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Abstract

In this paper, we consider the existence of solutions of periodic
boundary value problems (PBVP) for first order differential equations.
By using Ménch and Von Harten inequality, we prove the existence of
extremal solutions of (PBVP) in any of four groups different
conditions in Banach spaces.

1. Introduction and Preliminaries

Let E be a real Banach space with | -| and E* denote the dual space of

E. Let o be the Kuratowski’s measure of noncompactness on E. The
definition of o is as follows:

a(B) = inf{e > 0 : Bis covered by a finite number of sets with diameter < ¢},

where B < E bounded. For its properties see [1, 4].

We list the following definitions and lemmas for convenience.
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Definition 1.1. Let K be a subset of E. K is said to be a cone if K is a
closed convex subset such that A - K < K for any A >0 and K (-K)

= {®}. We denote K* = {p € E* : ¢(u) > 0 for all u € K}.
Definition 1.2. Let K° be the inner part of K and KO = @. By means of
K the partial orders < and < are defined as

x<yiff y—xeKkK,
x<yiffy—XEK0.

Definition 1.3. A cone K is said to be normal if there exists a real
number N >0 such that 0 <v <u implies |[v]|< N|u|, where N is

independent of u, v.

We shall always assume in this paper that K is a normal cone and KO is
nonempty.

Lemma 1.1 (see [1]). Let K be a cone. Then x € K iff ¢(x) > 0 for all
¢e K"

Lemma 1.2 (see [1]). Let f e C[[a, b], E] and there is an at most
countable subset I' of [a, b] such that f; exists and | f{ | <M for all
te[a, b]\I' (where M > 0). Then || f(ty)— f(ty)| < M|ty —t, | for any
t, t, € [a, b].

Lemma 1.3 (see [3]). Let {x,} be a sequence of continuously
differentiable functions from J = [a, b] to E such that there is some p e
L*(a, b) with | x,(t) ] < (t) and | xq(t)] < p(t) on J. Let wi(t) = a{xq(t)
:n > 0}). Then y is absolutely continuous and

V'(t) < 20({xp(t) : n > 0}) a.e.onJ.
2. Main Results

We shall consider the following periodic boundary value problem
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(PBVP) for first order differential equations
u = f(t, u), u(0) = u(2n), (2.1)
where f e C[[0, 2n]x E, E].
The functions ag, Bo € CY{[0, 2], E] are said to be a lower solution and
an upper solution of (2.1), respectively, if
ap < f(t, ag), 0g(0) < ag(2n);
Bo = f(t, Bo) Bo(0) = Bo(2r).

For any o, Bg € C[[0, 2r], E] such that ag(t) < Bg(t) on [0, 2], we
define

[0, Bo] = {n e C[[0, 2n], E]: ag(t) < m(t) < Bo(t) on [0, 2n]}.

In this paper, we shall prove the following theorem.

Theorem 2.1. Assume that

(Ag) (i) Vg, Wo e CH[0, 2], E], wy < vg and
f(t,u)— f(t,0) < M(u-0), Vu, U € [wy, Vo], u >,
a(f(t, B)) < La(B), VB < D,

where D = {u € E : wy(t) <u <vg(t), t [0, 2x]} and M >0, L > 0.
(i) if uy e[wg, Vol un(0) =un(27)(n =1, 2, ...), {uy} is equicontinuous

and uniformly bounded and u,, is absolutely continuous for each n, then

{un (0)} is relative compact.
(A) (i) vo < f(t, vo)(t € [0, 2x]), vo(0) < vo(2n);
(ii) wy > f(t, wp)(t € [0, 2r]), wp(0) > wy(27).

(Ag) (i) vo < f(t, vo) — Myy, (t € [0, 2x]), vp(0) < vo(2n),

—2M

e (p(2m) - vo(0));

where M >0, y1 =
1-g2
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(i) wy > f(t, wy) + My,, (t € [0, 2x]), wg(0) > wy(2r),
o—2Mn
where M > 0, y, = l_efzwm(wo(o) — Wy(2m)).
(Ag) (A)(i) and (Ag)(ii).
(Ag) (Ag)(ii) and (Ag)(i).
Then (Ag) holds and any one of the conditions (A), (Ay), (Az), (Ag)

implies that there exist monotone sequences {vy}, {w,} such that v, —r,
W, = p as n — oo uniformly and monotonically on [0, 2x] and that p, r

are minimal and maximal solutions of (2.1), respectively, (in[wg, Vg ]).
The proof of the theorem will be completed by a series of lemmas.
Lemma 2.1. Let m e CY[[0, 2x], E]. Then
(i) m'(t) < Mm(t) for t € [0, 2r], where M >0 and m(0) < m(2x),
implies m(t) > 0 on [0, 2x].
(i) m'(t) < Mm(t)— My for t |0, 2r], where M >0 and vy =

e—2 Mn

1T,v|n(m(2ﬂ)—m(0)) and m(0) < m(2x), implies m(t) > 0 on [0, 2x].
—e

Proof. If the conclusion is false, then there exista ¢ € K* and a ty €

[0, 2n] and & > 0 such that
e(M(ty)) = —&, p(m(t)) = —& (vt & [0, 2n]). (2.2)
In fact, if m(t) > 0 is not true for all t € [0, 2x], then there exists at

least a t; € [0, 2x] such that m(t;) ¢ K. By Lemma 1.1, there isa ¢ € K*
such that @(m(t;)) < 0. Let wy(t) = o(m(t)) on [0, 2x]. Then wy(t) has a
minimal value —¢(e > 0), that is, (2.2) holds.

(1) Let (i) hold.
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If ty € [0, 2n), then @(m(t)) — o(M(ty)) > 0 by (2.2). Let t — to+, we
have o(m'(ty)) > 0. By (i),
¢(M'(to)) < ¢(Mm(ty)) = Me(m(ty)) = -Me < 0,
which is a contradiction.
If tg =2n, then we have ¢(m(2r)) =-e. Also m(0) < m(2rn), so

¢(m(0)) < p(m(27)) = —&. By (2.2), (m(0)) > —¢, therefore ¢(m(0)) = —e.
We lead to the same contradiction if replacing ty with O in the above proof.

(2) Let (ii) hold.
If ty € [0, 2x), then @(m'(ty)) = 0. Also
m'(ty) < Mm(ty) — My,

SO
o(M'(tg)) < Mo(m(ty)) — Mo(y).

Notice that y > 0, @ € K*, so ¢(y) > 0. This leads to ¢(m'(ty)) < 0, which
is a contradiction.

If ty = 2x, then o(m(27)) = —&. By (ii),

[o(m'(1)) - Mo(m(t)]e™ < —Mo(y)e ™,

which, on integration from 0 to 2r, gives

o(m(2m))e M — o(m(0)) < o(y) (e72M* ~1).

Notice that
o(y) (e72M™ —1) = e 2M7((m(2r)) - p(m(0))),
hence
o) > 2 otz = -2 e
1+e V%

which contradicts to @(m(0)) < @(m(2r)) = —e. Therefore, the lemma is

true.
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Lemma 2.2. For any n e [wy, Vo], then the linear PBVP
u" = G(t, u), u(0) = u(2r) (2.3)
has a unique solution on [0, 2xt], where G(t, u) = f(t, n(t)) + M(u — n(t)).
Proof. This linear problem can be explicitly solved and a solution of

(2.3) is given by

u(t) = eMt[um) [t s - Mn(s)]e-MSds}

where

1

2m ~Ms
u(0) = u(2m) = g [ " [1(5, n(s)) — Mn(s)Je s

We shall show that the solution u(t) of (2.3) is unique. If not, let uy(t),
U (t) be two solutions of (2.3). Set m(t) = uy(t) — u,(t). Then

m'(t) = uj(t) - ua(t) = M(uy(t) - up(t)) = Mm(t), m(0) = m(2r).
Now using Lemma 2.1(i), it follows that m(t) >0, i.e., uj(t)—u,(t)e K. By
a similar argument we can conclude u,(t)—uy(t) € K, i.e,, u(t)—us(t)e
(=K). So uy(t)—us(t)e KN(-K)={O®}. Therefore, uy(t)=u,(t) on [0, 2x].
The proof is complete.
By Lemma 2.2, we now define a mapping A:
An = u, Vn e [wp, Vo,

where u is the unique solution of (2.3). The A possesses the following

properties.

Lemma 2.3. Assume that the conditions of Theorem 2.1 are satisfied.
Then

(i) wp < Awg, Vg > Avg;

(i) A possesses a monotone increasing property on the segment
[wo, Vol
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Proof. Step 1. Let (Ag), (A)) hold.
(1) vp = Avp.
Set v = Avp, p(t) = vg(t) — v (t). Then
p'(t) = vo(t) —vi(t) < f(t, vo(t)) — [ (t, o(t)) + M(va(t) - Vo(t))]
= Mp(t),

p(0) = v(0) — v (0) < vg(21) — vi(2n) = p(2r). So p(t) > 0 on [0, 2x] by
Lemma 2.1(i). This proves vy > Av.

(2) Wo < AWO.
Similarly we can prove it.
(3) Let mq, 2 € [Wg, Vo] and ng < mp. Then Ang < Anp.

In fact, setting u; = An;j(i =1, 2), p(t) = up(t) —uy(t), we see that, using
the conditions (Ay)(i) in Theorem 2.1,

p' = [f(t n2)+ M(uz =)= [f(t, m) + M(ug — )]
f(t, n2) = f(t, n) + M(uz —ty) =M —mp)

MMz —mp) + M(uz —up) = M(m2 —my)
= Mp,

IA

and p(0) = p(2n). Consequently Lemma 2.1(i) gives u; < u, on [0, 2x].
Step 2. Let (Ay), (Ay) hold.
(1) vp = Avp.
Set v = Avp, p =Vg — V. Then
p'=vo-vi
f(t, vo) — Myp = [f(t, vo) + M(vy — Vp)]

Mp — My,

IN
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and
p(0) = vo(0) - (0) < vo(2m) — w(2x) = p(2m)
p(27) — p(0) = [Vo(2m) — vy (2m)] = [Vp(0) — V1 (0)]
= Vp(271) — vg(0) (since vy (2nt) = v (0)).
So
o—2Mn
1= g (0(27) ~ pO).

Lemma 2.1(ii) gives p > 0, i.e., vg = v on [0, 2x].
(2) Wo < AWO.
Similarly we can prove it.

(3) Similarly to Step 1 (3), we can prove that A possesses a monotone
increasing property on [wg, Vg].

Step 3. Let (Ay), (Ag) hold.
By Step 1 (1), (3) and Step 2 (2), the Lemma’s conclusion holds.
Step 4. Let (Ay), (A1) hold.
By Step 1 (2), (3) and Step 2 (1), the Lemma’s conclusion holds.

Lemma 2.4. Assume that the conditions of Theorem 2.1 hold. We define
the sequences:

Vnet = Avp, Woyp = Aw,, n=0,1 2,3, ...

Then {v,}, {w,} are monotone, uniformly bounded and equicontinuous and

Vp, W, are absolutely continuous for each n.

Proof. By using Lemma 2.3, we can conclude

Wop SW SWy <+ <W, <V, <+ < vy <y < vy on [0, 2.
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Since the cone K is normal and | vq(t)[, | wo(t)| are bounded on [0, 2x], it

follows that {v,}, {w,} are uniformly bounded on [0, 2x].
By assumption (Ag), we have
f(t, vo)— f(t, vy) < M(vg —Vvp),
f(t, vy)— f(t, wp) < M(v, —wp).
So
f(t, vg)—M(vg —Vvy) < f(t, vy) < (L, wy) + M(vy, — Wp).
Since K is normal and {v,} is uniformly bounded on [0, 2], we have
{f(t, v,)} is uniformly bounded on [0, 2x]. Notice that
Vner = f(t vp) + M(Vpig — ),
we conclude that {vy,} is uniformly bounded on [0, 2x]. Let | vy(t)] < My,
n=123, ..,tel0, 2r] (where My > 0). By using Lemma 1.2, we have
[ va(ty) = va(t2) [ < Moty —ta |, V1, tp € [0, 2n].

So {vy(t)} is equicontinuous and absolutely continuous on [0, 2x]. Similarly

we can prove that {w,} possesses similar properties.

Lemma 2.5. The sequences {vy}, {w,} defined in Lemma 2.4 is relatively
compact in CJ[[0, 2x], E].

Proof. By Lemma 2.4, {v,}, {w,} are uniformly bounded and
equicontinuous. So, by using Ascoli-Arzela theorem, we only prove

a({vy(t) :n>0}) = a({w,(t):n>0}) =0, Vte]l0, 2x]

Setting ¢(t) = a({v,(t) : n > 0}). Obviously {v,(t)} satisfies Lemma 1.3,

SO
¢'t) < 2a(lvp(t) : n 2 1)
= 2a({f (t, Vo 1) + MV () ~ vp_1(1)) : 1 2 1))



116 Yan Liang
< 2a({f(t, vo_1(t)) : n = 1}) + 2M - 2¢(t)
< 2(L + 2M)o(t).
By using assumption (Ay), ¢(0) = 0, so we have
o(t) < o(Q)e?H+2M) ~ g,

i.e., ¢(t) =0 on [0, 2x]. Similarly we can prove a({w,(t):n>0})=0 on
[0, 2x].
Proof of Theorem 2.1. By Lemma 2.4, Lemma 2.5, {v,} and {w,} are

convergent sequences. Let

limv,=r, limw,=p inCJ[0, 2xr], E].

nN—oo N—o0
Obviously wg < p <r <vp and p, r are solutions of (2.1).

We shall show that p, r are minimal and maximal periodic solutions of
(2.2) in [wg, Vol

Let u be any solution of (2.1) and u e [wp, Vo] Let us assume that for

some integer k > 0, wW_q < U <Vy_4. Then setting p = v, —u, we get

plzvlf(_u/

f(t, viieg) + M (v = vq) = f(t, u)

IA

M(V_1 —Uu) + M(vg —Vi_1)

and p(0) = p(2n). This implies by Lemma 2.1(i) p(t) >0 on [0, 2x], i.e.,
Vi = U on [0, 2x]. Using similar argument we get w, <u on [0, 2x]. It
follows by induction that w, < u < v, on [0, 2x] for all n. Hence, we have
p<u<r on [0, 2x]. Therefore, p, r are minimal and maximal periodic

solutions of (2.1), respectively.



Existence of Extremal Solutions of PBVP for First Order ... 117

Corollary. Let E = R", (specially E = RY), the conditions (Ag)(ii) and

a(f(t, B)) < La(B) in (Ay)(i) be cancelled. Then Theorem 2.1 is valid.

Proof. When E is a special Banach space R" (or R'), (Ag)(ii) holds by

using Ascoli-Arzela theorem. For any B — R" bounded, f(t, B) is also

bounded since f is continuous in [0, 2r]x R". So a(f(t, B)) = 0 and a(B)

= 0 by using finite covering theorem. Thus, the all conditions in Theorem
2.1 are satisfied.
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