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Abstract 

A numerical method for solving nonlinear system of Fredholm-
Volterra Hammerstein integral equations of second kind is presented. 
This method is based on replacement of the unknown functions by 
truncated series of well known Chebyshev expansion of functions. The 
quadrature formula which we use to calculate integral terms can be 
estimated by Fast Fourier Transform (FFT). Also, convergence and 
rate of convergence are given. The numerical examples and the 
number of operations show the advantages of this method to all other 
recent works which use operational matrices (with huge number of 
operations) or solving special case of nonlinear system of integral 
equations. 
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1. Introduction 

In this paper, we present a computational method for solving a system of 
nonlinear Fredholm-Volterra integral equations of Hammerstein type: 
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Several numerical methods for approximating the solution of linear and 
nonlinear integral equations are known [1-18]. The classical method of 
successive approximation for nonlinear Fredholm integral equations was 
introduced in [18]. Hat basis functions and Chebyshev wavelets were used 
for approximate solution of special case of nonlinear system of Volterra or 

Fredholm integral equations in [4] and [5] with ( ) muuF =  and ( ) kuuG =  

for m, k positive integers. Brunner in [7] applied a collocation-type method 
and Ordokhani in [17] applied rationalized Haar function to nonlinear 
Volterra-Fredholm integral equations. Some special nonlinear systems of 
integral equations have been solved in [11-13] and [16]. A collocation type 
method was developed in [14]. A variation of the Nystrom method was 
presented in [15]. Also, more recent papers solve the special case of 
nonlinear systems of integral equations with operational matrices of m power 
[9]. Borzabadi et al. in [6] converted the nonlinear Fredholm integral 
equation to an optimal control problem and then used a linear programming 
to solve the problem. Orthogonal functions and polynomials receive attention 
in dealing with various problems. One of those is integral equation. The main 
characteristic of using orthogonal basis is that it reduces these problems to 
solving a system of nonlinear algebraic equations by truncated approximating 
series 
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We use the above truncated series, where the elements ( ),0 tφ  

( ) ( )tt N 11 ...,, −φφ  are the orthogonal basis functions defined on a certain 

interval [ ]., ba  Here we choose ( ),tiφ  as Chebyshev functions of the first 

kind, and also Chebyshev collocation points and the Clenshaw-Curtis 
quadrature rule [10]. 

1.1. Chebyshev approximation of solution 

We consider the nonlinear system of Fredholm-Volterra Hammerstein 
integral equation (SFVH), equation (1). 

A function ( ) [ ]( )1,02Ltxi ∈  may be expanded as 

( ) ( )∑
∞

=

=
0

,
m

mimi tTctx  (2) 

for ,...,,1 ni =  where ( ) ( )( ),, tTtxc miim =  in which ( )⋅⋅,  denotes the inner 

product in [ ]( ).1,02L  If we consider truncated series in (2), then we obtain 
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where iC  and T are matrices given by 

[ ],...,,, 10 iNii
T
i ccc=C  

( ) ( ) ( ) ( )[ ] ,...,,, 10
T

N tTtTtTt =T  (4) 

where ( ),tTn  Nn ≤≤0  are Chebyshev polynomials of the first kind of 

degree n which are orthogonal with respect to the weight function 

( ) 211 tt −=ω  on the interval [ ]1,1−  and satisfy the following recursive 

formula: 

( ) ( ) ( ) ( ) ( ) ....,2,1,2,,1 1110 =−=== −+ mtTttTtTttTtT mmm  
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2. The Approximate Solution of Nonlinear  
SFVH Integral Equation 

Consider the nonlinear system of integral equations (1). At first, we 
approximate ( )txi  for ni ...,,1=  as 

( ) ( ),~ ttx T
ii TC−  (5) 

then we substitute this approximation into equation (1) to get 
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In order to use Gaussian integration formula for equation (6), we transfer 
the intervals [ ]ls,0  and [ ]1,0  into interval [ ]1,1−  by transformations 

.12,12
21 −=τ−=τ ttsl

 

For Chebyshev polynomials, we consider the collocation points 
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Using collocation points (7) in transformed equation (6), we get 
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for ....,,1 ni =  Now we use Clenshaw-Curtis quadrature formula [10] to get 
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and double prime means that the first and the last terms are halved. The 
system (9) consists of nonlinear equations with unknown vector with 

elements of iC  as [ ]TNNNNN cccccc ...,,,...,,..,,, 1000100=C  which can 

be solved by usual iterative method such as Newton’s method or simplex 
method. The Fast Fourier Transform (FFT) technique can be used to evaluate 
the summation part in (9) in ( )NNO log  operations. In fact, equation (10) 

for weights kw  can also be viewed as the discrete cosine transformation of 

the vector v with entries: 
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The weights kw  can therefore also be computed directly in ( )NNO log  

operations, this will be the faster computation when we integrate functions 
on (8) using the same value of N. Therefore, one of the good advantages of 
this method to all recent methods which use m-power of operational matrices 

with operation cost of ( ),3nmNO  [9, 16] (for the special case ( )( )mtx  as the 

nonlinear term of integral equations) is that the method is reasonable in cost 
and also very stable against rounding errors as we will see in the next section. 
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3. Convergence and Error Analysis 

In this section, we discuss the convergence of the Chebyshev polynomial 
method for the nonlinear system of integral equations (1). The following 
proposition is fundamental to the convergence analysis: 

Proposition 1. Let ( ) ( )1,1−∈ kHtx  (Sobolev space) and ( )( ) =txTN  

( )∑ =
N
m mm tTc0  be the best approximation polynomial of ( )tx  in 2L  norm. 

Thus, the truncation error is: ( ) ( )( ) [ ] ( ) ( ),1,101,12 −
−
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where 0C  is a positive constant, which depends on the selected norm and is 

independent of ( )tx  and N is the degree of Chebyshev polynomials (proof 

[7]). 

From Proposition 1, it is concluded that approximation rate of Chebyshev 

polynomials is .kN −  If ( )txi  is approximated by ( ) ( )∑ == N
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Also, from [10] and by using ( )1+N -point closed Gauss-Chebyshev 

rule for approximation of ,imc  we realize [10], 1
1
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we can easily verify the accuracy of the method. Given that the truncated 
Chebyshev series in equation (5) is an approximation of (1), it must have 
approximately satisfied these equations. Thus, for each [ ] :1,0∈ls  
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If ( ) k
lsE −= 10max  (k is any positive integer) is prescribed, then the 

truncation limit N is increased until the difference ( )lsE  at each point ls  

becomes smaller than the prescribed .10 k−  

Also, in the [ ],1,0∞L  we can propose as follow: 

Let [ ]( )⋅,1,0C  be the Banach space of all continuous functions on 

interval [ ]1,0  with ( ) [ ] ( )txtx isi 1,0max ∈∞ =  for ....,,1 ni =  Assume 

for ( ) 1,,...,,1, MtsKnji ij ≤=  and ( ) 2, MtsKij ≤′  and suppose the 

nonlinear terms ( )tF  and ( )tG  are satisfied in Lipschitz conditions: 

( ) ( ) ( ) ( ) ., 21 vuLvGuGvuLvFuF −≤−−≤−  

Moreover, define .222111 LMLM λ+λ=α  If ( )sxi  and ( )sxiN  

show the exact and approximate solutions of ith equation (1), respectively, 
then we have: 

Theorem 1. The solution of nonlinear system of Fredholm-Volterra 
Hammerstein integral equation (1) by using Chebyshev polynomials 
converges if ;10 n<α<  in other words, for ,...,,1 ni =   
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If we write the last relation for ni ...,,1=  and add up them, then we obtain 
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According to this equation, if we choose ,10 n<α<  then we have: 
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∞→
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so the proof is completed. 

4. Numerical Examples 

In this section, we consider some nonlinear systems of Fredholm-
Volterra Hammerstein integral equations which have been solved with other 
recent methods (with simple nonlinear terms but huge number of basis 
functions and huge operations) such as Hat basis [4] and Chebyshev wavelet 
functions [5] and solve them by introduced method. 

Example 1. Consider following system of nonlinear Fredholm integral 
equations: 
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with suitable ( ),1 sy ( )sy2  and the exact solutions ( ) sesx −=1  and ( ) .2 ssx =  

Table 1a shows the absolute error 2iNi xx −  for 2,1=i  in some points of 
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[ ]1,0  for method of [4] where iNx  is the approximate solution, and N stands 

for the number of used basis functions in the approximate solution. Also, 
Table 1b shows the absolute error 2iNi xx −  in some points of [ ]1,0  for 

presented method, where 1+N  stands for the number of basis functions. 

Table 1a. Exact and approximated solution of Example 1 by method [4] 
=N(  the number of Hat basis functions) 

s Exact ( )sx1  ( )201 =Nx N Exact ( )sx2  ( )202 =Nx N  

0.0 1 1.00002 0.0 0.000509 

0.2 0.818731 0.818755 0.2 0.199430 

0.4 0.670320 0.670349 0.4 0.399392 

0.6 0.548812 0.548848 0.6 0.599379 

0.8 0.449329 0.449373 0.8 0.799393 

1.0 0.367879 0.367933 1.0 0.999432 

Table 1b. Absolute error of exact and approximated solution of Example 1 
by presented method ( ) ( )sxsxe iNii −=  =N(  the number of basis 

functions) 

s ( )41 =Ne  ( )42 =Ne  ( )81 =Ne  ( )82 =Ne  

0.0 0.001e − 4 0.266e − 4 0.125e − 7 0.701e − 8 

0.2 0.156e − 3 0.325e − 4 0.135e − 7 0.772e − 8 

0.4 0.349e − 3 0.398e − 4 0.164e − 7 0.607e − 8 

0.6 0.567e − 3 0.486e − 4 0.225e − 7 0.405e − 8 

0.8 0.797e − 3 0.594e − 4 0.298e − 7 0.571e − 8 

1.0 0.010e − 3 0.725e − 4 0.358e − 7 0.145e − 8 

Table 1b shows decreasing absolute error by introduced method. 
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Example 2. Consider nonlinear system of Volterra integral equations [4]: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )








−+−+=

−+−+=

∫ ∫

∫ ∫
s s

s s

dttxtsdttxtssysx

dttxtsdttxtssysx

0 0
2
2

32
1

4
22

0 0
2
2

23
1

3
11 ,

 (12) 

with suitable ( ),1 sy  ( )sy2  and the exact solutions ( ) sesx −=1  and ( )sx2  

.s=  Table 2 shows the absolute error ( ) ( )sxsxe iNii −=  in some points 

of [ ]1,0  for the presented method and method of [4]. N stands for the 

number of basis functions. 

Table 2. Maximum absolute error of exact and approximated solution of 
Example 2 by presented method, ( ) ( )sxsxe iNiii −== 2,1max  =N(  the 

number of basis functions) 

s max ie  new method  Method of [4] 

 ( )4=N  ( )5=N  ( )6=N  32=N  

0.0 0.001e − 4 0.267e − 4 0.123e − 7 0.000e − 3 

0.2 0.145e − 3 0.326e − 4 0.132e − 7 0.104e − 3 

0.4 0.323e − 3 0.389e − 4 0.146e − 7 0.086e − 3 

0.6 0.532e − 3 0.468e − 4 0.252e − 7 0.113e − 3 

0.8 0.787e − 3 0.549e − 4 0.349e − 7 0.180e − 3 

1.0 0.009e − 3 0.752e − 4 0.354e − 7 0.250e − 3 

The comparison between presented method and the method of [4] shows 
the accuracy of presented method with using much less basis functions and 
operations than do by method of [4]. 
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Example 3. Consider nonlinear SFVH integral equation 
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with ( ) ( ) ( ) 31cos 2
1 +−−+−= sessssy  and ( ) ( ) += ssy sin22  

( ) ( ) ( )21sin2sin1 2+−− sss  and the exact solution ( ) ( ) .21 ssxsx ==  

Table 3 shows the maximum absolute error iNi xx −  in some points of 

[ ],1,0  N stands for the number of basis functions in the approximate 

solution. 

Table 3. Maximum absolute error of exact and approximated solution of 
Example 3 by introduced method ( ) ( )sxsxe iNiii −== 2,1max  =N(  the 

number of basis functions) 

s 5=N  6=N  7=N  8=N  

0.0 0.423e − 3 0.302e − 5 0.306e − 6 0.011e − 9 

0.1 0.324e − 4 0.321e − 5 0.305e − 6 0.201e − 9 

0.2 0.203e − 4 0.527e − 5 0.304e − 6 0.311e − 9 

0.3 0.311e − 4 0.248e − 5 0.311e − 6 0.421e − 9 

0.4 0.012e − 4 0.301e − 5 0.336e − 6 0.133e − 9 

0.5 0.203e − 4 0.801e − 5 0.391e − 6 0.518e − 9 

0.6 0.581e − 4 0.625e − 5 0.485e − 6 0.419e − 9 

0.7 0.620e − 4 0.207e − 5 0.620e − 6 0.255e − 9 

0.8 0.522e − 4 0.302e − 5 0.785e − 6 0.307e − 9 

0.9 0.701e − 4 0.522e − 5 0.953e − 6 0.388e − 9 

1.0 0.347e − 4 0.301e − 5 0.107e − 6 0.244e − 9 
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Table 3 shows that by increasing the number of basis functions we obtain 
better results. 

5. Conclusion 

As shown by numerical examples, the method introduced here can be 
simply implemented to general nonlinear system of Hammerstein integral 
equations of the second kind. The advantages are much less implementations 
and fast computations which is comparable with all huge cost early methods 
with simple nonlinear terms. Moreover, convergence and the rate of the 
convergence are shown either. 

Acknowledgement 

The author is thankful to Islamic Azad University, Central Tehran 
Branch for financial support to carry this work. This work is based on the 
research plan with title “A Numerical Quick Method Based on Wavelet for 
Solving Integro-differential Equations”. 

References 

 [1] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, 
Cambridge University Press, 1997. 

 [2] E. Babolian and F. Fattahzadeh, Numerical solution of differential equations by 
using Chebyshev wavelet operational matrix of integration, Appl. Math. Comput. 
188(1) (2007), 417-426. 

 [3] E. Babolian and F. Fattahzadeh, Numerical computation method in solving 
integral equations by using Chebyshev wavelet operational matrix of integration, 
Appl. Math. Comput. 188(1) (2007), 1016-1022. 

 [4] E. Babolian and M. Mordad, A numerical method for solving systems of linear 
and nonlinear integral equations of the second kind by Hat basis functions, 
Comput. Math. Appl. 62(1) (2011), 187-193. 

 [5] J. Biazar and H. Ebrahimi, Chebyshev wavelets approach for nonlinear systems of 
Volterra integral equations, Comput. Math. Appl. 63(3) (2012), 608-616. 



Approximate Solution for Nonlinear System of Fredholm-Volterra … 59 

 [6] A. K. Borzabadi, A. V. Kamyad and H. H. Mehne, A different approach for 
solving the nonlinear Fredholm integral equations of the second kind, Appl. Math. 
Comput. 173 (2006), 724-735. 

 [7] H. Brunner, Implicity linear collocation method for nonlinear Volterra equations, 
J. Appl. Numer. Math. 9 (1982), 235-247. 

 [8] C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zhang, Spectral Method in 
Fluid Dynamics, Springer-Verlag, New York, 1988. 

 [9] Changqing Yang, Chebyshev polynomials solution of nonlinear integral equations, 
J. Franklin Inst. 349 (2012), 947-956. 

 [10] L. M. Delves and J. L. Mohamad, Computational Methods for Integral Equations, 
Cambridge University Press, 1985. 

 [11] Z. K. Eshkuvatov, Anvarjon Ahmedov, N. M. A. Nik Long and O. Shafiq, 
Approximate solution of the system of nonlinear integral Equations by Newton-
Kantorovich method, Appl. Math. Comput. 217(8) (2010), 3717-3725. 

 [12] A. Golbabai, M. Mammadov and S. Seifollahi, Solving a system of nonlinear 
integral equations by an RBF network, Comput. Math. Appl. 57(10) (2009), 
1651-1658. 

 [13] R. Katani and S. Shahmorad, Block by block method for the systems of nonlinear 
Volterra integral equations, Appl. Math. Model. 34(2) (2010), 400-406. 

 [14] S. Kumar and I. H. Sloan, A new collocation-type method for Hammerstein 
integral equations, J. Math. Comput. 48 (1987), 585-593. 

 [15] L. J. Lardy, A variation of Nysrtom’s method for Hammerstein integral equations, 
J. Integral Equations 3 (1981), 43-60. 

 [16] K. Maleknejad and K. Mahdiani, Solving nonlinear mixed Volterra-Fredholm 
integral equations with two dimensional block-pulse functions using direct 
method, Commun. Nonlinear Sci. Numer. Simul. 16(9) (2011), 3512-3519. 

 [17] Y. Ordokhani, Solution of nonlinear Volterra-Fredholm-Hammerstein integral 
equations via rationalized Haar functions, Appl. Math. Comput. 180 (2006), 
436-443. 

 [18] F. G. Tricomi, Integral Equations, Dover, 1982. 


