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Abstract 

The use of interior-point methods to solve linear optimization 
problems has become a great attention to the researchers. The most 
important thing is that the interior-point methods have the best 
complexity compared to other methods and also efficient in practice. 
The worst upper bound for the iteration complexity of this method     
is polynomial. Roos, Terlaky and Vial presented an interior-point 
method using primal-dual full-Newton step algorithm that requires the 
best known upper bound for the iteration complexity of an interior-
point method. In this paper, we present their method with a slightly 
better iteration bound. 

1. Introduction 

Recently, the use of interior-point methods (IPMs) for solving linear 
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optimization (LO) problems has become a major concern of the optimization 
researchers. This happens mainly due to the fact that interior-point methods 
have polynomial complexity, which is the best compared to other methods 
and these methods are also efficient in practice. 

Interior-point method first appeared in 1984, when Karmarkar [4] 
proposed a polynomial-time method for LO problems. In the worst-case, for 
a problem with n inequalities and L bits of input data, Karmarkar’s algorithm 

requires ( )LnO 5.3  arithmetic operations on numbers with ( )LO  bits. 

In [8], Renegar improved the number of iterations to ( )LnO  iterations. 

Other variants of IPMs, called potential reduction methods, require also only 

( )LnO  iterations. This was shown by Ye [13], Freund [1], Todd and Ye 

[12] and Kojima et al. [5]. 

Sonnevend [11] and Meggido [6] introduced a class of IPMs which uses 
the so-called central path as a guide line to the set of optimal solutions. These 
methods are called path-following methods. A variant of path-following 
methods was presented by Gonzaga [3], Monteiro and Adler [7] and Roos 

and Vial [10]. Their methods require ( )LnO  iterations, which is the best 

known upper bound for the iteration complexity of an IPM. Roos et al. in 
their book [9] obtained the same upper bound by using an algorithm which is 
a so-called primal-dual full-Newton step algorithm. Their upper bound for 
the number of iterations is 
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where ε is the absolute accuracy of the objective function and 00 >µ  

denotes the initial value of the so-called barrier parameter. 

In this paper, by careful analysis, we reduce the upper bound by a factor 

.2  The iteration upper bound that we obtained is 
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2. Primal-dual IPM with Full-Newton Steps 

The standard form of an LO problem is as follows: 

{ },0,:min ≥= xbAxxcT  (P) 

where ,, nxc R∈  mb R∈  and .nmA ×∈ R  Any LO problem can be 

transformed into standard form, by introducing additional variables [2]. The 
problem (P) is often called the primal problem. Associated with any LO 
problem is another LO problem called the dual problem, which consists of 
the same data ( )cbA ,,  arranged in a different way. The dual of (P) is 

{ },0,:max ≥=+ scsyAyb TT  (D) 

where ns R∈  and ;my R∈  (D) is called the dual problem. 

The feasible regions of (P) and (D) are denoted by P  and ,D  

respectively. The (relative) interiors of P  and D  are denoted by oP  and .oD  

Finding an optimal solution of (P) and (D) is equivalent to solving the 
following system [9]: 

,0, ≥= xbAx  

,0, ≥=+ scsyAT  

,0=xs  (2.1) 

where xs is the component-wise (or Hadamard) product of the vectors x and s 
and 0 denotes the zero vector. The first line in (2.1) is simply the feasibility 
constraint for the primal problem (P) and the second line represents the 
feasibility constraint for the dual problem (D). The last equation is the so-
called complementarity condition. 

By using path-following IPM, the complementarity condition in (2.1)    
is replaced by ,exs µ=  where µ is any positive number and e is the all-one 

vector. This new constraint is referred to as the centering condition with 
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respect to µ. The resulting system is 

,0, ≥= xbAx  

,0, ≥=+ scsyAT  

.exs µ=  (2.2) 

If system (2.2) has a solution for some ,0>µ  then a solution exists for   

every 0>µ  [9]. This happens if and only if interior point condition (IPC) is 

satisfied. The solutions are denoted as ( ) ( )µµ yx ,  and ( ).µs  We call ( )µx  

the µ-center of (P) and ( ) ( )( )µµ sy ,  the µ-center of (D). 

When µ runs through ( ),,0 ∞  then ( )µx  runs through a curve in oP  

which is called the central path of (P). Similarly, the set { ( ) ( )( ) :, µµ sy  

( )}∞∈µ ,0  is called the central path of (D). If ,0→µ  then ( ) ( )µµ yx ,  and 

( )µs  converge to a solution of (2.1), which means that the central path 

converges to the set of optimal solutions of (P) and (D). On the other hand, if 
,∞→µ  then ( )µx  and ( ) ( )( )µµ sy ,  converge to the so-called analytic center 

of (P) and (D), respectively. 

Next, it will describe how Newton’s method can be used to obtain an 
approximate solution of system (2.2), for fixed µ. Given a primal-dual 
feasible pair ( )( ),,, syx  we want to define search direction yx ∆∆ ,  and s∆  

such that ( )ssyyxx ∆+∆+∆+ ,,  satisfy (2.2). 

Since bAx =  and ,csyAT =+  system (2.2) is equivalent to the 

following system: 

,0=∆xA  

,0=∆+∆ syAT  

.xsesxsxxs −µ=∆∆+∆+∆  
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The third equation is nonlinear, due to the quadratic term .sx∆∆  By 
neglecting this quadratic term, according to Newton’s method for solving 
nonlinear equations, we obtain the linear system 

,0=∆xA  

,0=∆+∆ syAT  

.xsesxxs −µ=∆+∆  (2.3) 

The resulting directions of (2.3) are known as the primal-dual Newton 
directions. By taking a step along these directions, one finds new iterates 

( ( ))+++ syx ,,  such that +x  and +s  are positive. The new iterates are given 

by 

.,, sssyyyxxx ∆+=∆+=∆+= +++  

In the process of following the central path to the optimal solution,       
by using Newton steps, we generate a sequence of points within the 
neighborhood of central path. We need a quantity to measure the proximity 
of ( )( )syx ,,  to the µ-center. 

Before defining this proximity measure, we reformulate the linear system 
(2.3), by scaling yx ∆∆ ,  and s∆  to yx dd ,  and sd  as follows: 

,,, s
svdydx

xvd syx
∆=

µ
∆=∆=  

where 

.
µ

= xsv  

If we define ( ),diag sxD =  then system (2.3) is equivalent to 

,0=xADd  

( ) ,0=+ sy
T ddAD  

.1 vvdd sx −=+ −  (2.4) 
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The first two equations of system (2.4) show that the vectors xd  and sd  

belong to the null space and the row space of the matrix AD, respectively. 
These two spaces are orthogonal, therefore, xd  and sd  are orthogonal. The 

orthogonality of xd  and sd  implies 

222
sxsx dddd +=+  

.21 vv −= −  

Note that sx dd ,  (and also )yd  are zero if and only if ,01 =−− vv  which 

happens only if ,ev =  and then x, y and s coincide with the respective             

µ-centers. Therefore, to measure the ‘distance’ of ( )( )syx ,,  to the µ-center, 

we use the quantity ( )µδ ;, sx  defined by 

( ) ( ) .2
1::;, 21 vvvsx −=δ=µδ −  (2.5) 

For any ,0≥τ  the τ-neighborhood of the µ-center is given by the set 

( ) ( ) ( ){ }.;,,,,:,, τ≤µδ∈∈ sxsyxsyx DP  

After a full-Newton step, the duality gap at the new iterates always 

assumes the same value as at the µ-centers, i.e., ( ) µ=++ nsx T  (cf. [9, 

Theorem II.47]). An IPM with full-Newton steps can be described as in 
Figure 1. 

Primal-dual IPM with full-Newton steps 

Input: 

an accuracy parameter ;0>ε  

a proximity parameter ;10, <τ≤τ  

strictly feasible ( )000 ,, syx  with ( ) 000 µ= nsx T  and ( ) ;;, 000 τ≤µδ sx  

a barrier update parameter .10, <θ<θ  
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begin 

;:;;:;: 0000 µ=µ=== yyssxx  

while ε≥µn  do 

( ) ;1: µθ−=µ  

;: xxx ∆+=  

;: yyy ∆+=  

;: sss ∆+=  

endwhile 

end 

Figure 1. Primal-dual IPM with full-Newton steps. 

3. Analysis of the Primal-dual IPM with Full-Newton Steps 

We first deal with the effect of a full-Newton step on the proximity 
measure. The next lemma implies that when ( )µδ ;, sx  is small enough then 

the primal-dual Newton step is quadratically convergent, as stated in 
Corollary 3.1. 

Lemma 3.1 (cf. [9, Theorem II.50]). If ( ) ,1;,: ≤µδ=δ sx  then the 

primal-dual Newton step is feasible, i.e., +x  and +s  are nonnegative. 

Moreover, if ,1<δ  then +x  and +s  are positive and 

( )
( )

.
12

;,
2

2

δ−

δ≤µδ ++ sx  

Corollary 3.1. If ( ) ,
2

1;,: ≤µδ=δ sx  then ( ) .;, 2δ≤µδ ++ sx  

Initially, the duality gap is .0µn  In each iteration, it is reduced by the 

factor .1 θ−  Using this, one easily proves the following lemma. 
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Lemma 3.2 (cf. [9, Lemma II.17]). After at most 









ε
µ

θ

0
log1 n  

iterations, the algorithm stops and we have .ε≤µn  

We have the following lemma that will be used in proving the next two 
theorems. 

Lemma 3.3 (cf. [9, Lemma II.54]). Let ( )sx,  be a positive primal-dual 

pair and 0>µ  such that .µ= nsxT  Moreover, let ( )µδ=δ ;,: sx  and let 

( ) .1 µθ−=µ+  Then 

( ) ( ) ( ) .141;,
2

22
θ−

θ+δθ−=µδ + nsx  

The next theorems present iteration bound of the primal-dual IPM with 
full-Newton steps. 

Theorem 3.1. If 21=τ  and ,11 +=θ n  then the algorithm 

requires at most 









ε
µ+

0
log1 nn  

iterations. The output is a primal-dual pair ( )sx,  such that .ε≤sxT  

Proof. Let us take .21=τ  By using Corollary 3.1, since we have 

( ) ,21;, ≤µδ sx  after the primal-dual Newton step we have ( )µδ ++ ;, sx  

.21≤  Then, after the update of the barrier parameter to ( )µθ−=µ+ 1  with 

,11 +=θ n  by using Lemma 3.3, we get the following upper bound of 

( ) :;, 2+++ µδ sx  

( ) ( ) .2
1

144
1;,

2
2 =

θ−
θ+θ−≤µδ +++ nsx  
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The last equality follows by substituting .11 +=θ n  Hence, we obtain 

( ) .21;, τ=≤µδ +++ sx  This means that the property 

( ) τ≤µδ ;, sx  

is maintained after each iteration. Therefore, combining this with Lemma 3.2, 
we obtain the theorem. ~ 

Note that Theorem 3.1 holds for every .1≥n  In practice, n is much 
larger. For such cases it is worth mentioning that slightly better iteration 
bounds can be obtained, as the following theorem. 

Theorem 3.2. If [ ]6773.0,6687.0∈τ  and ,1 n=θ  then for ,47≥n  

the algorithm requires at most 









ε
µ0

log nn  

iterations. 

Proof. Let us take .1 n=θ  By using Lemma 3.1 and Lemma 3.3, we 

can verify that if 

( )
( ) ( )

,
114
1

12
11 2

2

4
τ≤

−
+

τ−

τ−
n

n  (3.1) 

then ( ) τ≤µδ ;, sx  is maintained. The region in the ( )n,τ -space defined by 

(3.1) is depicted in Figure 2, where the smallest value of n is around 46.6274 
at .6731.0=τ  Therefore, 47=n  is the smallest integer value of n which 
satisfies (3.1). We can find out that for ,47≥n  the inequality (3.1) holds for 

[ ].6773.0,6687.0∈τ  Then we have the theorem. ~ 
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Figure 2. The region defined by (3.1). 

The value of n in Theorem 3.2 can be improved to ,6≥n  as stated in the 
following theorem. 

Theorem 3.3. If [ ]8289.0,7433.0∈τ  and ,1 n=θ  then for ,6≥n  

the algorithm requires at most 









ε
µ0

log nn  

iterations. 

Proof. We use [9, Theorem II.52], a sharper quadratic convergence result 
of a primal-dual Newton step. This theorem states that if ( ) ,1;,: <µδ=δ sx  

then 

( )
( )

.
12

;,
4

2

δ−

δ≤µδ ++ sx  

Then, by using Lemma 3.3, we obtain that for n1=θ  the property 

( ) τ≤µδ ;, sx  is maintained if 
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( )
( ) ( )

.
114
1

12
11 2

4

4
τ≤

−
+

τ−
τ−

n
n  (3.2) 

Figure 3 depicts the region defined by (3.2). The smallest value of n is 
around 5.1971 at ,7968.0=τ  and we can verify that for the smallest integer 

value ,6=n  the inequality (3.2) holds for [ ].8289.0,7433.0∈τ  Thus, we 

get the theorem. ~ 

 

Figure 3. The region defined by (3.2). 
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