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Abstract 

A simulation method for gas-liquid bubbly flows entraining small 
bubbles is proposed. It is based on the Vortex in Cell (VIC) method 
originally presented to simulate incompressible single-phase flows. 
The staggered grid discretization method and the vorticity correction 
method, which were proposed for the VIC method simulating single-
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phase flows by the authors’ prior study, are employed. The liquid 
velocity field is discretized with vortex elements, and the time 
evolution of the bubbly flow is simulated by calculating the behavior 
of each vortex element and the bubble motion through the Lagrangian 
approach. The proposed method is applied to the simulation of a 
bubble plume in a water tank to discuss the validity and applicability. 
Small air bubbles are released successively from the base of the tank, 
and their rise due to the buoyant force induces the water flow around 
them. The simulation at the starting period of the bubble release 
highlights that the rising bubbles induce vortex rings at their top and 
that a bubble cluster appears owing to the entrainment of the bubbles 
into the vortex rings. The rising velocity of the top of the bubbles           
is proportional to the square-root of the flowrate of the released   
bubbles, being consistent with the existing theoretical and numerical 
investigations. The simulation also demonstrates that the developed 
bubble plume having jet characteristics is successfully captured. 

Notations 

               B : side length of bubble-releasing square area 

               d : bubble diameter 

               g : gravitational constant 

               p : pressure 

              Q : second invariant of the water velocity gradient tensor 

               t : time 

             ∗t  : nondimensional time ( ) 21gBt=  

              u : velocity 

           gtu  : terminal velocity of bubble 

           pU  : rising velocity of plume top 

     21, UU   : vertical components of water velocity on plume 

centerline 
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              v : volume of single bubble 63dπ=  

             W : redistribution function of vorticity 

        x, y, z : orthogonal coordinates 

               α : volume fraction 

             t∆  : time increment 

zyx ∆∆∆ ,,  : grid widths in directions of x, y, z 

              ν  : kinematic viscosity 

              ρ  : density 

              φ  : scalar potential 

             ψ  : vector potential 

             ω  : vorticity of liquid-phase lu×∇=  

Subscripts 

  0 : just above the bubble-releasing area 

  g : gas-phase 

  l : liquid-phase 

    x, y, z : components in directions of x, y, z 

1. Introduction 

Vortex in Cell (VIC) method was originally presented to simulate 
incompressible flows [1]. It is one of the vortex methods solving the vorticity 
equation. In the VIC method, the vorticity field is discretized with vortex 
elements, and the convection of each vortex element is traced by the 
Lagrangian approach to compute the time evolution of the flow. The 
Lagrangian calculation markedly reduces the numerical diffusion as well as 
ensures the higher numerical stability. Therefore, the VIC method is expected 
to be usefully employed for the direct numerical simulation (DNS) of 
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turbulent flows. The DNSs for developing free shear flows have been 
conducted [2-5]. But turbulent flows bounded by solid walls have been 
scarcely simulated by the VIC method. 

The authors [6] have previously proposed two improvements of the VIC 
method. First, a staggered grid discretization method guarantees consistency 
among the discretized equations and prevents numerical oscillations in       
the solution. Second, a vorticity correction method enables the computation         
of vorticity fields satisfying the solenoidal condition. The VIC method in 
conjunction with the abovementioned two improvements, or the improved 
VIC method, was applied to the DNS of a turbulent channel flow [6].          
The DNS highlighted the successful capture of the organized flow  
structures, such as streaks and streamwise vortices in the near wall region, 
demonstrating that the improved VIC method is applicable to DNS of wall 
turbulent flows. On the basis of the improved VIC method, one of the authors 
[7] also proposed a simulation method for incompressible gas flows laden 
with small solid particles. The method was favorably validated in simulations 
of small free falling solid particles in unbounded air [7]. Uchiyama and 
Shimada [8] used the method to simulate the interaction between a vortex 
pair and small solid particles near a horizontal wall in the air. The simulation 
made clear the agitation of particles by the vortex pair approaching the wall, 
the production of vorticity fields by the particles, and the particle-induced 
changes in the strength and behavior of the vortex pair. 

Gas-liquid bubbly flows are observed in various engineering 
applications, such as heat exchangers, chemical reactors and waste treatment 
systems. As the dispersed bubbles interact closely with the liquid-phase,    
the bubbly flow simulation needs the simultaneous computation of the two 
phases. A number of simulation methods have been proposed [9]. Most of 
them use the Lagrangian-Eulerian approach, in which the bubble motion is 
traced by the Lagrangian calculation and the liquid flow is computed by grid-
based methods such as finite difference method and finite volume method. 
One of the authors [10] proposed a simulation method for bubbly flows       
on the basis of the VIC method, which employs neither the staggered grid 
discretization nor the vorticity correction. In the method, the liquid vorticity 
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field is discretized with vortex elements, and the behavior of the vortex 
elements as well as the bubble motion is calculated by the Lagrangian 
approach. Thus, the method is based on the Lagrangian-Lagrangian 
approach. The method was applied to simulate a plane bubble plume [10], 
and it was confirmed that the simulated three-dimensional vortical flow 
induced by the rising bubbles agrees with the experimental result. Wang et 
al. [11] also employed the method for the simulation of an interaction 
between a plane bubble plume and a vortex ring, and they explored the effect 
of the bubbles on the behavior of the vortex ring. 

The objective of this study is to propose again a simulation method for 
bubbly flows, which is based on the improved VIC method for single-phase 
flows presented in the authors’ prior paper [6]. Both the staggered grid 
discretization and the vorticity correction are employed. The simulation of a 
bubble plume in a water tank, obtained by applying the proposed method, is 
also discussed to demonstrate the validity and applicability of the method. 

2. Basic Equations and Numerical Method 

2.1. Assumptions 

The following assumptions are employed for the simulation: 

(a) The mixture is a gas-liquid bubbly flow entraining small bubbles. 

(b) Both phases are incompressible and no phase changes occur. 

(c) The mass and momentum of the gas-phase are very small and 
negligible compared with those of the liquid-phase. 

(d) The bubbles maintain their spherical shape, and neither fragmentation 
nor coalescence occurs. 

2.2. Governing equations for bubbly flow 

The mass conservation equation for the liquid-phase and that for the         
gas-phase is independently derived. Taking the summation of them and 
rearranging the resultant equation with the assumptions (a)-(c), the mass 
conservation equation for the two-phase mixtures is obtained [10]: 
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 ( ) ,0=α⋅∇+
∂
α∂

ll
l

t u  (1) 

where ( ) .llll tDtD uuuu ∇⋅+∂∂=  The gas and liquid volume fractions 

gα  and ,lα  respectively satisfy the following relation: 

 .1=α+α lg  (2) 

The momentum conservation equation for the two-phase mixtures, which 
is also derived from the equations for each phase by the same manner as the 
mass conservation equation, is expressed as [10] 

 .1 2 guu
lll

l
l

l pDt
D

α+∇ν+∇
ρ

−=α  (3) 

It is postulated that the virtual mass force, the drag force, the 
gravitational force, and the lift force act on the bubble. In this case, the 
equation of motion for the bubble is expressed by the following equation  
[12, 13] with the assumption (d): 
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where d is the bubble diameter, and β is the density ratio defined as .lg ρρ  

,VC  DC  and LC  are the virtual mass coefficient, the drag coefficient, and 

the lift coefficient, respectively. 

2.3. Vorticity equation and orthogonal decomposition of liquid velocity 

When taking the curl of equation (3), the vorticity equation for the 
bubbly flow is derived: 

 ( ) ( ) ,12
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l
ll

l
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where ω  is the vorticity of the liquid-phase. 
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 .lu×∇=ω  (6) 

According to the Helmholtz theorem, any vector field can be represented 
as the summation of the gradient of a scalar potential φ  and the curl of a 

vector potential .ψ  The liquid velocity lu  is thus expressed as 

 .ψ×∇+φ∇=lu  (7) 

The velocity calculated from equation (7) remains unaltered when any 
gradient of a scalar function is added to .ψ  To remove this arbitrariness, the 

following solenoidal condition is imposed on :ψ  

 .0=⋅∇ ψ  (8) 

When substituting equation (7) into equation (1), the following equation 
is obtained: 

 [ ( )] .0=×∇+φ∇α⋅∇+
∂
α∂ ψl

l
t

 (9) 

Taking the curl of equation (7) and substituting equation (8) into the 
resultant equation, the following vector Poisson equation for ψ  is derived: 

 .2 ωψ −=∇  (10) 

3. Simulation Based on VIC Method 

3.1. Discretization of vorticity field with vortex elements 

Once φ  and ψ  have been computed from equations (9) and (10), 

respectively, the velocity lu  is calculated from equation (7). The vorticity ω  

in equation (10) is estimated from equation (5). The VIC method discretizes 
the vorticity field with vortex elements and calculates the distribution of ω  
by tracing the convection of each vortex element. 

It is postulated that the position vector and vorticity for the vortex 
element p are ( )pppp zyx ,,=x  and ,pω  respectively. The Lagrangian 
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form of the vorticity equation, equation (5), is written as follows: 

,l
p

dt
d

u
x

=  (11) 

 ( ) .12






 −×α∇

α
+∇

α
ν

+⋅∇= Dt
D

dt
d l

l
ll

l
l

p ugu ωω
ω

 (12) 

It is found from equation (12) that the vorticity varies with the passage of 
time due to the stretch-contraction of vortex element, the viscous diffusion, 
and the gradient of the phase distribution. 

When the position and vorticity of a vortex element are known at time t, 
the values at tt ∆+  are computed from equations (11) and (12). In the VIC 
method, the flow field is divided into computational grid cells to define φ,ψ  

and ω  on the grids. If ω  is defined at a position ( ),,, kkkk zyx=x  the 

vorticity ω  is assigned to ,kx  or a vortex element with vorticity ω  is 

redistributed onto .kx  

 ( ) ∑ 
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Wx

xx
W ,ωω x  (13) 

where vN  is the number of vortex elements, and ,x∆  y∆  and z∆  are the 

grid widths. For the redistribution function W, the following equation is 
employed [14]: 

 ( ) ( ) ( )
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.2,0

,21,125.0

,1,5.15.21
2

32

W  (14) 

3.2. Calculation of gas volume fraction 

The abovementioned grid cells are also used to calculate the gas volume 
fraction .gα  It is supposed that a bubble with volume v exists in a grid cell. 

As the bubble diameter is small on the basis of the assumption (a), it is much 
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smaller than the grid cell width. The gas volume fraction in the grid cell gα  

is given as: 

 .zyx
v

g ∆∆∆
=α  (15) 

The gα  value calculated from equation (15) remains unaltered even       

when the bubble moves within the grid cell, and it changes discontinuously 
from gα  to 0 when the bubble flows out the grid cell. To overcome        

these problems, the authors’ prior study [10] computed gα  by the following 

method. 

 

Figure 1. Calculation of gas volume fraction. 

In the one-dimensional calculation, equation (15) yields .xvg ∆=α  

Defining gα  on the grid points, the grid points concerning to the grid cell 

involving the bubble take the gα  value, as shown in Figure 1(a). The present 

simulation computes the gα  value on the grid point q from the following 

equation: 

 ( ) ,







∆
−

∆
=α α x

xx
Wx

vx gq
qg  (16) 

where gx  is the x-coordinate of the bubble position. For the function ,αW  

the following equation, which is the redistribution function of vortex element 
[14], is employed: 
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The distribution of gα  calculated from equation (16) is shown in Figure 

1(b). gα  varies smoothly between the grid points around the bubble, and the 

relation ∫
∞

∞− α = 1dxW  is satisfied. These indicate that the continuity and 

conservation of gα  are indeed realized. The extension of equation (16) to 

the three-dimensional calculation gives the following equation: 
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Wzyx

v gqgqgq
qg x  (18) 

Applying equation (18) to every bubble and taking the summation on each 
grid point, the gα  value on the grid point is obtained. 

3.3. Discretization by staggered grid 

For incompressible flow simulations, the MAC and SMAC methods 
solve the Poisson equation, which is derived from the equation for pressure 
gradient and the continuity equation. These methods employ a staggered grid 
to ensure consistency between the discretized equations, and to prevent 
numerical oscillations of the solution. The staggered grid would appear to be 
indispensable for discretizing the Poisson equation for ψ  and the Laplace 

equation for ,φ  which are derived in the VIC method. However, staggered 

grids are not readily accommodated in the existing VIC method. 
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Figure 2. Computational grid and computed variables. 

The authors demonstrated that VIC methods are applicable to simulations 
of single-phase flows [6] and particle-laden gas flows [7, 8], which use 
staggered grids. The current simulation employs the staggered grid as 
illustrated in Figure 2. The scalar potential φ  and the gas volume fraction 

gα  are defined at the center of a grid cell. The liquid velocity lu  is defined 

at the sides, while the vorticity ω  and the vector potential ψ  are defined on 

the edges. 

3.4. Correction of vorticity 

In the VIC method, the vorticity field is discretized with vortex elements, 
and the field is expressed by superimposing the vorticity distributions  
around each vortex element. The superposition is performed by equation 
(13). The resulting vorticity field rω  does not necessarily satisfy the 

solenoidal condition [14]. Denoting the vorticity satisfying this condition by 

sω ( ),gu×∇=  rω  is expressed as [4] 

 ,sr F ωω +∇=  (19) 
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where F is a scalar function. Equation (19) corresponds to the Helmholtz 
decomposition of .rω  

Taking the divergence of equation (19), we obtain the Poisson equation 
for F: 

 .2
rF ω⋅∇=∇  (20) 

Calculating F from equation (20) and substituting into equation (19) gives 
the recalculated vorticity sω  [4]. This correction for vorticity needs to solve 

the Poisson equation, which increases the computational time. To reduce this 
additional cost, the authors [6] have proposed a simplified correction method. 

The uncorrected vorticity, ,rω  is linked to rψ  through equation (10). 

Taking the divergence of equation (10) and substituting equation (20) into 
the resultant equation, the following relations are obtained: 

( ) rr ωψ ⋅−∇=⋅∇∇2  

.2F−∇=  (21) 

Unlike equation (8), which assumes the solenoidal condition for ,ψ  the 

following equation for a non-solenoidal vorticity is derived from equation 
(21): 

 .Fr −=⋅∇ ψ  (22) 

Using rω  to calculate rψ  from equation (10), and determining rφ  from 

equation (9), the curl of ru  transforms as follows: 

( )rrr ψ×∇+φ∇×∇=×∇ u  

( ) rr ψψ 2∇−⋅∇∇=  

rF ω+−∇=  

.sω=  (23) 
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Equation (23) demonstrates that the curl of the velocity ru  calculated 

from rω  yields a vorticity sω  that satisfies the solenoidal condition. If      

the vorticity is recalculated by equation (23), or the vorticity is corrected 
immediately after calculating the liquid velocity by equation (7), the 
discretization error in the vorticity is completely removed and the flow 
dynamics are accurately simulated without solving the Poisson equation 
(equation (20)). It should be noted that the staggered grid is required for 
rendering the transformation in equation (23) applicable to the corresponding 
discretized equations. 

3.5. Numerical procedure 

Given the flow at time t, the flow at tt ∆+  is simulated by the following 
procedure: 

(1) Calculate the bubble motion from equation (4). 

(2) Calculate gα  from equation (18), and compute lα  from equation 

(2). 
(3) Calculate the time variation of ω  at every grid point from equation 

(12). 

(4) Calculate the convection of each vortex element from equation (11). 

(5) Calculate ω  from equation (13). 

(6) Calculate ψ  from equation (10). 

(7) Calculate φ  from equation (9). 

(8) Calculate lu  from equation (7). 

(9) Correct the vorticity, or calculate the corrected vorticity from the curl 
of .lu  

4. Application to Bubble Plume Simulation 

4.1. Simulation conditions 

The proposed method is applied to the simulation of a bubble plume       
to discuss the validity and the applicability. Murai and Matsumoto [15] 
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investigated the bubble plume with the numerical simulation as well as the 
experimental visualization. Figure 3 shows the flow configuration. Small air 
bubbles are released successively from a square area on the bottom of a water 
tank, and their rise due to the buoyant force induces the water flow around 
them, resulting in a bubble plume in the tank. The yx −  plane is horizontal, 

and the z-axis is taken in the vertically upward direction. 

Table 1 lists the simulation conditions. The bubble-releasing area is 
square in shape, and the side length B is 25 mm. The horizontal cross-section 
of the tank is ,44 BB ×  and the height of water is 16B. The computational 
region BBB 1644 ××  is divided into 1604040 ××  grid cells. In the VIC 
method for single-phase flow simulations, the conditions 1<∇∆ ut  and 

12 <ν∆ ht  are needed for the stable computation, where h and u are the 

grid cell width and the velocity respectively. The time increment t∆  in this 
simulation satisfies these CFL conditions. 

 

Figure 3. Configuration of bubble plume. 
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Table 1. Simulation conditions 
Bubbly flow Air/Water at 298 K 
Side length of bubble-releasing area; B 25 mm 
Horizontal cross-sectional area of water tank BB 44 ×  
Height of water 16B 
Computational domain BBB 1644 ××  
Number of grids 1604040 ××  
Mean diameter of bubble; d 0.4 mm 
Gas volume fraction above bubble-releasing 
area; 0gα  0.005 - 0.03 

Lift coefficient of bubble; LC  0.5 

Virtual mass coefficient of bubble; VC  0.5 

Time increment; t∆  4 ms 

When releasing the bubbles from the square area, the velocity is set at 
zero. The releasing positions are determined by using random numbers. The 
bubble diameter d obeys the Gaussian distribution; the mean and the standard 
deviation are 0.4 mm and 0.04 mm, respectively. The virtual mass coefficient 

VC  and the lift coefficient LC  are 0.5. The drag coefficient DC  is given by 

the following equation: 

 ,Re
24,

Re
21.21Re

48max 21 
























−=

bbb
DC  (24) 

where bRe  is the bubble Reynolds number defined as .llgd ν− uu  

Equation (24) combines the theoretical formula of Moore [16] and the 
Stokesian drag coefficient. It was also used in the simulation of Murai and 
Matsumoto [15]. 

The release of bubbles into the quiescent water commences at time 

.0=∗t  The water velocity thus at 0=∗t  is zero. 

On the tank wall, a non-slip condition is imposed. There exists no flow in 
the direction normal to the wall, and the relation of 0=⋅∇ ψ  is satisfied. 
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Therefore, the tangential component of ψ  is zero, and the gradient of         

the normal component in the direction normal to the wall is also zero. The 
boundary condition of ω  is given by the curl of the velocity. On the walls at 

,2By ±=  for example, these boundary conditions are expressed as: 

,0=lu  (25) 

,0=
∂
φ∂
y  (26) 

,0,0,0 =
∂
ψ∂

=ψ=ψ y
y

zx  (27) 

 .,0, y
u

y
u lx

zy
lz

x ∂
∂

−=ω=ω
∂
∂

=ω  (28) 

The upper boundary corresponds to the free-surface. In this simulation, the 
deformation is ignored, and the velocity gradient normal to the boundary is 
set at zero: 

,02

2
=

∂
φ∂

z
 (29) 

 .,0,0 yxzzz
yxzyx

∂
ψ∂

−
∂
ψ∂

−=
∂
ψ∂=

∂
ψ∂

=
∂
ψ∂  (30) 

Equations (9) and (10) are solved by the successive over-relaxation 
(SOR) method. 

4.2. Simulation results 

Figure 4 shows the temporal evolution of the bubble distribution after 
starting the bubble release at time .0=t  The gas volume fraction just above 
the bubble-releasing area 0gα  is 0.02. The bubbles, rising vertically in the 

quiescent water due to the buoyant force, form a cluster of a mushroom shape 

at their top just after their release ( ).40=∗t  This is because the rising 

bubbles induce vortex rings of the water, and accordingly they are entrained 
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into the vortex rings, as explained later. Such bubble cluster is known to 
appear in the starting period of bubble plumes. Murai and Matsumoto [15] 
grasped the similar bubble cluster, and Caballina et al. [17] also reported 

such bubble cluster in a simulation of a plane bubble plume. At 80=∗t  and 

120, the bubble cluster rises in the water. When ,200≥∗t  the bubbles rise 
almost vertically until ,6Bz =  and they disperse markedly in the horizontal 
direction at .6Bz >  A fully-developed bubble plume occurs. 

 

(a) 40=∗t  (b) 80=∗t  (c) 120=∗t  

 

(d) 200=∗t  (e) 280=∗t  (f) 400=∗t  

Figure 4. Temporal evolution of bubble distribution ( ).02.00 =αg  

The rising velocity of the top of the plume is larger than the terminal 
velocity of a bubble gtu  in quiescent water. This is because it is affected by 
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the upward water flow induced by the rising bubbles. According to the 
dimension analysis of Caballina et al. [17], the rising velocity of plume top 

pU  is proportional to the square-root of the flowrate of the released bubbles 

.gQ  Figure 5 shows the relation between ( ) 21gBU p  and .0gα  pU  

increases with ,0gα  satisfying the relation of .21
0gpU α∝  It is discovered 

that the present result is parallel with the analysis of Caballina et al. in due 
consideration of the relation .0 gg Q∝α  

 

Figure 5. Rising velocity of starting plume. 

Trying to apply the simulation method proposed in the authors’ prior 
study [10], the results were the same as those obtained by the present method 
in the case of .015.00 ≤αg  But the simulation for 02.00 ≥αg  collapsed       

at a time step just before the appearance of the fully-developed plume.     
This may be attributable to the fact that the solenoidal condition of the 
vorticity field is not exactly satisfied. The present method is applicable to  
the simulation even at 03.00 =αg  as demonstrated in Figure 5, expanding 

successfully the simulation condition of .0gα  

To grasp the water flow induced by the rising bubbles, the velocity 
distribution on the central vertical cross-section is plotted in Figure 6. The 
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distributions at the time points indicated in Figure 4 are depicted. When 

,120≤∗t  the upward flow is induced around the centerline, and eddies with 

various scales appear around the rising bubble cluster. At ,200≥∗t  a core 
region exists on the centerline at ,6Bz ≤  and the velocity diffuses markedly 
in the horizontal direction at .6Bz >  From these velocity distributions, one 
can find the appearance of a water flow having jet characteristics. 

 

     (a) 40=∗t   (b) 80=∗t   (c) 120=∗t  

 

(d) 200=∗t  (e) 280=∗t  (f) 400=∗t  

Figure 6. Temporal evolution of water velocity ( ).02.00 =αg  
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(a) 40=∗t   (b) 80=∗t   (c) 120=∗t  

 

(d) 200=∗t  (e) 280=∗t  (f) 400=∗t  

Figure 7. Temporal evolution of Q value ( ( ) ).005.0,02.00 ==α BgQg  

Figure 7 shows the temporal evolution of the second invariant of the 
water velocity gradient tensor Q. The iso-surface of ( ) 005.0=BgQ  at six 

time points is presented. Q is defined by the following equation: 

 ( ),2
1

ijijijij SSWWQ −=  (31) 

where the vorticity tensor ijW  and the deformation rate tensor ijS  are given 

as: 
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Vortex rings appear around the central axis at .40=∗t  The bubbles are 
entrained into the vortex rings, forming a bubble cluster as found in Figure 4. 
The vortex rings deform with the rise of the cluster, and eventually they 

change into three-dimensional vortex tubes. When ,200≥∗t  the entangled 
vortex tubes are visualized at .8Bz ≥  One can grasp the vortical flow 
composed of the vortex tubes having various scales. 

The iso-surfaces of the vertical component of the vorticity ,zω  

( ) ,05.021 ±=ω gBz  are shown in Figure 8. Pairs of positive and negative 
vortex tubes exist and entangle in the developed region at ,8Bz ≥  indicating 
the appearance of a highly three-dimensional vortical flow. 

 
(a) 40=∗t     (b) 80=∗t   (c) 120=∗t  

 
(d) 200=∗t   (e) 280=∗t  (f) 400=∗t  

Figure 8. Temporal evolution of vertical component of vorticity zω  

( ( ) ).05.0,02.0 21
0 ±=ω=α gBzg  



Tomomi Uchiyama, Yutaro Yoshii, Bin Chen and Zhiwei Wang 112 

Figure 9 shows the time variation of the vertical component of the water 
velocity on the centerline, where .02.00 =αg  The variations of the velocities 

1U  and 2U  at Bz 4=  and 14B, respectively, are plotted. The velocity 2U   

is much lower than .1U  This indicates that the water momentum diffuses 

markedly in the horizontal direction in the fully-developed region, because 

1U  and 2U  are computed in the core and fully-developed regions, 

respectively. It should also be noted that 1U  and 2U  fluctuate irregularly and 

that the amplitude and period of 2U  are much larger than those of .1U  This 

is attributable to the fact that 2U  is affected by the large-scale eddies existing 

in the fully-developed region. 

 

Figure 9. Time variation of vertical component of water velocity on plume 
centerline ( ).02.00 =αg  

5. Conclusions 

A numerical simulation method for gas-liquid bubbly flows entraining 
small bubbles is proposed. It is based on the Vortex in Cell (VIC) method, of 
which numerical accuracy for single-phase flow simulation was successfully 
improved by the authors’ prior study. 

The proposed method is applied to the simulation of a bubble plume in a 
rectangular water tank to discuss the validity and the applicability. Small air 
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bubbles are released successively from a square area on the bottom of the 
tank, and their rise due to the buoyant force induces the water flow around 
them, resulting in the bubble plume in the tank. The simulation at the starting 
period of the bubble release highlights that the rising bubbles induce vortex 
rings at their top and that a bubble cluster of a mushroom shape appears 
owing to the entrainment of the bubbles into the vortex rings. This 
demonstrates that the proposed method can simulate the transient bubbly 
flow, which is known to occur in bubble plumes at the starting period. The 
simulation shows that the rising velocity of the top of the released bubbles is 
proportional to the square-root of the flowrate of the released bubbles. This is 
consistent with the existing theoretical analysis and numerical simulation. 
The simulation also demonstrates that the jet characteristics of the bubble 
plume, such as the existence of the core region just above the bubble-
releasing area and the appearance of the three-dimensional vortical flow 
composed of eddies with various scales at the developed region, are 
favorably computed. 
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