} is a subgraph of G. If $N(v)$ contains C_{3} or C_{5}, then K_{4} or $C_{5} \vee K_{1}$ is a subgraph of G. Assume that G is not a complete graph and $N(v)$ does not contain any odd cycle. By Theorem 1.4, $d(v)=\Delta(G) \geq \chi(G) \geq 4$. By

Lemma 1.3, S is not an independent set. Then $|S| \geq 2$. Hence, $|S|=2$ and $d(v)=4$ because G has at most seven vertices.

Let $N(v)=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $S=\left\{u_{5}, u_{6}\right\}$ such that u_{5}, u_{6} are adjacent. By Lemma 1.2, both $G-v-u_{5}$ and $G-v-u_{6}$ contain odd cycles.

Case 1. $G-v-u_{5}$ or $G-v-u_{6}$ contains C_{5}. Without loss of generality, suppose that $C_{5}=u_{1} u_{2} u_{3} u_{4} u_{5}$ is a subgraph of $G-v-u_{6}$ as shown in Figure 5(a).

Since G is not 3-colorable, $d\left(u_{6}\right) \geq 3$. Then u_{6} is adjacent to at least two vertices from $u_{1}, u_{2}, u_{3}, u_{4}$. If u_{6} is adjacent to u_{2}, u_{3}, then $G_{7 B}$ is a subgraph of G; otherwise, $G_{7 A}$ is a subgraph of G.

Figure 5. $G-v-u_{6}$ contains C_{5}.
Case 2. $G-v-u_{5}$ and $G-v-u_{6}$ contain C_{3}.
Suppose that $C_{3}=u_{1} u_{2} u_{5}$ is a subgraph of $G-v-u_{6}$ as shown in Figure $5(\mathrm{~b})$. Since $d\left(u_{1}\right), d\left(u_{2}\right) \leq 4$ but C_{3} is a subgraph of $G-v-u_{5}$, the C_{3} must be $u_{3} u_{4} u_{6}$. Hence, $G_{7 A}$ is a subgraph of G.

2. Main Results

It is obvious that a graph containing one of the nine non-3-colorable subgraphs is not 3-colorable but it needs several pages to prove that a non-3-
colorable graph with at most eight vertices must contain one of the nine graphs. Then the proof is divided into three lemmas in order to shorten and easily be followed.

Lemma 2.1. Let G be a non-3-colorable graph with eight vertices and $\Delta(G)=5$. Then $K_{4}, C_{5} \vee K_{1}, G_{7 A}, G_{7 B}, G_{8 A}, G_{8 B}, G_{8 C}, G_{8 D}$ or $C_{7} \vee K_{1}$ is a subgraph of G.

Proof. Let G be a non-3-colorable graph with eight vertices and $\Delta(G)$ $=5$. Let v be a vertex of G with $d(v)=5$ and $S=V(G)-N(v)-\{v\}$. Let $N(v)=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ and $S=\left\{u_{6}, u_{7}\right\}$.

If $N(v)$ contains C_{3}, C_{5} or C_{7}, then G contains $K_{4}, C_{5} \vee K_{1}$ or $C_{7} \vee K_{1}$. Assume that $N(v)$ does not contain any odd cycle. By Lemma 1.3, we obtain that u_{6}, u_{7} are adjacent and $G-v-u_{6}, G-v-u_{7}$ contain odd cycles.

Case 1. C_{3} is a subgraph of $G-v-u_{6}$ and $G-v-u_{7}$. There are three possible ways that C_{3} is a subgraph of $G-v-u_{6}$ and $G-v-u_{7}$ as shown in Figure 6.

Figure 6. C_{3} is a subgraph of $G-v-u_{6}$ and $G-v-u_{7}$.
In Figure 6(a), $G\left[\left\{u_{1}, u_{2}, u_{6}, u_{7}\right\}\right] \cong K_{4}$.
In Figure 6(b), $G-u_{4}-u_{5} \cong C_{5} \vee K_{1}$.
In Figure 6(c), $G-u_{5} \cong G_{7 A}$.

Figure 7. C_{5} is a subgraph of $G-v-u_{6}$.
Case 2. C_{5} is a subgraph of $G-v-u_{6}$ or $G-v-u_{7}$. Without loss of generality, suppose that $C_{5}=u_{1} u_{2} u_{3} u_{4} u_{6}$ is a subgraph of $G-v-u_{7}$. Moreover, C_{3} or C_{5} is a subgraph of $G-v-u_{6}$. That is, the vertex u_{7} must be in the odd cycle and it must be adjacent to exactly two vertices from $N(v)$ in the cycle. There are six possible ways to classify the two vertices as shown in Figure 7.

In Figures 7(a) and 7(c), $G_{7 A}$ is a subgraph of $G-u_{5}$.
In Figure 7(b), $N(v)$ does not contain any odd cycle. Then $G-v-u_{6}$ does not contain a cycle, a contradiction.

In Figure 7(e), $G-u_{5} \cong G_{7 B}$.
In Figure 7(d), if C_{3} is a subgraph of $G-v-u_{6}$, then the cycle must be $u_{1} u_{7} u_{5}$; hence, $G \cong G_{8 A}$. If C_{5} is a subgraph of $G-v-u_{6}$, then the cycle must be $u_{1} u_{7} u_{5} u_{3} u_{2}$ or $u_{1} u_{7} u_{5} u_{3} u_{4}$. Then there exists the edge whose endpoints u_{3} and u_{5}. Hence, $G-v u_{1} \cong G_{8 D}$.

In Figure $7(\mathrm{f})$, if C_{3} is a subgraph of $G-v-u_{6}$, then the cycle must be $u_{2} u_{7} u_{5}$; hence, $G \cong G_{8 B}$. If C_{5} is a subgraph of $G-v-u_{6}$, then the cycle must be $u_{2} u_{7} u_{5} u_{4} u_{3}$ or $u_{2} u_{7} u_{5} u_{4} u_{1}$. Then there exists the edge whose endpoints u_{4} and u_{5}. Hence, $G \cong G_{8 C}$.

Lemma 2.2. Let G be a non-3-colorable graph with eight vertices and $\Delta(G)=4$. Let v be a vertex with degree 4. If $V(G)-N(v)-\{v\}$ is not a clique, then $K_{4}, C_{5} \vee K_{1}, G_{7 A}, G_{7 B}$ or $G_{7} \vee K_{1}$ is a subgraph of G.

Proof. Let G be a non-3-colorable graph with eight vertices and $\Delta(G)$ $=4$. Let v be a vertex with degree 4 . Let $N(v)=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $S=$ $V(G)-N(v)-\{v\}=\left\{u_{5}, u_{6}, u_{7}\right\}$. If $N(v)$ contains C_{3}, then K_{4} is a subgraph of G. Assume that $N(v)$ does not contain any odd cycle and $G[S]$ is not a clique.

Case 1. $G[S]$ has no edge. Then $S \cup\{v\}$ is an independent set. By Lemma 1.2, G is 3 -colorable; a contradiction.

Case 2. $G[S]$ has exactly one edge, say $u_{5} u_{6}$. Claim that $G-u_{7}$ is not 3-colorable. Suppose that $G-u_{7}$ is 3-colorable. Since $N\left(u_{7}\right) \subset N(v)$ does not contain any odd cycle, it is 2-colorable. We can label u_{7} by the third color. Then G is also 3 -colorable, a contradiction. By Theorem 1.5, K_{4}, $C_{5} \vee K_{1}, G_{7 A}$ or $G_{7 B}$ is a subgraph of $G-u_{7}$. Therefore, it is a subgraph of G.

Case 3. $G[S]$ has exactly two edges, say $u_{5} u_{6}$ and $u_{6} u_{7}$.
By Lemma 1.2, $G-u_{5}-u_{7}$ and $G-u_{6}$ must contain odd cycles, say C_{1} and C_{2}, respectively. Under the condition, $N(v)$ does not contain any odd cycle, $u_{6} \in V\left(C_{1}\right)$ as shown in Figure 8.

Figure 8. $G[S]$ has exactly two edges.
Either u_{5} or u_{7} is in $V\left(C_{2}\right)$ because $\Delta(G)=4, N(v)$ does not contain any odd cycle and $\left\{u_{5}, u_{6}, u_{7}\right\}$ is not a clique. Without loss of generality, suppose that $u_{5} \in V\left(C_{2}\right)$. Clearly, $N(v)$ needs two colors. Then u_{5} and u_{6} require two new colors. Then $G-u_{7}$ is not 3-colorable; hence, the proof is done by Theorem 1.5.

Lemma 2.3. Let G be a non-3-colorable graph with eight vertices and $\Delta(G)=4$. Let v be a vertex with degree 4. If $V(G)-N(v)-\{v\}$ is a clique, then $K_{4}, C_{5} \vee K_{1}, G_{7 A}, G_{7 B}, C_{5} \vee K_{1}, G_{8 A}, G_{8 B}, G_{8 C}, G_{8 D}$ or $C_{7} \vee K_{1}$ is a subgraph of G.

Proof. Let G be a non-3-colorable graph with eight vertices and $\Delta(G)$ $=4$. Let v be a vertex with degree 4. Let $N(v)=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $S=$ $V(G)-N(v)-\{v\}=\left\{u_{5}, u_{6}, u_{7}\right\}$. Assume that S is a clique. If there is a vertex w with degree at most two, then $G-w$ is not 3-colorable; hence, we apply Theorem 1.5. Otherwise, suppose that every vertex has degree at least three.

Case 1. $d\left(u_{1}\right), d\left(u_{2}\right), d\left(u_{3}\right)$ or $d\left(u_{4}\right)$ is 4 . Without loss of generality, assume that $d\left(u_{1}\right)=4$.

Case 1.1. u_{1} is adjacent to u_{5}, u_{6}, u_{7}. Then the four vertices become a K_{4}.

Case 1.2. u_{1} is adjacent to u_{2}, u_{5}, u_{6}. If $\left\{u_{3}, u_{4}, u_{7}\right\}$ is not a clique, then the proof is done by Lemma 2.2. Suppose that $\left\{u_{3}, u_{4}, u_{7}\right\}$ is a clique as shown in Figure 9(a). Then $G-u_{2}$ is $G_{7 A}$.

(a)

(b)

(c)

Figure 9. Graphs with $\Delta(G)=4$ and $d(v)=4$.
Case 1.3. u_{1} is adjacent to u_{2}, u_{3}, u_{5}. If $\left\{u_{4}, u_{6}, u_{7}\right\}$ is not a clique, then the proof is done by Lemma 2.2. Suppose that $\left\{u_{4}, u_{6}, u_{7}\right\}$ is a clique as shown in Figure 9(b). If u_{2} is adjacent to u_{3}, then $\left\{v, u_{1}, u_{2}, u_{3}\right\}$ is a K_{4}. If u_{2} is adjacent to u_{4}, then the proof is done by Case 1.2. If u_{2} is adjacent to u_{5}, then $G-u_{3}$ is $G_{7 A}$. According to $d\left(u_{2}\right) \geq \delta(G)=3, u_{2}$ is adjacent to u_{6} or u_{7}. Similarly, u_{3} is adjacent to u_{6} or u_{7}. Suppose that u_{2} and u_{3} are adjacent to u_{6} and u_{7}, respectively.

Figure 10. A 3-coloring.
Hence, G must be the graph shown in Figure 10 which is 3 -colorable, a contradiction.

Case 1.4. u_{1} is adjacent to u_{2}, u_{3}, u_{4} (see Figure 9(c)). If $\left\{u_{2}, u_{3}, u_{4}\right\}$ is not an independent set, then K_{4} is a subgraph of G; otherwise, assume that $\left\{u_{2}, u_{3}, u_{4}\right\}$ is an independent set. If u_{2} is adjacent to two vertices from u_{5}, u_{6}, u_{7}, then the proof is done by Case 1.2. Suppose that u_{2} is adjacent to at most one vertex from u_{5}, u_{6}, u_{7}. Similarly, each of u_{3} and u_{4} is adjacent to at most one vertex from u_{5}, u_{6}, u_{7}. Since $d\left(u_{5}\right), d\left(u_{6}\right), d\left(u_{7}\right)$ ≥ 3, we assume that there are edges $u_{2} u_{5}, u_{3} u_{6}$ and $u_{4} u_{7}$.

Figure 11. The graph $G_{8 D}$.
Hence, G must be the graph shown in Figure 11 which is $G_{8 D}$.
Case 2. $d\left(u_{1}\right), d\left(u_{2}\right), d\left(u_{3}\right)$ and $d\left(u_{4}\right)$ is 3 . Since $\sum_{x \in V(G)} d(x)$ is an even number, so is $d\left(u_{5}\right)+d\left(u_{6}\right)+d\left(u_{7}\right)$.

Case 2.1. $d\left(u_{5}\right)=d\left(u_{6}\right)=d\left(u_{7}\right)=4$. Then there are exactly six edges whose an endpoint from $u_{1}, u_{2}, u_{3}, u_{4}$ and the other endpoint from u_{5}, u_{6}, u_{7}. Recall that there are exactly four edges whose endpoint from u_{1}, u_{2}, u_{3}, u_{4} and the other endpoint is v. Since $d\left(u_{1}\right)=d\left(u_{2}\right)=d\left(u_{3}\right)=d\left(u_{4}\right)$ $=3$, we have $d\left(u_{1}\right)+d\left(u_{2}\right)+d\left(u_{3}\right)+d\left(u_{4}\right)=12$. Then $G\left[\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}\right]$ has exactly one edge, say $u_{1} u_{2}$. Since $d\left(u_{3}\right)=d\left(u_{4}\right)=3$, each of u_{3} and u_{4} is adjacent to exactly two vertices from u_{5}, u_{6}, u_{7}. Suppose that u_{4} is not adjacent to u_{7}. Now, we focus on u_{7} and its neighborhood. Since $d\left(u_{7}\right)$ $=4$ and $V(G)-\left\{u_{7}\right\}-N\left(u_{7}\right)$ is not a clique, the proof is done by Lemma 2.2.

Case 2.2. $d\left(u_{5}\right)=4$ and $d\left(u_{6}\right)=d\left(u_{7}\right)=3$. Without loss of generality, suppose that u_{5} is adjacent to u_{1} and u_{2}. If u_{3} is not adjacent to u_{4}, then $\left\{v, u_{3}, u_{4}\right\}$ is not a clique; hence, we focus on u_{5} and apply Lemma 2.2. Suppose that u_{3} and u_{4} are adjacent.

Notice that $d\left(u_{1}\right)+d\left(u_{2}\right)+d\left(u_{3}\right)+d\left(u_{4}\right)=12, d\left(u_{5}\right)=4$ and $d\left(u_{6}\right)$ $=d\left(u_{7}\right)=3$. Then $G\left[\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}\right]$ has exactly two edges. The first edge is $u_{3} u_{4}$ and there are two possible ways for the remaining edge as shown in Figure 12. Moreover, u_{6} and u_{7} have only one choice left. Hence, G must be a graph in Figure 12 which is 3-colorable, a contradiction.

It remains to combine the three lemmas and tools to obtain the main result.

Figure 12. Graphs with $d\left(u_{5}\right)=4$ and $d\left(u_{6}\right)=d\left(u_{7}\right)=3$.
Theorem 2.4. Let G be a graph with at most eight vertices. Then G is 3 -colorable if and only if G contains neither $K_{4}, C_{5} \vee K_{1}, G_{7 A}, G_{7 B}$, $G_{8 A}, G_{8 B}, G_{8 C}, G_{8 D}$ nor $C_{7} \vee K_{1}$.

Proof. If G is a graph with at most seven vertices, then the statement is true by Theorem 1.5. Let G be a graph with eight vertices.

Necessity. Suppose that G contains $K_{4}, C_{5} \vee K_{1}, G_{7 A}, G_{7 B}, G_{8 A}$, $G_{8 B}, G_{8 C}, G_{8 D}$ or $C_{7} \vee K_{1}$. Since the nine graphs are not 3-colorable, nor is G.

Sufficiency. Suppose that G is not 3-colorable. Let v be a vertex of G with $d(v)=\Delta(G)$ and $S=V(G)-\{v\}-N(v)$. If G is a complete graph, then K_{4} is a subgraph of G. If $N(v)$ contains an odd cycle, then K_{4}, $C_{5} \vee K_{1}$ or $C_{7} \vee K_{1}$ is a subgraph of G. Assume that G is not a complete graph and $N(v)$ does not contain any odd cycle. By Theorem 1.4, $d(v)=$ $\Delta(G) \geq 4$.

Case 1. $d(v) \geq 6$. Since $N(v)$ does not contain any odd cycle, G is 3-colorable, a contradiction.

Case 2. $d(v)=5$. Then $|S|=2$ because of $|V(G)|=8$. Hence, the statement is true by Lemma 2.1.

Case 3. $d(v)=4$. Then $|S|=3$ because of $|V(G)|=8$. Hence, the statement is true by Lemma 2.2 and Lemma 2.3.

References

[1] O. V. Borodin, Structural properties of plane graph without adjacent vertices and application to 3-coloring, J. Graph Theory 21 (1996), 183-186.
[2] O. V. Borodin and A. Raspaud, A sufficient condition for planar graphs to be 3-colorable, J. Combin. Theory Series B 88 (2003), 17-27.
[3] O. V. Borodin, A. N. Glebov, A. Raspaud and M. R. Salavatipour, Planar graphs without cycles of length from 4 to 7 are 3-colorable, J. Combin. Theory Ser. B 93 (2005), 303-311.
[4] R. L. Brooks, On colouring the nodes of a network, Proc. Cambridge Phil. Soc. 37 (1941), 194-197.
[5] M. Chen, A. Raspaud and W. Wang, Three-coloring planar graphs without short cycles, Inform. Process. Lett. 101 (2007), 134-138.
[6] D. P. Sanders and Y. Zhao, A note one three coloring problem, Graph Combin. 11 (1995), 92-94.
[7] B. Xu, On 3-colorable plane graphs without 5- and 7-cycles, J. Combin. Theory Ser. B 96 (2006), 958-963.

