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Abstract

This paper studies the boundedness of solution x(t) of the fifth-order
nonlinear delay differential equation

xON(t) + w(t, x(t = r), X(t = r), %(t = r), %t = r), xD(t = r))x(t)
+ f(X(t = r)) + azX(t) + ogX(t) + agx(t)
= p(t, x(t —r), x(t —r), X(t —r), X(t —r), x(t - r)).

Sufficient conditions for the boundedness of solutions are obtained by
constructing a Lyapunov functional.
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1. Introduction

The study of higher-order nonlinear delay differential equations has
received considerably much attention, and still receiving such from various
researchers. Among the scores of articles on the qualitative theory of
differential equations, the number of articles on boundedness of solutions to
nonlinear fifth-order differential equations with delay is significantly less
than those on differential equations without delay, for example: Abou-El-Ela
and Sadek [1], Chukwu [7], Sinha [21], Tung [23-27] and references quoted
therein, which contain the differential equations without delay or with delay.
Up to this moment, the investigations concerning the boundedness of
solutions of nonlinear equations of fifth-order with delay have not been fully

developed.

In particular, in 2009, Ogundare [14] used the Lyapunov’s second
method to give sufficient criteria for the zero solution to be globally
asymptotically stable, as well as the uniform boundedness of all solutions

with their derivatives for the nonlinear fifth-order differential equation
x®) + ax® 4+ by + f(X)+ g(x)+ h(x) = p(t, x, X, X, X, x(4)),

where a and b are two positive constants. The functions f, g, h and p are

continuous in their respective arguments displayed explicitly.

Later, in 2009, Tun¢ [26] established sufficient conditions for the
boundedness of the solution of a nonlinear delay differential equation of
fifth-order

x) 4 fy(t, x(t = 1), X(t = 1), %(t = r), X(t - r), XDt - r))x®
+ 0 X + ok + agX + f5(x(t —r))
= p(t, x(t = r), X(t = r), K(t =), Xt =), XDt =r)),

where f;, fs and p are continuous functions for the arguments displayed
explicitly. r is a positive constant delay; o,, oz and o4 are some positive

constants.
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Recently, in 2013, Ademola and Arawomo [2] obtained criteria for
uniform stability, uniform boundedness and uniform ultimate boundedness of
solutions for third-order nonlinear delay differential equation

X+ f(x, X, X) + g(x(t = r(t)), x(t = r(t))) + h(x(t - r(t))) = p(t, x, X, X),

where 0 <r(t)<vy, y>0 is a constant, the functions f, g, h and p are

continuous in their respective arguments.

In this paper, we consider the following non-autonomous fifth-order
delay differential equation:

xO(t) + w(t, x(t = r), x(t = r), %(t - r), ¥t - 1), xXD (e = r)x@ (1)

+ fF(X(t = r)) + asX(t) + ogX(t) + asx(t)

= p(t, X(t = 1), X(t = 1), X(t - 1), Kt -1, xXD(t =), (L1)
which is equivalent to the system

X=Y, y=2, =W, W=uU,

U=—y(t, x(t—r), y(t—r), z(t—r), wt —r), u(t —r))u — f(w)

t
— 032 — 0y — 05X + It i f'(w(s))u(s)ds

+ p(t’ X(t - r), y(t - r)a Z(t - r), W(t - r)a U(t - r))’ (12)
where y, f and p are continuous functions for the arguments displayed
explicitly in (1.1). r is a positive constant delay; o3, a4 and o5 are some
positive constants; the derivative f'(w) exists and is continuous for all w,

and all solutions considered are assumed to be real-valued.
2. Preliminaries and Main Result

In order to reach the main result of this paper, we shall give some
basic information to the boundedness criteria; we consider a general non-

autonomous delay differential system
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x=f(t, %), X=x(t+6), -r<6<0, t=>0, 2.1

where f :[0, 0)x Cy — R" is a continuous mapping, f(t, 0) = 0 and we
suppose that f takes closed bounded sets into bounded sets of R".

Definition 2.1 [5]. Let V(t, ¢) be a continuous functional defined for
t >0, ¢ € Cy. The derivative of V along solutions of (2.1) will be denoted

by V and is defined by the following relation:

V(t+h, Xn(to, §) =Vt X(to, ¢))
n ,

Vian)(t, ¢) = limsup
where X(ty, ) is the solution of (2.1) with X, (to, ¢) = ¢.
The following is the classical theorem on uniform boundedness and

uniform ultimate boundedness for the solution of (2.1).

Theorem 2.1 [5]. Let V(t, ¢y): R xC — R be continuous and locally
Lipschitz in ¢. If

() W( 40D =V 4) =W 60) )+ W [ W o(s) s | and

(ii) \/'(2.1)(t, o) < -Ws(| d(t) ) + M, for some M > 0, where W(r) and
W;(r) (i =1, 2, 3) are wedges;
then the solutions of (2.1) are uniformly bounded and uniformly ultimately
bounded for bound B.

The following will be our main boundedness result for (1.1).

Theorem 2.2. In addition to the basic assumptions imposed on
the functions v, f and p appearing in (1.1), we assume that there are
positive constants o, ..., as, €, €, 0, A, p, u and L such that the following

conditions hold:

(i) oy >0, ajoy —o3 > 0, a5 > 0, (0ot — a3 )z — (a0 — a5 )y > 0.
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8o = (304 — atpats) (oo — a13) — (a0 — as)* > 0, (22)

A = (o304 = 0p05) (0y01p — 0t3) — (ajog4 — a5) > 2g0t, and (2.3)
a04 — 05

A30g — ApQs (004 — 0t5) _ &

A~y =
2 a0y — Os a0y — 03 [04]

> 0. (2.4)
(ii) 2eq < wy(t, x(t —r), y(t—=r), z(t —=r), wt —r), u(t —r)) — o

. leay & eop(oqoy —os )
< min 7 R 5 7 (
38 4oy 3og(oqoy —03)

(iii) f(0) = 0, f\(NW) > ap; w0, ] f/(w(s))| < L and

{M e }2 < min{ 82a4 g0y (oo — Ots)2 }

w 36% " 303 (g0 — a3)

@iv) | p(t, x(t =), y(t=r), z(t —r), w(t —r), u(t — r))|

<p®+ POy [+|z]+[w]+]u,

where p;(t) and p,(t) are continuous functions satisfying

py(t) < Po,

where 0 < p, < o and there exists g > 0 such that

0< pz(t) < €].

Then the solutions of the system (1.2) are uniformly bounded and uniformly
ultimately bounded provided that the inequality

: € €0 g0y (oyoy — as)
f< mm{ 35L ° 8oyl 2(L + 2p)° 6oig(agory — oc3)L}

holds.

as

Proof. We define the Lyapunov functional V =V (t, X, Vi, Zt, W, Ut)
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V(L X, Vs 2, W, Up)

2004 (010 —
= u? + 20uw + (0107 — 05)

uz + 28uy + 2"‘(;N f(&)dg

a0ty — Og
g0y — A 1400y — A
+OL12— 4(12 3) W2+2OL3+ 14(12 3)—8WZ
ajoy — as 0104 — 05

+ 20,10WY + 2004WY + 2015WX + a1a322

a0y (oo, —a
+{ 204(010 3)—a4—a18}22+28a2yz
a0y — 05

2
g (A0 — A
+ 20404 YZ — 2005 YZ + 20,05 ZX + o400y — 03) 2
a0y — Os
2a405(00p — 03)
a0y — 05

2

+ (803 — oqog) Y2 + yX + dasX

0 pt 0 pt
2 2 2 2
+ xj_rjmz (6)dods + pj_rjt+sw (6)dods

0 pt
2
+2p j y j u(e)docs, (2.5)

where A, p and p are some positive constants, which will be determined

later and & is a positive constant satisfying

5= Sl —03) o (2.6)
a0y — Os

Hence the Lyapunov functional defined in (2.5) can be arranged as the

following:

2 2
V = {u + oW + calagog —a3), Sy} + a4—6°2(z + 2 y)
Ajg — U5 (0610L4 - (Xs)

4 Su%q — G5 {0‘5(“1% —3) X + ag(ajay — o3)

2
y + OLIZ + W
oy — 03 a0y — Os a0y — Os
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O30y — Oy L
+ Ay(W + ay2)? + ooz + ZS(MJ yz

a10g4 — U5

0 ot 0 pt
2 2 2 2
t xj_rj'mz (6)dods + HI_JHSW (6)dods

0 ot 3
2 .
+2pj_rj't+su (6)dods + iz_lv,, .7)

where

2
as(00y — O
V) = 6(15X2 _ 5( 1%2 3) X2,
a0y — 05
2
050
Vy = {6(13—(11(15— 50 5 —82})/2,
oy ooy — as)

w
vy = Otilw2 + 2[0 f(&)dg — aw?.

From (2.6), it is clear that

V) = SO(.SXZ,
V2 _ |: 0(580 _ 8{8 + 20(5(0(10(2 — (13) _ (X}}i| yz
ag(ajoy — os) Apog — a5
30590 2
~ doy(ogoy - as)
provided that
0500 S 8{8 N 205 (0yap —03) a}}. O
4oy (oo — as) oLy — O

From (iii), we obtain

V3 = —w? +2J.0W{%—a2}§dé > ailwz.

o
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Summing up the three inequalities obtained from Vv;, v, and vj3 into

(2.7), we get

2 2
V> {u +a1w+wz +8y} +a4—6°2(z +—yj
004 — 05 (aj04 — a5) 04

30,50
+ Az(W + (112)2 + (11(1322 + 8(15X2 + 570 2
4oy (oo — ats)

€ .2 Q304 — Q05 72
+ o W+ 28( — jyz + ZXJ I z-(0)dods

0 pt 0 ot
2 2
T ZMJ—rIt+SW (6)dods + 2pj'_rjt+su (6)dods. 2.8)

Clearly, it follows from the first seven terms included in (2.8) that there

exist sufficiently small positive constants D; (i =1, ..., 5) such that

W > Dyx? +2D,y? +2D5z° + Dyw? + Dsu® + 28(—(13(14 - “2“5ij
a0y — Os

0 t 0 t
2 2(p)deds + 2 2(9)ded
* J—rv[t+sz () St MJ.—I’J.'Z+SW() S

0 t
42 uZ(0)dods. 2.9
pj_rjm (0) (2.9)

Now, we consider the terms

304 — OpOlg

2
vy =D + 2¢
4 2¥ ( 004 — O3

jyz + D322,

which are contained in (2.9) and by using the inequality | yz | < %(y2 +12%),

we obtain

204 — 0L
V4 > D2y2 + D322 — S(ﬁ)(yz + 22)
1Y%4 — U5

> Dy(y? +22),
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for some Dg > 0, Dg = %min{DQ, Ds}, if

a0y — O
e <
2304 — 0p0t5)

min{D2 , D3 } (II)

By using the previous inequality, we get from (2.9) that

V > D;x? + (D, + Dg)y? + (D5 + Dg)z? + Dyw? + Dsu?

0 ot 0 pt
2 2
T Zk.[_r.[m 22(0)dods + 2uj'_rjt+sw (6)dods

0 pt
1 2p J' J' u2(6)dods. (2.10)
—rdt+s
As aresult, since the integrals

0 pt 0 pt
2xj J 22(0)deds, 2pj j w?(0)deds and
—rJt+s -rJt+s

0 pt 2
ZpI J. u-(0)dods
—rJt+s
are non-negative, it is obvious that there exists a positive constant D5, which
satisfies the following inequality:

V(t X Yoo 2 W U) 2 Dy (X7 + y7 + 27 + W+ u?), (2.11)

where Dj = %min{Dl, D, + Dg, D3 + Dg, Dy, D5}, provided that ¢ is
sufficiently small; and (I), (II) hold.
Further, since | f'(w(s))| < L implies that f(w) < Lw, for all w. This

inequality and the fact 2pg < p2 + q2, then the functional V defined in
(2.5) yields
V(t’ Xts Yt> Zt> Wi, ut)

<2 +y?+ 22 +w? +u?)

+ I_Or(t)J:+s M [X2(0) + y2(6) + 22(0) + w?(0) + u*(0)]deds,  (2.12)
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where

ny = %max[og{l +ao;+8+ W}, 31+ o0y +ay +03)

n a4{1 +oy + oy (oo —a3) n 065(0%0‘2 - Otz)} _ a5(1 — ),

0y — Os 0y — 05

040199 = 83) (14 oy )+ (g = 1) (g + a5) + a3(1 + ay)
OLIOL4 —OLS

—8(14-(11—(12), 8((11-1)+(l3+(14+0(5 +%+0L1+0L%

n oy (oo, —as) (] = 1), T+ 0y + 8+ oy ooy — 0‘3)}
(110(.4 — CX.S CX.ICX.4 — (15

and 1, = %max{l, A 1, P

From estimates (2.11) and (2.12), the condition (i) of Theorem 2.1 is

satisfied.

Now, let (X¢, Yt, Zt, W, Up) be a solution of system (1.2). Then a direct

computation along this solution shows that

dav
W(t’ Xt» Yt» Zts W, Up)

= —{y(t, x(t = 1), y(t = 1), z(t = r), w(t — ), u(t = r)) — oy }u?

_ [Otl f\(NW) _ {% L g (agon —o3) 5HW2

a0y — Os

B {(13(14(a1a2 — (13) — (60(2 + ooy — (15)}22
a0y — a5

_ {5% _ og05(040p — 03)

2
0404 — Ol }y (11{\|I(t, X, ¥, Z, W, U) O(.I}WU



New Result on the Ultimate Boundedness of Solutions ...

OL4(OL10"2 OLS')
_— t, X Z, W, U)— oq¢ZU
a0y — 05 {\V( > y’ > ) 1}

-3y, X, ¥, Z, W, Uu) — ay fyu

~ S{M _ ocz}wy _ og(oyay —aj3) { fw) az}wz

w a0y — 05 w

t , t ,
; uL_r f(w(s))u(s)ds + oqw j F(s)u(s)ds

OL4(OL10L2 (13) t '
+ — 7 f'(w(s))u(s)ds
a0y — OLS t—r ( ( )) ( )

t
+ 3y j _Tw(s)u(s)ds

+ {u + oW+ og(oyay — a3) 7+ Sy}

a0y — 05
x p(t, x(t—r), y(t—r), z(t = r), w(t —r), u(t — r))

t
+pu?r + Az2r + pwlr — p'[ uz(s)ds
t-r

t t
3 2 3 2
pjt_rw (s)ds kj.t_rz (s)ds.

Making use of the assumptions (i)-(iv) and (2.6), we get

w(x(t—r), yt—r), z(t—r), wt —r), u(t — r)) — oy > 2¢g,

o fw) {% L g0y —og) 5}
w a0y — 05

- 0‘1{ f\(/vW) _ Otz} _ {Ohaz o345 0‘1013(31&20: 013)}
104 = O

> €

= &

81

(2.13)
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a0 (00 — o) — (80t + a0y — ais)
o0y — s 2 104 5

_ (o304 — apos) (o0 —
a0y — 05

[0
) (oqay — as) — eay

2 2g0) — €0y = €Oy
and

405010 — A
8(14— 4 5( 12 3)
a0y — Os

= &0y,

by (i), (ii), (iii) and (2.6).
By using the assumption | f'(w(s))| < L from (iii), and the inequality

2] ab| < a® +b?, we obtain the following inequalities:

ujtt_r f'(w(s))u(s)ds < = ruz(t) +5 I u?(s)ds,

t t
aw[ F(w(s))u(s)ds < %L w2 (t) + ‘%L u2(s)ds,
t—r t—r

oaloyay — 03) [ Y fw(s))u(s)ds
a0y — Os t—r

_ t
coaldoy —o) Loy da(ndy —a) LY 2y g0
ooy —os 2 ooy —os 2

and
t t
Syjt_r f'(w(s))u(s)ds < —ry 2(t) Lot _ru (s)ds.

Making use of these inequalities into (2.12), we obtain
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B |:80L2 B {oc4(oc10c2 - a3) L k}r}zz

2oy —o5)

oL oyl 8L ay(oyay —og) to2
|:p {2 * 2 - 2 - 2((110(4-0(5) L J.t—ru (S)ds

t t
3 2 3 2
xL_rz (s)ds th_rw (s)ds

oy a0y —a3)
(110,4 — OL5

+ U+ oW+

z+6y‘

x| p(t, x(t=r), yt—r), z(t = r), w(t —r), u(t = r))|

9
- > Vi (2.14)
k=5

where

(o) — a;) (y — ap)zu + 222 72
b

N A 2
Vs -—4(\If o )u” + Ry—— 3

1 2 € 2
Vg :=Z(\|/—0L1)u +0c1(\|/—ocl)WU+ZW ,

1 ea
vy =7 (v - ap)u® +8(y — ay)uy + T4 y2,

f(w
Vg :=%W2 +8{(T)—oc2}wy+w74y2

and

e g2, dalogog - 003){f(W) B Otz}WZ L 89 2
4 ooy — Olg w 3
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It is clear that the expressions given by Vs, ..., Vg represent certain
specific quadratic forms, respectively.

Making use of the basic information on the positive semi-definite of
a quadratic form, one can easily conclude that v 20, vg 20, v; 20,

vg = 0 and Vg = 0 provided that

g0y (oo — a € ga
y-—op < 3(14 5)2, w—als—z,\v—alﬁ—;,
3aj(aqoy —a3) 404 38
22 2 2 2
{f(W)_az} < € 024 and {f(W)_a } < € OL22(0L10L4 (15)2 ’
W RIS W 30(4((110(2 - OL3)
respectively.

Thus, in view of the above discussion and inequality (2.13), it follows
that

dV < _(%_ﬁr)yz

dt - 3 2
_ | g% oy(agoy —a3) 2
[ 3 { 2(oyoy — ais) L+k}r}z

oy a0y —a3)
(110,4 — OL5

x| p(t, x(t=r), yt=r), z(t = r), w(t —r), u(t = r))|. (2.15)

+ U+ oW+

z+6y‘
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So we can choose the constants A, p and p in the following form:

_ L, ool 8L ay(oqap —o3)
P " Y Sayag —as)

OLlL

H:T and }\,ZML

ooy —a5)

Then the inequality in (2.15) becomes

v _ (eag 8L A2
dts(3 2rjy

_Jeay  oylagoy —aj) Lrl,2
3 00y — O

€ 2
(& -ate)n

OL4(0t10t2 — 0t3)
OLIOL4 - (15

+|U+ oW+

z+6y‘

x| p(t, x(t—r), yt—r), z(t—r), wt—r), ut—r))|. (2.16)
Thus, one obtains easily that

dv

2 2 2 2 oy(oyay —a3)
2 < Za\als 57
a0 s oy +z7+wW +Uu”)+|Uu+oyw+ oy — s zZ+ 3y
| p(t, X(t = 1), y(t - 1), 2(t = 1), w(t - 1), u(t - )|
2 2 2 2
<—o(y” +z7 +w” +u)+na(y[+]z]+|w]+]ul)
><| p(t, X(t - r)’ y(t - r), Z(t - r)’ W(t - r)’ U(t - r)) |a
where n3 = max{éi, M, oy, 1}, for some constant o > 0,
a0y — O

provided that
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. feay & €0 g0ty (ooy — a5)
r< mm{38L 8o L’ 2(L + 2p)° 6oy (ogaty — oc3)L}

In view of (iv), we get

dv
g S o —ane) (v + 22+ wh +u?) s mgpo(y |+ 2]+ | wl+]u).

By choosing g < 4_111510, there exists Ny = 6 —4n3¢; > 0 and from
the fact (| y |+|z|+|w|+|u)? <4(y* + 2> + w? + u?), then

dv

2 2 2 2 2
< )2

< —ma(y? + 22 + WP+ u?) + 2map(y2 + 22 + WP +u

2 2 2 2 L 1
choose (Y~ + z“ + W” +U”)2 > 213pyn4 , then we find

av 252 w2 2 2.2 -1

WS—TM(V +27 + W +Uu%) +4n3pony (2.17)
for all x, y, z, w and u. From estimate (2.17), hypothesis (ii) of Theorem 2.1 is
satisfied. Also, from estimates (2.11) and (2.12), condition (i) of Theorem 2.1
follows. This completes the proof of Theorem 2.2. O
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