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Abstract

In this note a counterexample is given to illustrate that a result in

[SIAM J. Matrix Anal. Appl. 21 (1999), 636-641] is not true.

In [3], the authors asserted that if ,E′∈A  then for every proper

subset α of { }nn ...,,2,1=  such that 1,0det P∉= αααα AA  (see Lemma

5 of [3]).

Now, we point out that this assertion is a mistake. First we give a

lemma below.

Lemma 1. Let ( )2≥∈ × nRA nn  and .0C∈A  Then E′∈A  if and

only if A is an almost E-matrix.
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Proof. Assume that .E′∈A  Then .E∉A  From Theorem 2.2 in [2] it

follows that every proper principal submatrix of A is an E-matrix. So A is

an almost E-matrix. Conversely, if ,0C∈A  and A is an almost E-matrix,

then .E∉A  Now, we show that .∗∈ EA

Let .00 ≥≠∀ q  Suppose that there exists a nonzero nonnegative

vector z such that ( ),, AqSz ∈  then

( ) .0,0,0 =+≥+≥ qAzzqAzz T

Let ,zsupp=α  where { }.0: ≠= izizsupp  Then .∅≠α  If ,n=α  then

.0>z  From the assumption that ,0C∈A  ,0>z  ,00 ≥≠ q  we have

0≥AzzT  and .0>qzT  Hence ( ) .0>+=+ qzAzzqAzz TTT  This

contradicts to the assumption that ( )., AqSz ∈  Hence ,n≠α  i.e., there

exists i such that .0=iz  Let .i=β  Then

( ) .0,00,0 =+≥≠≥+ ββββββββββ qzAzzqzA T

Hence we have ( )., ββββ ∈ AqSz  From 0≥q  we have ,0≥βq  and thus

.E∉ββA  This contradicts to the assumption that A is an almost

E-matrix. This implies that for any nonzero nonnegative vector q, the

zero vector is the only solution of ( )., AqLCP  So ,∗∈ EA  hence .E′∈A

A counterexample for Murthy et al. assertion is given below.

Let
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Then all principal minors of TAA +  are nonnegative, which follows that

A is positive semi definite and hence copositive. Obviously .0P∈A  Let

( )Txxxxx 4321 ,,,=  with .04321 >=== xxxx  Then ( ),,0 ASOLx ∈

so ,0R∉A  and thus Q∉A  (see [1]). Therefore .E∉A  And we can
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easily prove that every proper principal submatrix of A is an E-matrix. So

A is an almost E-matrix. It follows from Lemma 1 that .E′∈A  Let

{ }.2,1=α  Then ,0det =ααA  and ,1P∈ααA  which implies that the

above assertion is not true. Through Theorem 6 in [3] follows from the
above assertion, this assertion still holds under the assumption of
Theorem 6 [3].

Danao studied ∗E -matrices and E ′ -matrices in [2], and presented

the following conjecture: if ,0P∈A  then .1
∗∈⇔′∈ PE AA  This

counterexample also illustrates that Danao’s conjecture is not true
(noting that this conjecture has been disproved in [4]).
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