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Abstract 

We modified the classical SIR model of Kermack and McKendrick by 
assuming that an individual can be born infected. We analysed the 
model from the point of view of symmetry and singularity analysis. In 
this study, we provide a demonstration of the integrability of the 
model to present an explicit solution. 

1. Introduction 

Using the classical (but still highly relevant) models, we considered here 
the total population was deemed to be constant. If a small group of infected 
individuals was introduced into a large population, then the basic problem 
was to describe the spread of the infection within the population as a function 
of time. This, of course, depended on a variety of circumstances, including 
the actual disease involved. Notably, as a first attempt towards modelling 
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directly transmitted diseases, we expounded general assumptions which 
under the circumstances were reasonable. 

When considering a disease which, after recovery, conferred immunity 
and which, if lethal, included deaths, the dead individuals were still counted. 
We assumed that the disease was such that the population could be divided 
into three distinct classes: the susceptible, S, who can catch the disease; the 
infected, I, who has the disease and can transmit it; and the removed class, R, 
namely, those who have had the disease or had recovered immune or isolated 
until re-covered; and the death class, D, who died. Most childhood diseases, 
such as measles, have a removed and death class. The disease can be 
represented diagrammatically by 

.DRIS →→→  

In this section, we looked at the simplest model in this class, which dates 
back to Kermack and McKendrick’s classic paper of 1927 [4]. The results are 
basic to the mathematical epidemial modelling. We modelled the movement 
between the classes as follows: 

,11 SSISIS ν+µ−γ+β−=  

( ) ,22 IIISII ν+µ−γ+α−β=  

,33 RRIR ν+µ−α=  

RISD 321 µ+µ+µ=  (1) 

in which the overdot denoted differentiation with respect to time, ( )tS  was 

the susceptible component of the population, ( )tI  was the infected 

component of the population, ( )tR  was the recovery component of the 

population, ( )tD  was the dead component of the population, 1µ  was the 

proportionate death rate of the susceptibles, 2µ  was the proportionate death 

rate of the infected, 3µ  was the proportionate death rate of the recovered, 1ν  

was the proportionate birth rate of the susceptibles, 2ν  was the proportionate 
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birth rate of the infected, 3ν  was the proportionate birth rate of the 

recovered, α  was the rate of those who had recovered were becoming 
immune, γ  was the rate of susceptibles becoming ill and β  was the rate of 

the infected who were becoming susceptibles. 

In Section 2, we reduced the four dimensional first order differential 
equations to one dimensional second order ordinary differential equation. In 
Section 3, we subjected the reduced equation to the Painlevé analysis in its 
present state as a raw dynamical system, as it were, and also as a single 
second-order ordinary differential equation which had ‘sanitised’ by the 
removal of mathematically distracting parameters. We performed a Lie 
symmetry analysis of the reduced equation in Section 4. In Section 5, we 
established the general solutions of this ordinary differential equation and we 
then performed numerical simulation of the SIRD epidemial model. 

2. Reduction to a Second Order Ordinary Differential Equation 

In this section, we reduced the model equation (1) to a second order 
ordinary differential equation. Notably, the first two equations in system (1) 
were independent of R and D, and one could solve R once I was known, 
hence it could be excluded in any subsequent analysis of the system. 

From (1b), we had 

.1 22
β

ν−µ+γ+α
+

β
= I

IS  (2) 

The derivative of (2) gave 

.1
2

2








 −
β

=
I
IIIS  (3) 

The substitution of (2) and (3) into (1a) gave 

( ) IIIIIIIII 1
33

22
22 µ−γβ+ν−µ+γ+αβ−β−=−  
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( ) III 1
2

221 ν+ν−µ+γ+αµ−  

( ) .2
221 Iν−µ+γ+αν+  (4) 

We have after some arrangement 

( ) ( ) IIIIIIII 11
3

22
22 2 µ−ν+ν−µ+γ+αβ−=β+−  

( ) ( ) .2
2211 Iµ−ν+γ+αµ−ν+  (5) 

We may achieve a cosmetic simplification by means of the rescaling 

.
β

= uI  (6) 

The substitution of (6) into (5) gave 

( ) 02322 =+γ++++− abuubuuauuuuu  (7) 

with 

,11 a=ν−µ  (8) 

.22 b=ν−µ+γ+α  (9) 

3. Singularity Analysis 

Singularity analysis was initiated by Kowalevski [5] in her determination 
of the third integrable case of the Euler equations for the top and was in large 
measure developed by the French School founded by Paul Painlevé during 
the period of the La Belle Époque [9]. There have been significant 
contributions since then. For less technical works devoted to the 
methodology the interested reader is referred to the text of Tabor [11] and the 
report of Ramani et al. [10]. The essence of the singularity analysis of a 
differential equation (system of ordinary differential equations) was the 
determination of the existence of isolated movable polelike singularities with 
which one could develop a Laurent expansion containing arbitrary constants 
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equal in number to the order of the system. The location of then singularity 
was determined by the initial conditions of the system. An equation of 
moderately, or more, complicated structure can possess more than one 
polelike singularity – a fortiori in the case of systems of differential 
equations which can have many patterns of singularities. Notably, it is 
conventional wisdom that a Laurent expansion with the requisite number of 
arbitrary constants must exist for all possibilities. However, there exists a 
counter example [6] for which one pattern of singular behaviour possessed a 
Laurent expansion with the correct number of arbitrary constants and the 
second does not, but had a ‘peculiar’ solution [7] of the type already 
discussed by Ince [3] many years ago. Nevertheless, the closed form general 
solution of the system was manifestly analytic. 

The application of the analysis is usually quite algorithmic. Indeed, it is 
standard practice to apply the ARS algorithm [1], although there are 
instances, of particular relevance to the analysis of systems of first-order 
ordinary linear differential equations typically encountered in the 
mathematical modelling of epidemics, in which the subtler approach 
advocated by Hua et al. [2] is preferred. First, we outlined the standard 
algorithm and secondly the alternative approach. We considered an 
autonomous system of first-order ordinary differential equations 

( ) ,,1,0,, nixxi ==σΦ  (10) 

where x represented the n dependent variables, the overdot differentiation 
with respect to the independent variable t and σ  the set of parameters which 
invariably seemed to accompany a system arising in the course of the 
mathematical modelling of natural phenomena. We assume that the n 
functions iΦ  were polynomials in the dependent variables x and linear in the 

first derivatives. The assumptions which made were not completely 
necessary, but they do reflect the reality found in models and simplified our 
theoretical discussion. 
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The first step was to determine the leading-order behaviour of the 

dependent variables of the system. We substituted ,ipiix τσ=  ,,1 ni =  

where 0tt −=τ  and 0t  was the putative location of the movable singularity, 

into the system (10) and compared the resulting power. 

The formal Laurent series may be obtained by substituting 

∑
∞

=

−τσ=
0

1

i

i
iu  (11) 

into (7) to obtain 

( ) ( ) ( ) ( ) 44 1121 −+−+ τσσ−−−τ−−σσ ji
ji

ji
ji iiii  

( ) 41 −++τσσσ−+ kji
kjii  

( ) ( ) 2331 −+−++−+ τσσ+τσσσγ+−τσσ−= ji
ji

kji
kji

ji
ji abbia  (12) 

for ....,2,1,0=== kji  At ,4−τ  we required 

.02 3
0

2
0

2
0 =σ−σ−σ  

Therefore, 
.10 =σ  

We moved to the next power, ,3−τ  and established that 

( ) .2 3
0

2
01

2
01010 σγ+−σ−=σσ−σσ−σσ ba  

Since ,10 =σ  this gave an arbitrary 1σ  only if 

 .ba +γ=  (13) 

From (9) and (13), we had: 

.22211 γ+α+µ−ν=µ−ν  (14) 
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4. Symmetry Analysis 

There are four standard approaches to the analysis of nonlinear    
ordinary or partial differential equations. The approaches comprise numerical 
computation, dynamical systems analysis, singularity analysis and symmetry 
analysis, all of which possess extensive literatures. 

The Lie group analysis is the most powerful tool to establish the general 
solution of ordinary differential equations. Any known integration technique 
can be shown to be a particular case of general integration method based on 
the derivation of the continuous group of symmetries admitted by differential 
equation, that is, the Lie symmetry algebra [8]. 

An nth order ordinary differential equation 

( ( ) ) 0...,,,, =′ nyyyxN  (15) 

admits the one-parameter Lie group of transformations 

,εξ+= xx  (16) 

εη+= yy  (17) 

with infinitesimal generator 

yxG
∂
∂η+

∂
∂ξ=  (18) 

if 

[ ] ,00| =
=N

n NG  (19) 

where [ ]nG  is the nth extension of G given by 

[ ] ( ) ( ) ( )
( )∑ ∑

=

−

=

−+

∂
∂













ξ





−η+=

n

i
i

i

j

jijin

y
y

j
i

GG
1

1

0

1 .  (20) 
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We say that the equation possesses the symmetry (group generator) 

yxG ∂η+∂ξ=  (21) 

iff (19) holds. 

Equation (7) does not possess the rescaling symmetry, we may achieve a 
simplification by means of the rescaling 

a
xtayu == ,  (22) 

so that equation (7) is considered as 

.02322 =+γ++′+′+′−′′ ya
bya

byyyyyyy  (23) 

The case ( )0=γ= ba  reduces equation (23) to 

.02322 =++′+′+′−′′ yyyyyyyyy  (24) 

Nucci and Leach [8] obtained two Lie point symmetries in the special case 
( )0=γ= ba  [8] 

,1 xG ∂=  (25) 

( ).2 yx
x yeG ∂−∂=  (26) 

The Lie bracket is given by [ ] ,, 221 GGG LB =  so that the reduction of (23) 

should be by 2G  rather than the more usual .1G  The associated Lagrange’s 

system for the zeroth and first-order invariants of 2G  in (23) representation 

is [8] 

yy
yd

y
dydx

−′−
′

=
−

= 21  

so that 

yy
yYyxX 1,log 2 +
′

=+=  (27) 
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with X and Y the new dependent and independent variables, respectively. 
Therefore, equation (24) becomes 

01 =++ YdX
dY  

which can be easily integrated to give 

( ) [ ] .exp1 AXY =+  (28) 

The substitution of (27) into (28) gave 

 [ ].exp1 xAyy
y −=++
′  (29) 

The integration of (29) gave 

 [ ]
[ ][ ] .expexp

exp
BxAD

xCy
+−

−=  (30) 

Substituting (8) and (30) into (22) gave 

 ( ) ( ) ( )[ ]
( )[ ][ ] .expexp

exp
11

1111
BtAD
tCtu
+ν−µ−

ν−µ−ν−µ=  (31) 

The number of infected population is obtained by substituting (31) into (6) 

 ( ) ( ) ( )[ ]
( )[ ][ ][ ] .expexp

exp
11

1111
BtAD
tCtI
+ν−µ−β

ν−µ−ν−µ=  (32) 

The substitution of (33) into (2) gave 

 ( ) ( ) ( ) ( )[ ] .exp11 22
111111 β

ν−µ+α+ν−µ−ν−µ
β

+ν−µ
β

= ttS  (33) 

5. The General Solutions 

The solution obtained using the Lie symmetry analysis may not be 
realistic since the rate of susceptible individual becoming sick was set to be 
zero. In this section, we obtained the explicit solution by setting the total 
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number of population to be the sum of the susceptible population plus the 
number of infected population. 

Combining (1a) and (1b), we obtained: 

( ) ( ) ISIS α−µ−ν+µ−ν=+ 2211  

( ) ( ).11 IS +µ−ν=  (34) 

Let 
 .ISN +=  (35) 

Equation (34) became 

 ( ) .11 NN µ−ν=  (36) 

The solution of (36) was 

 ( ) ( ) ( )[ ].exp0 11 tNtN µ−ν=  (37) 

From (35) and (37), we had 

 ( ) ( )[ ] .exp0 11 ItNS −µ−ν=  (38) 

Equation (1b) became 

 ( ) ( )[ ] ( ) ,exp0 2211
2 ItINII ν−µ+γ+α−µ−νβ+β−=  

 ( ) ( )[ ] ( ) .exp0 22
112 ItNII

I ν−µ+γ+α−µ−νβ+β−=  (39) 

With the use of the transformation 

 ,1
Iu =  (40) 

equation (39) became: 

 ( ) ( )[ ] ( ) .exp0 2211 uutNu ν−µ+γ+α+µ−νβ−β=  (41) 

Since 

 a=µ−ν 11  



The SIRD Epidemial Model 11 

and 

 ,22 b=ν−µ+γ+α  

equation (41) gave 

 ( ) [ ]( ) β=−β+ ubatNu exp0  (42) 

which has the integrating factor 

( ) [ ]( ) .exp0exp 



 −β∫ dtbatN  

The solution of (42) was 

( ) [ ]( ) 



 −β−= ∫ dtbatNAu exp0exp  

( ) [ ]( ) 



 −β−+ ∫ dtbatN exp0exp  

( ) [ ]( )∫ ∫ 



 −ββ× ,exp0exp dtdtbatN  

and from (40), we had 

 ( )
( ) [ ]( )

( ) [ ]( )
.

exp0exp

exp0exp

∫ ∫
∫





 −ββ+





 −β

=
dtbatNA

dtbatN
tI  (43) 

From (38), we had 

( ) ( ) ( )[ ]tNtS 11exp0 µ−ν=  

 
( ) [ ]( )

( ) [ ]( )
.

exp0exp

exp0exp

∫ ∫
∫





 −ββ+





 −β

−
dtbatNA

dtbatN
 (44) 
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From (1c), we obtained 

 ( ) .33 IRR α=µ−ν−  (45) 

Equation (45) has the integrating factor ( )[ ].exp 33 tµ−ν  Therefore, 

( ) ( )[ ]ttR 33exp µ−ν=  

 
( )[ ] ( ) [ ]( )

( ) [ ]( )






















 −ββ+





 −βµ−ν−α

+× ∫
∫ ∫

∫
dt

dtbatNA

dtbatNt
B

exp0exp

exp0expexp 33
 (46) 

and from (1d), we obtain the death component of the population 

( ) ( ) ( )[ ]tNtD 111 exp0 µ−νµ=  

( )
( ) [ ]( )

( ) [ ]( )∫ ∫
∫





 −ββ+





 −β

µ−µ+
dtbatNA

dtbatN

exp0exp

exp0exp
12  

( )[ ]t333 exp µ−νµ+  

( )[ ] ( ) [ ]( )

( ) [ ]( )
.

exp0exp

exp0expexp 33























 −ββ+





 −βµ−ν−α

+× ∫
∫ ∫

∫
dt

dtbatNA

dtbatNt
B  

6. Numerical Result 

In this section, we give a numerical result based on the susceptibles      
and infected component of the population. The parameters are chosen          
as ,0003.01 =ν  ,0001.02 =ν  ,0003.03 =ν  ,0002.01 =µ  ,0003.02 =µ  

,0002.03 =µ  ,01.0=α  ,04.0=β  .04.0=γ  Figure 1 suggests that the 

solution is globally asymptotically stable. 
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Figure 1. Susceptibles (dashed line) and infected (solid line). The computer 
package Mathematica is used with the initial values ( ) 17.00 =I  and 

( ) .83.00 =S  

7. Conclusion 

We formulated the SIRD epidemial model and studied its dynamical 
behaviour. We have shown that the SIRD epidemial model is integrable     
from the viewpoint of singularity analysis. We have performed numerical 
simulation on the asymptotical behaviour of the SIRD model. 

It is notable, therefore, that the mathematical models can aid in              
the understanding of the processes which govern a system. This fact 
notwithstanding, the confidence placed in such models should always be 
questioned. Thus, critically it should be remembered that the ultimate 
purpose of a model is to present a simplification of a more complex system 
that may ultimately prove to be too complex to model accurately. Models 
must, therefore, be used with care and their results should be interpreted with 
due caution. Margins of uncertainty should be attached to the use of model 
results. 
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