A NOTE ON P_1 - AND LIPSCHITZIAN MATRICES

JIANPING LI and WEN LI*

Department of Applied Mathematics Guangdong University of Technology Guangzhou, 510090, P. R. China

Department of Mathematics South China Normal University Guangzhou, 510631, P. R. China e-mail: liwen@scnu.edu.cn

Abstract

In this note a counterexample is given to illustrate that a result in [SIAM J. Matrix Anal. Appl. 21 (1999), 636-641] is not true.

In [3], the authors asserted that if $A \in \mathbf{E}'$, then for every proper subset α of $\overline{n} = \{1, 2, ..., n\}$ such that $\det A_{\alpha\alpha} = 0$, $A_{\alpha\alpha} \notin \mathbf{P}_1$ (see Lemma 5 of [3]).

Now, we point out that this assertion is a mistake. First we give a lemma below.

Lemma 1. Let $A \in \mathbb{R}^{n \times n} (n \geq 2)$ and $A \in \mathbb{C}_0$. Then $A \in \mathbb{E}'$ if and only if A is an almost E-matrix.

 $2000\ Mathematics\ Subject\ Classification:\ 90C33.$

Key words and phrases: P_0 -matrix, C_0 -matrix, E' -matrix.

*The work of this author was supported by Guangdong Provincial Natural Science Foundation (No. 31496).

Received September 17, 2004

© 2005 Pushpa Publishing House

Proof. Assume that $A \in \mathbf{E}'$. Then $A \notin \mathbf{E}$. From Theorem 2.2 in [2] it follows that every proper principal submatrix of A is an E-matrix. So A is an almost E-matrix. Conversely, if $A \in \mathbf{C}_0$, and A is an almost E-matrix, then $A \notin \mathbf{E}$. Now, we show that $A \in \mathbf{E}^*$.

Let $\forall 0 \neq q \geq 0$. Suppose that there exists a nonzero nonnegative vector z such that $z \in S(q, A)$, then

$$z \ge 0$$
, $Az + q \ge 0$, $z^{T}(Az + q) = 0$.

Let $\alpha = \operatorname{supp} z$, where $\operatorname{supp} z = \{i : z_i \neq 0\}$. Then $\alpha \neq \emptyset$. If $\alpha = \overline{n}$, then z > 0. From the assumption that $A \in \mathbb{C}_0$, z > 0, $0 \neq q \geq 0$, we have $z^T A z \geq 0$ and $z^T q > 0$. Hence $z^T (A z + q) = z^T A z + z^T q > 0$. This contradicts to the assumption that $z \in S(q, A)$. Hence $\alpha \neq \overline{n}$, i.e., there exists i such that $z_i = 0$. Let $\beta = \overline{i}$. Then

$$A_{\beta\beta}z_{\beta}+q_{\beta}\geq0,\quad 0\neq z_{\beta}\geq0,\quad z_{\beta}^{T}(A_{\beta\beta}z_{\beta}+q_{\beta})=0.$$

Hence we have $z_{\beta} \in S(q_{\beta}, A_{\beta\beta})$. From $q \geq 0$ we have $q_{\beta} \geq 0$, and thus $A_{\beta\beta} \notin \mathbf{E}$. This contradicts to the assumption that A is an almost E-matrix. This implies that for any nonzero nonnegative vector q, the zero vector is the only solution of LCP(q, A). So $A \in \mathbf{E}^*$, hence $A \in \mathbf{E}'$.

A counterexample for Murthy et al. assertion is given below.

Let

$$A = \begin{pmatrix} 1 & 1 & -1 & -1 \\ 1 & 1 & -2 & 0 \\ -2 & -1 & 4 & -1 \\ 0 & -1 & -1 & 2 \end{pmatrix}.$$

Then all principal minors of $A + A^T$ are nonnegative, which follows that A is positive semi definite and hence copositive. Obviously $A \in \mathbf{P}_0$. Let $x = (x_1, x_2, x_3, x_4)^T$ with $x_1 = x_2 = x_3 = x_4 > 0$. Then $x \in SOL(0, A)$, so $A \notin \mathbf{R}_0$, and thus $A \notin \mathbf{Q}$ (see [1]). Therefore $A \notin \mathbf{E}$. And we can

easily prove that every proper principal submatrix of A is an E-matrix. So A is an almost E-matrix. It follows from Lemma 1 that $A \in \mathbf{E}'$. Let $\alpha = \{1, 2\}$. Then $\det A_{\alpha\alpha} = 0$, and $A_{\alpha\alpha} \in \mathbf{P}_1$, which implies that the above assertion is not true. Through Theorem 6 in [3] follows from the above assertion, this assertion still holds under the assumption of Theorem 6 [3].

Danao studied E^* -matrices and E'-matrices in [2], and presented the following conjecture: if $A \in \mathbf{P}_0$, then $A \in \mathbf{E}' \Leftrightarrow A \in \mathbf{P}_1^*$. This counterexample also illustrates that Danao's conjecture is not true (noting that this conjecture has been disproved in [4]).

References

- [1] R. W. Cottle, J. S. Pang and R. E. Stone, The Linear Complementarity Problem, Academic Press, New York, 1992.
- [2] R. A. Danao, A note on E'-matrices, Linear Algebra Appl. 259 (1997), 299-305.
- [3] G. S. R. Murthy, S. R. Neogy and F. Thuijsman, A note on P₁ and Lipschitzian matrices, SIAM J. Matrix Anal. Appl. 21 (1999), 636-641.
- [4] G. S. R. Murthy, T. Parthasarathy and B. Sriparna, Linear complementarity problems in static and dynamic games, Advances in Dynamic Games and Applications, Kanagawa, 1996, pp. 289-301, Birkhäuser, Boston, MA, 2000.