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Abstract 

The phenomenon of disintegration of wave trains, commonly known 
as the Benjamin-Feir instability, on deep as well as shallow water is 
reviewed covering both the original perturbation theory of Benjamin 
and Feir [4] as well as the alternative approach through the nonlinear 
Schrödinger equation, such as that given by Stuart and DiPrima     
[17]. Also presented is a short description of higher-order instability                
of wave trains whose astonishing result is due to the discovery         
made by Longuet-Higgins [9, 10]. The extension of the perturbation     
theory to instability of three-dimensional oblique waves [1] is also 
briefly explained, and a compelling suggestion is given for a possible 
application of this theory to fully three-dimensional waves on deep 
water. 
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1. Introduction 

Finite amplitude water waves have been subject of scientific study by 
mathematicians and physicists for the last 150 years since the pioneering 
work of Stokes in 1847 [14]. A vast body of mathematical theory has been 
constructed, and in fact problems of water waves appear to have been 
responsible for many of the fundamental techniques developed in applied 
mathematics. The ingenious methods (such as inverse scattering, etc.) of 
solving exactly certain partial differential equations were first discovered for 
the shallow water wave approximation, namely Korteweg-de Vries equation, 
and much of the development arose from the cubic nonlinear Schrödinger 
equation which describes wave envelops for slow modulation of weakly 
nonlinear water waves. In recent years, water waves have provided a 
challenge to computing techniques and were the field of application of some 
of the first uses in continuum mechanics of ideas like Pade approximation. 
The mathematical richness of the field may seem surprising at first sight, 
since the governing differential equation of the classical problem is just 
Laplace’s equation but of course the boundary conditions are nonlinear and 
this is the source of the wealth of problems. It is remarkable that in classical 
field as well studied as water waves, new physical phenomena are still being 
discovered, both theoretically and experimentally, and many open questions 
remain. 

For the particular topic of two-dimensional periodic, irrotational surface 
waves of permanent form propagating under the effects of gravity on water 
of infinite and finite depth (Stokes waves), major advances were made over 
the last forty years by a powerful combination of analytical and numerical 
techniques. Quite apart from the mathematical questions of the rigorous 
existence of finite amplitude waves of permanent form (which has attracted 
and still attracts pure mathematicians), new phenomena of physical interests 
have been discovered and investigated. For example, instability of steady 
finite amplitude waves to long wave two-dimensional disturbances was 
predicted by Lighthill [8] by the use of Whitham’s variational method and an 
approximate Lagrangian. Using Hamiltonian methods, Zakharov [20, 21] 
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showed that weekly nonlinear gravity waves are unstable for modulations 
longer than a critical wavelength depending upon the wavelength. Both two- 
and three-dimensional disturbances were considered. Benjamin and Feir [4] 
examined the case of two-dimensional disturbances to weakly nonlinear 
waves employing standard perturbation methods and found instability to 
two-dimensional disturbances of sufficiently long wavelength. Using the 
numerical results obtained by Schwartz [13] for the shape of finite amplitude 
Stokes waves, Longuet-Higgins [9, 10] investigated the stability of finite 
amplitude water waves to superharmonic and subharmonic two-dimensional 
disturbances. This work extended the results of Zakharov and Benjamin and 
Feir to finite amplitude waves and disturbances of shorter wavelength. It 
confirmed Lighthill’s prediction that the long wave instability disappears 
when the wave is steep, and gave values for growth rates that agree well with 
the observations of Benjamin and Feir (see Benjamin [3] and Lake and Yuen 
[5]). Longuet-Higgins also discovered that when the wave is sufficiently 
steep, two-dimensional subharmonic disturbances of twice the wavelength of 
the undisturbed wave become unstable and have growth rates substantially 
larger than the type studied by Lighthill, Zakharov and Benjamin and Feir. 

Following these and other advances in two-dimensional water waves, 
interest has been directed to three-dimensional effects, where it might be 
anticipated that there is an even greater richness of phenomena. The objective 
of this paper is to establish analytically that three-dimensional progressive 
waves of finite amplitude on deep water (that is, three-dimensional Stokes 
waves) are unstable and determine an instability criterion for these types      
of waves. This proposition, like the Benjamin-Feir instability, implies that in 
practice, where perturbations from the ideal wave motion are inevitably 
present, a train of such waves will disintegrate if it travels far enough. 

2. Instability of Two-dimensional Waves 

Although the detailed analysis of the instability is necessarily 
complicated, however, the essential features can be explained with reference 
to Benjamin [3] and Benjamin and Feir [4] for water waves on water of finite 
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depth h. The two-dimensional irrotational motion in an inviscid water with a 
free surface is governed by the following equations and boundary conditions: 

 ,,0,02 ∞<<∞−≤≤−=φ+φ=φ∇ xzhzzxx  (2.1) 

( ),,on
02

1

0

2 txz
g t

zxxt
η=







=φ+φ+η

=φ−φη+η


 (2.2) 

0=φz  on ,hz −=  (2.3) 

where ( )tzx ,,φ=φ  is the velocity potential, ( )txz ,η=  is the free surface 

elevation above its mean level at ,0=z  g is the gravitational acceleration, 

the horizontal coordinates are ( )yx,  and the vertical coordinate z is positive 

upwards, and 2∇  is the two-dimensional Laplacian. 

The nonlinear boundary-value problem described by the preceding 
equations is known to have exact periodic solutions in the form =φ  

( )zctx ,−Φ  and ( ),ctxF −=η  where c is a constant phase velocity. The 

existence of such solutions was established by Struik [16] in shallow water 
by Levi-Civita [7] in deep water. They proved the convergence of the series 
expansion for φ and η whose leading terms agree with the Stokes [14] 
expansion. The results are 

( ) ( ) ,2sin2sinh
2coshsinsinh

cosh 2 θ+ω+θ+


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and 

( ) .cosechtanh298
1cosech11tanh 422222











 −+++=ω khkhkhakkhgk  

 (2.6) 

This approximation is valid provided ,1ka  or alternatively if ( )3khka  

for small kh. 

These results reduce to those of deep water as 

,2cos2
1cos,sin 2 θ+θ==ηθ





 ω=Φ=φ kaaFek

a kz  (2.7) 

( ).1 222 kagk +=ω  (2.8) 

This describes the steady wave motion on deep water if .1ka  

To investigate the stability of the steady wave motion described by (2.4) 
and (2.5), we write 

 φ′ε+Φ=φ    and   ,η′ε+=η F  (2.9) 

where ε is a small parameter so that the linear equations for φ′  and η′  can be 

obtained by neglecting the square of ε. The solutions ,φ′  η′  are assumed to 

consist of two sideband modes, together with the products of their interaction 
with the basic wave train, whose fundamental simple harmonic component 
has amplitude a and phase .tkx ω−=θ  Since the system is nonlinear, 
harmonics with phases ...,3,2 θθ  are traveling with the same phase velocity 

kc ω=  as the fundamental, and their amplitudes are assumed to decrease in 

relative order of magnitude like successive integral powers of ( ).1ak  A 

disturbance is introduced consisting of a pair of progressive wave modes 
with sideband frequencies and wavenumbers close to ω and k so that their 
phases are expressed in the form 

 ( ) ( ) 11 11 γ−δ+ω−κ+=θ xk   (upper sideband), (2.10) 

 ( ) ( ) 22 11 γ−δ−ω−κ−=θ xk   (lower sideband), (2.11) 
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where κ and δ are small fractions, and the respective amplitudes are 1ε  and 

,2ε  which are much smaller than a. Two particular products arise from the 

nonlinear interaction between the disturbance and the basic wave train, and 
these are the different components produced between the sidebands and the 
second harmonic. So the components generated have phases 

 ( ) ( ),2,2 21122121 γ+γ+θ=θ−θγ+γ+θ=θ−θ  (2.12) 

and amplitudes 22
1 kaε  and ,22

2 kaε  respectively. Thus, if it happens that 

 constant21 →γ+γ=γ  (2.13) 

as the nonlinear processes develop in time, each mode will produce effects 
that become resonant with the other. Subsequently, if 0≠γ  or π, each mode 

suffers as synchronous forcing effect proportional to the amplitude of the 
other so that two amplitudes can grow exponentially. Therefore, the basic 
wave train becomes unstable to this form of disturbance. 

After a lengthy but straightforward calculation, Benjamin [3] obtained 
expansions for 1η′  and 1φ′  and hence found 21 η′+η′=η  and .21 φ′+φ′=φ  

Substituting these results into (2.2) leads to four equations with known 
parameters for the functions ( )tiε  and ( ).tiγ  They are 
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( ) ( )
( ) .2cosech21

2cosechtanh181 KK
KKKKKY

+
−−=  (2.17) 

It is worth noting that the last term in equation (2.15) represents the 
nonlinear effects possibly opposing the detuning effect of dispersion on the 
sideband modes. 

It is noted that the function ( )KY  is proportional to the negative 

curvature of the dispersion relation according to the linearized theory, and 
positive for all nonzero values of K. Also, ( ) 0→KY  as .0→K  For deep 

water waves, ( ) 1→KY  as ,∞→K  and hence equations (2.14) and (2.15) 

assume simple forms that admit explicit solutions. 

The solutions of the pair of simultaneous differential equations (2.14) are 

( ) ( ) ( ) 



 γωε=ε ∫

t
dtXakt

0
2

2,12,1 sin2
1cosh0  

( ) ( ) .sin2
1sinh0

0
2

1,2 



 γωε+ ∫

t
dtXak  (2.18) 

Even though γ is as yet an unknown function of t, the amplitudes of the 
sideband modes undergo unbounded amplification if γ tends to constants 
other than 0 and π. 

According to the argument given by Benjamin and Feir [4], the solutions 
( )tiε  are periodic and finitely bounded if 

 ( ) ( ) ( ).2 22 KYKXak δ<  (2.19) 

This is the required condition of stability of the basic wave trains. In fact,  
the unbounded amplification of ( )tiε  is impossible in this case because of 

equations (2.18) and (2.15), the former suggests that 21 ε→ε  if ,2 ∞→ε  

whereas the latter shows that ,0→γ dtd  which is then impossible under the 

condition (2.19). 

On the other hand, if 

 ( ) ( ) ( ),2 22 KYKXak δ>  (2.20) 
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then for any initial values, with one exception, solutions of (2.14) and (2.15) 
have asymptotic properties as ,∞→t  


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1exp~~ 212222
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The exceptional case arises when the initial values of 1ε  and 2ε  are 

equal and 

( ) 
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
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
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
 δ=γ − 1cos0

2
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X
Y

ka  in ( );2, ππ  

the disturbance decays exponentially. However, this case has no physical 
significance. 

If ( ) ( ),2 222 KTKXka δ=  then 1ε  and 2ε  are found to have unbounded 

asymptotic growth, but this is linear rather than exponential in time. This is 
known as marginal instability. Thus, including this case, the instability 
condition becomes 

 ( ) ( ) ( ).2 22 KYKXak δ≥  (2.23) 

The stability or instability of the basic wave train depends on the sign      
of ( ).KX  If ( ) ,0>KX  then there exists a range of values of δ so that the 

condition of instability (2.23) is satisfied. If, on the other hand, ( ) ,0>KX  

then the stability condition (2.20) remains valid for all values of the other 
parameters. Direct evaluation of ( )KX  from (2.16) shows that ( )KX  is 

positive or negative according to whether 363.1>kh  or .363.1<  In the case 
of infinitely deep water, the condition of instability becomes 

 ( ) .0222 >δ≥ak  (2.24) 

Thus, the Stokes wave trains on infinitely deep water are stable or unstable 
according to whether the wavelength >λ  or ( ) .61.4363.12 hh =π<  These 
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results are in remarkable agreement with Whitham’s [19] instability theory. 
Benjamin and Feir have also given very definite experimental evidence (see 
Figure 1) in favor of the instability of Stokes waves on deep water. Thus,         
the Benjamin-Feir instability is well established to affect waves on water           
of depths with .363.1>kh  Also, the theory of McLean [11, 12] and 
experiments of Su et al. [18] show that even for ,363.1<kh  instabilities can 
grow. Nevertheless, by suitable choice of wave steepness and depth of water, 
it is possible to avoid this situation. It is important to point out that if 

363.1>kh  there is a cutoff value cδ  or δ given by 

 ( ) ,2 21





=δ Y

Xakc  (2.25) 

above which there is no unbounded growth of the sideband amplitudes. As 
kh is reduced towards 1.363, the unstable range cδ<δ<0  narrows down to 

a vanishing point. The asymptotic growth rate represented by (2.22) attains a 

maximum value for .2cδ=δ  The maximum value of the exponent is 

 ( ) ( ).2
11 2

max
KXakdt

d ω=




 ε
ε

 (2.26) 

This becomes largest for deep water waves, since ( ) ,1=KX  and tends to 

zero as kh is reduced towards 1.363. 

It is also evident from the preceding discussion that Benjamin and      
Feir’s results are only first approximations to the properties of unstable 
disturbances for small ak, and hence for small δ. But they are remarkably 
significant as the exact representations of these properties in the limit 

.0→ak  As stated earlier, (2.23) is the precise instability condition for the 
Stokes wave trains of sufficiently small amplitude is an inviscid fluid, if a 

time ( ) ctkat =ω −122  or a distance ( )32kaCtx c λ=  is allowed for 

instability to develop. In reality, the effect of viscosity is likely to suppress 
the instability if ak is extremely small, because the viscous dissipation rate is 
approximately independent of amplitude. However, it is also possible to 
assume that the mechanisms of viscous dissipation and of energy transfer to 
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the sidebands are essentially independent provided both are weak. Benjamin 
[3] suggested that the practical condition of instability is 

 ( ) ( ) ,2
1 2 β>ω khXak  (2.27) 

where the left-hand side of this condition is the greatest possible rate of 
amplification for the inviscid fluid model, as given by (2.26), and β is the 
temporal dissipation rate (equal to the product of the group velocity and the 
spatial dissipation rate) that is experienced by the waves of sufficiently small 
amplitude at wavenumber k. 

 

Figure 1. Photographs of a progressive wave train at two stations, showing 
disintegration due to instability: (a) view near to wavemaker, (b) view at 200 
ft away from the wavemaker. Fundamental wavelength, 7.2ft (from Benjamin 
[3]). 
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3. Nonlinear Schrödinger Equation Approach 

An alternative treatment of the Benjamin-Feir instability mechanism of 
the two-dimensional Stokes waves on deep water was given by Stuart and 
DiPrima [17]. They used the method of the nonlinear Schrödinger equation 
that allows the analysis of the sideband perturbations. The main idea of         
the Benjamin-Feir mechanism can be described by considering a small-
amplitude wave represented by ( )[ ].exp tkxia ω−  All the harmonics of this 

mode will appear because of nonlinear interactions; in particular, the first 

harmonic is proportional to ( )[ ].2exp2 tkxia ω−  We assume two modal 

perturbations represented by ( )[ ]txkia ω−11 exp  (the upper sideband), and 

( )[ ]txkia 222 exp ω−  (the lower sideband), where the amplitudes 1a  and 2a  

are smaller than a. It is noted that the nonlinear interaction between the first 
harmonic and the upper sideband generates 

 ( ) ( ){ }[ ],22exp 111
2 txkkiaa ω−ω−−  (3.1) 

together with another component not stated explicitly. Simultaneously, the 
nonlinear interaction between the first harmonic and the lower sideband 
produces 

 ( ) ( ){ }[ ],22exp 122
2 txkkiaa ω−ω−−  (3.2) 

along with another component not stated explicitly. If we write 

 kkk 221 ==    and   ,221 ω=ω+ω  (3.3) 

the preceding results give 

 ( )[ ]txkiaa 221
2 exp ω−  (3.4) 

and 

 ( )[ ].exp 112
2 txkiaa ω−  (3.5) 

Clearly, the former is proportional to the lower sideband, whereas the 
latter is proportional to the upper sideband. The simultaneous presence of the 
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upper and lower sidebands combined with the first harmonic is likely to 
produce a resonant phenomenon. The exponential growth in time originating 
from this synchronous resonance leads to the instability of the Stokes waves. 
Thus, the resonance phenomenon must satisfy the two conditions (3.3), 
which must be consistent with the associated dispersion relation. For Stokes 

waves on deep water, the dispersion relation is .2 gk=ω  If 21, kk  are close 

to k and 21, ωω  are also close to ω, and if we write 

( ) ( ),1,1 11 δ+ω=ωκ+= kk  (3.6) 

 ( ) ( ),1,1 22 δ+ω=ωκ+= kk  (3.7) 

then 






 κ−−=ω





 κ+==ω 2

11,2
11 2211 gkgkgkgk  (3.8) 

implies κ=δ 2
1  to the first order in wavenumber and frequency 

perturbations. 

It is well known that one simple solution of the nonlinear Schrödinger 
equation (2.26) depending on time only is 

 ( ) ,2exp 2
0

2
000 



 ω−= tAkiAtA  (3.9) 

where 0A  is a constant. This solution essentially represents the fundamental 

components of the Stokes wave. We consider a perturbation of (3.9) and 
express it in the form 

 ( ) ( ) ( )[ ].,1, txBtAtxa +=  (3.10) 

Substituting this result into (2.26) yields 

( ) xxtt AB
k

iABABi 








 ω
−++ 2

0

0
8

1  

[( ) ( ) ( ) ( )] ,112
1 2

0
2
00 ABBBBBBBBBAk ∗∗∗ +++++++ω=  (3.11) 
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where ∗B  is the complex conjugate of B. Ignoring squares of B, we obtain 

 ( ).2
1

8
2
0

2
002

0

0 ∗+ω=








 ω
− BBAkB

k
iB xxt  (3.12) 

We next seek a solution for B in the form 

 ( ) ( ) ( ),expexp, 21 ilxtBilxtBtxB −Ω++Ω= ∗  (3.13) 

where 1B  and 2B  are complex constants, l is a real wavenumber, and Ω is       

a growth rate (possibly complex) to be determined. Substituting the solution 
for B into (3.12) yields a pair of coupled equations, 

( ) ,02
1

8
21

2
0

2
0012

0

2
0 =+ω−









 ω
+Ω ∗BBAkB

k
li  (3.14) 

 ( ) .02
1

8
21

2
0

2
0022

0

2
0 =+ω−









 ω
+Ω ∗∗ BBAkB

k
li  (3.15) 

Taking the complex conjugate of (3.15) gives 

 ( ) .02
1

8
21

2
0

2
0022

0

2
0 =+ω−









 ω
+Ω− ∗∗ BBAkB

k
li  (3.16) 

The pair of linear homogeneous equations (3.14) and (3.16) for 1B  and 
∗
2B  admits a nontrivial eigenvalue for Ω, provided 

,0

2
1

82
1

2
1

2
1

8

2
0

2
002

0

2
02

0
2
00

2
0

2
00

2
0

2
002

0

2
0
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ω−
ω
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ω−ω−
ω
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Ak
k
liAk
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k
li

 (3.17) 

which is equivalent to 

 .
822

1
2
0

2
2
0

2
0

2

0
02











−






 ω=Ω

k
lAkk
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The growth rate Ω is real (and positive) and purely imaginary depending 

on whether 2
0

2
0

2 8 Akl <  on .8 2
0

4
0

2 Akl >  The former case represents a         

wave solution for B, and the latter case corresponds to the Benjamin-Feir 

instability with criteria in terms of the nondimensional wavenumbers =l~  
( )0kl  as 

 .8~ 2
0

2
0

2 Akl <  (3.19) 

Thus, the range of instability is 

 .22~~0 00Akll c =<<  (3.20) 

Since Ω is a function of ,~l  the maximum instability occurs at max
~~ ll =  

,2 00 Ak=  with the maximum growth rate given by 

 { } ,2
1 2

0
2
00max AKω=Ωℜ  (3.21) 

where ℜ  implies the real part. 

In order to establish the connection with Benjamin-Feir instability 
described earlier, we need the velocity potential for the fundamental wave 
mode multiplied by ( ).exp ks  It turns out that the term proportional to 1B  is 

the upper sideband, while that proportional to 2B  is the lower sideband. 

Hence, the equivalent of the Benjamin result ( )δ=κ 2  is satisfied. The main 

conclusion of the preceding analysis is that the Stokes water waves are 
definitely unstable. 

In summary, the theoretical prediction of the Benjamin-Feir sideband 
instability is that of a breakup of a nonlinear wave, with the energy 
eventually spread over a number of small-amplitude waves. With the 
identification of the soliton, it has been conjectured that the final state of an 
unstable Stokes wave would be one or more solitons. These predictions    
were found to be in remarkable agreement with their experimental results, 
which indicated that the monochromatical gravity waves produced in the 
experiment transfer energy to a wavenumber adjacent to that of the carrier 
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wave by the nonlinear interactions. Benjamin and Feir observed what was 
apparently a disintegration of a mechanically produced finite-amplitude deep 
water wave. They interpreted this disintegration (or breakup) as being due to 
a sideband instability of the finite-amplitude wave. Based upon the linear 
stability analysis, they also described the mechanism as a resonant coupling 
between the primary wave train and a pair of wave modes at sideband 
frequencies and wavenumber fractionally different from the fundamental 
frequency and wavenumber. In consequence of coupling, the energy is then 
transferred from the primary wave to the sidebands at a rate that can increase 
exponentially in time or distance as the nonlinear interactions develop. The 
general conclusion is that finite-amplitude water waves are unstable. 

4. Higher-order Instability of Wave Trains 

Longuet-Higgins [9, 10] reported a new type of instability for finite-
amplitude gravity waves. Its discovery came from computations based on 
Stokes’ [15] conformal mapping representation of two-dimensional gravity 
waves in deep water. Longuet-Higgins showed at small wave steepness ka 
there is no supercritical of the discrete wavenumbers. However, as ka         
was increased be found supercritical instability among wavenumbers ,1k  2k  

satisfying 

221 =+ kk  

the fundamental wavenumber and frequency being normalized to unity. The 
corresponding frequency condition for four-wave resonance is 

221 =ω+ω  

but this cannot be satisfied as 0→ka  for Longuet-Higgins’ chosen 
wavenumbers. Onset of supercritical instability, as ka increases, is due to 
nonlinear modification of the frequencies 21, ωω  which causes the resonance 

condition to be nearly satisfied over a finite range of ka. For large and small 
ka, the wave is “detuned” and no instability takes place. The domain of 
supercritical instability of two-dimensional disturbances is shown in Figure 
2. The most unstable supercritical instability, at given ka, is two-dimensional. 
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At large values of ka, not far short of that for the highest wave, Longuet-

Higgins encountered subcritical instability of the mode with .2
3

1 =k  Owing 

to nonlinearity, this attains the same phase speed as the fundamental         
(i.e., ,32 1 =k  )32 1 =ω  when :41.0≈ka  this is the degenerate five-wave 

resonance condition. These results clearly demonstrate the role of 
nonlinearity in turning and detuning resonance. 

 

Figure 2. Stability boundary for growth of two-dimensional perturbations of 
uniform finite-amplitude gravity waves:  results from Longuet-Higgins [10]; 
the solid line is approximation derived by Zakharov’s equation. 

5. Three-dimensional Benjamin-Feir Instability 

Following advances in two-dimensional water waves (noted in Sections 
2 and 3), interest has been directed to three-dimensional effects, where it 
might be anticipated that there is an even greater richness of phenomena. The 
objective here is to establish analytically that three-dimensional progressive 
waves of finite amplitude (that is, three-dimensional Stokes waves, such as 
that shown in Figure 3) on water of finite depths are unstable and determine 
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an instability criterion for these types of waves. This proposition, like the 
Benjamin-Feir instability, implies that in practice, where perturbations from 
the ideal wave motion are inevitably present, a train of such waves will 
disintegrate if it travels far enough. 

Consider the various simple-harmonic modes present in a slightly 
disturbed three-dimensional wave motion whose profile is given by 

 [ ] [ ],2cos2cos2
1coscos 2 −+−+ ζ+ζ+ζ+ζ=η kaa  (5.1) 

where ,tmyx ω−+=ζ+  ,tmyLx ω−−=ζ−  ,cos θ= k  θ= sinkm  and 

θ−= 2cos2kL  (the case 0=θ  is the limit of two-dimensional progressive 
wave). We have first, for the basic wave train, the fundamental component 

with amplitude a and argument ,±ζ  and harmonics with arguments ,2 ±ζ  

...,,3 ±ζ  which all advance in the horizontal x- and y-directions with the 

phase velocity c. For all disturbances, we take a pair of progressive-wave 
modes which have ‘sideband’ frequencies and wavenumbers adjacent to 

m,,ω  and L, so that their arguments may be expressed as 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

,

111

111

111

111

22

22

11

11














γ−δ−ω−µ−−Λ−=ζ

γ−δ−ω−µ−+λ−=ζ

γ−δ+ω−µ+−Λ+=ζ

γ−δ+ω−µ++λ+=ζ

−−

++

−−

++

tymxL

tymx

tymxL

tymx

 (5.2) 

where λ, µ, δ and Λ are small fractions. The representative amplitudes are 
denoted by 21, εε  and are assumed to be much smaller than a. Now, among 

the products of the nonlinear interactions between these disturbance modes 
and the basic wave train, there will be components with arguments 

( ),2 2121
±±±±± γ+γ+ζ=ζ−ζ  

( )±±±±± γ+γ+ζ=ζ−ζ 21122  
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and with amplitudes proportional to 1
2εa  and ,2

2εa  respectively. Thus, if it 

happens that 

 constant21 →γ+γ=φ ±±±  (5.3) 

as the nonlinear processes develop in time, each mode with generate effects 

that become resonant with the other. Therefore, if ,,0 π≠φ±  each mode 

suffers a synchronous forcing action proportional to the amplitude of the 
other, so that each can grow mutually at an exponential rate. 

 

Figure 3. Three-dimensional wave configuration resulting from oblique 
subcritical instability, for 33.0=ak  (from Su et. al. [18]). 

The crucial task of the analysis is to show that, for a given specification 
ω,,,, Lma  of the basic wave train, the property (5.3) is possible for some 

nonzero Λµλ ,,  and δ. This property would be impossible in the absence of 

the basic wave train, or if the amplitude a was too small for there to be 
significant nonlinear coupling with the sideband modes, because of the net 

frequencies 2
2,1ω  and wavenumbers ±

2,1k  (where 22 mk +=+  and =−k  

)22 mL −  of these modes would have to obey the dispersion relation 
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 ±=ω 2,1
2

2,1 gk  (5.4) 

given by linearized theory (Lamb [6, Section 229]). Letting =±
2,1k  

( ),1 κ±±k  we see that the frequencies ( )δ±ω 1  appearing explicitly in (5.2) 

cannot both satisfy (5.4), and the discrepancy must be accommodated by 

allowing ±γ1  and ±γ2  to be slowly-varying functions of time. If we put =δ  

,2
1 κ  which means that ( ) 21

2
1

2
1 ±±± ==κδω kgck  is the group velocity 

for an infinitesimal wave with wavenumbers ,±k  then (5.4) is satisfied to a 

first approximation for small δ even if ±γ1  and ±γ2  are constants; but to a 

second approximation (5.4) requires that 

.2ωδ−=φ±

dt
d  

Thus the effect of dispersion, in so far as it may be independent of nonlinear 
effects, is to detune the prospective resonance between second-harmonic 
components of the basic wave motion and the sideband modes. 

Despite the ground in common with previous studies of Benjamin-Feir 
instability (all for two-dimensional waves), the presentation of a new 
treatment from first principles is judged desirable. There are several essential 
results in the present extension to three-dimensional waves that are not 
readily accessible from existing analyses: in particular, we need to find that 

the actual asymptotic value of the phase function ±φ  in order to predict the 

ultimate rate of amplification of an unstable three-dimensional disturbance 
on water of infinite depth. 

Thus, we need to examine the stability of three-dimensional wave 
motion, described by (5.1), by first constructing a velocity potential ϕ. 
Therefore, we assume 

 ϕσ+Φ=ϕησ+=η ~,~H  (5.5) 
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and derive linearized equations for η~  and .~ϕ  In (5.5), σ is small number 

whose square can be neglected. 

On the basis of the ideas explained above, the perturbation is assumed          
to consist of pair of sideband modes, together with the products of their 
interaction with the primary wave train. Then by expressing 

,~~~,~~~
2121 ϕ+ϕ=ϕη+η=η  

we may construct solutions for iη
~  and ( ).2,1~ =ϕ ii  

These solutions are then substituted in (5.5) and into the dynamic         
and kinematic boundary conditions. After linearizing in σ we reduce all 
terms to simple-harmonic components. Next, by separating the coefficients 
proportional to iaε  we derive pairs of simultaneous, coupled ordinary 

differential equations for iε  and φ as a function of time. Finally, from the 

solution obtained for iε  we derive stability/instability criterion for three-

dimensional waves on water of infinite depth. 

Ross and Sajjadi [1] considered three-dimensional irrotational motion in 
an infinitely deep water, where a periodic wave train with fundamental 
frequency ω moves obliquely, with α representing direction measured with 
respect to the positive x-axis. They assumed harmonics have phases ,2ζ  

...,,3ζ  where .tmylx ω−+=ζ  They then introduced small disturbances in 

the form of sidebands with frequencies ( )δ±ω 1  and, where over time, 

energy is transferred from the primary wave to the sidebands. Using methods 
introduced by Benjamin and Feir for two-dimensional motion (described 
above), they showed that the magnification will become unbounded if the 
sideband frequencies meet the condition 

( ),cscsec
2

0 α+α≤δ< mla  

where a denotes the fundamental amplitude of the perturbed wave train. The 
limiting cases 0→α  yields the two-dimensional Benjamin-Feir instability. 

Indeed, if we put ,22 mlk +=  then this condition for instability may be 
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expressed as 

,20 ak≤δ<  

in formal agreement with the two-dimensional theory. On the other hand, the 

limit as ,2
1 π→α  where the waves are propagating at an angle ,2

1 π  the 

instability represents standing waves such as those studied by Penny and 
Price [2]. 
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