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Abstract 

A direct method for solving integro-differential equations by using 
Chebyshev wavelet basis is presented. We use operational matrix of 
integration (OMI) for Chebyshev wavelets to reduce this type of 
equations to a system of algebraic equations. Some quadrature 
formulae for calculating inner products have presented which can be 
operated by Fast Fourier Transform (FFT). The numerical examples 
and the number of operations show the advantages of this method to 
some other usual methods. 

1. Introduction 

In this paper, a fast computational method for solving second (or higher) 
order integro-differential equations is presented. Orthogonal functions and 
polynomials are suitable choice in dealing with various problems such as 
integro-differential equations. The main benefit of using orthogonal basis is 
that it reduces these problems to solving a system of linear algebraic 
equations by truncated approximating series 
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and using the operational matrix of integration to eliminate the integral 
operations. In this paper, we would like to use Chebyshev Wavelet basis to 
span the approximating space. The elements ( ) ( ) ( ),...,,, 110 ttt N −φφφ  are the 

orthonormal basis functions defined on a certain interval [ ]., ba  There are 

some other methods for solving linear integro-differential equations such as 
using Hybrid Taylor and Block-Pulse, Hybrid Legender and Block-Pulse, 
Legender Wavelets functions as an orthogonal basis to estimate Fourier 
coefficients of unknown function [3-5]. Here we choose ( ),tiφ  as Chebyshev 

wavelets on [ ].1,0  The main advantage of this method is that inner products 

for setting up the matrices can be done at most by ( )lnNNO 2  operations as 

those of the Fast Galerkin scheme [1], which can be compared with at least 

( )3NO  operation count of methods mentioned before. 

2. Chebyshev Wavelets and Their Properties 

2.1. Wavelets and Chebyshev wavelets 

Applications of wavelets have been very successful in many scientific 
and engineering fields [6-13]. They constitute a family of functions 
constructed from dilation and transformation of a single function called the 
mother wavelet ( ),xψ  we have the following family of continuous wavelets 

as [2]: 

( ) .0,,,21
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⎛ −ψ=ψ − abaa

bxaxba R  

Chebyshev wavelets ( ),,,,, tmnkmn ψ=ψ  have four arguments, ,1=n  

,2...,,2 1−k  k can assume any positive integer, m is degree of Chebyshev 

polynomials of the first kind and t denotes the time, 
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and .2...,,2,1,1...,,1,0 1−=−= knMm  In equation (2), the coefficients 

are used for orthonormality. Here ( ),tTm  are Chebyshev polynomials of the 

first kind of degree m which are orthogonal with respect to the weight 

function ( ) ,11 2tt −=ω  on the interval [ ],1,1−  and satisfy the following 

recursive formula: 

( ) ( ) ,,1 10 ttTtT ==  

( ) ( ) ( ) ....,2,1,2 11 =−= −+ mtTttTtT mmm  

We should note that in dealing with Chebyshev wavelets the weight 
function 

( ) ( )12~ −ω=ω tt  

should dilate and translate as 

( ) ( ),122 +−ω=ω ntt k
n  

to get orthogonal wavelets. 

2.2. Function approximation 

A function ( ) [ ]1,02
n

Ltx ω∈  may be expanded as 
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where ( ( ) ( )) ,, ,, n
ttxc mnmn ωψ=  in which ( )⋅⋅,  denotes the inner product in 

[ ],1,02
n

Lω  the space of inner product of functions with respect to the weight 

function ( ).xnω  If we consider truncated series in (3), we obtain 
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(M is specified positive integer which denotes the degree of Chebyshev 

polynomials) where C and ( )tΨ  are 12 1 ×− Mk  matrices given by 

[ ] ,...,,, 1221
T

kcccC −=  

( ) [ ] ,...,,, 1221
T

kt −ψψψ=Ψ  (5) 

and 

[ ],...,,, 1,10 −= Miiii cccc  

( ) [ ( ) ( ) ( )],...,,, 1,10 tttt Miiii −ψψψ=ψ  

for .2...,,2,1 1−= ki  

3. The Operational Matrix of Integration (OMI) 

The integration of the vector ( ),tΨ  defined in equation (5), can be 

obtained as, [14, 15] 

( ) ( )∫ Ψ=Ψ
t

tPdss
0

,  (6) 

where P is the MM kk 11 22 −− ×  operational matrix for integration and is 
obtained as 
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where F and L are MM ×  matrices given by 
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 (9) 
in which r is a counter: .1...,,2 −= Mr  

4. Fast Chebyshev Wavelets Direct Method 

In this section, we first give a direct method for solving linear integro-
differential equation and then some quadrature formula which are suitable for 
evaluating inner products of functions and basis functions. 
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Consider the following second order integro-differential equation: 

( ) ( ) ( ) ( ) ( ) ( )∫ =λ++′+′′
1

0012 ,, sydttxtsksxasxasxa  

( ) ( ) ,0,0 00 xxxx ′=′=  (10) 

where 012 ,, aaa  and λ are constants and ( ) [ ],1,02
ω∈ Lsy  [ ] ×∈ ω 1,02Lk  

[ ]1,0  and ( )tx  is an unknown function. 

If we approximate functions and initial values by Chebyshev wavelets as 

( ) ( )tXtx TΨ−′′ 2~  also 
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then by using equation (6) we get 
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and with same integration we obtain 
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Now by substituting into (10) and replacing −~  by ,=  we have 
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so because of orthonormality of Chebyshev wavelets 

( ) ( )∫ =ΨΨ
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we have 
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( ) [ ( ( ) ) ( ) ],0
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0
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where I is identity matrix and this equation holds for each s in interval [ ],1,0  

therefore we should solve the following linear system: 

[ ] 2
22
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( ( ) ) ( ) .0
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Finding vector 2X  leads to an approximation of the unknown function ( )sx  

by 

( ) ( ) ( ).0
0
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The same method would be used for higher order or system of integro-
differential equations with constant or variable coefficients. 

In calculating the elements of matrices of our method we often need to 
calculate the inner products of functions and Chebyshev basis. Here we 
discuss some formulae. By our notation of Subsection 2.1 and using ( )1+p -

point closed Gauss-Chebyshev quadrature rule we have [1] 
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for 12...,,2,1 −= ki  and ,1...,,1,0 −= Ml  where ⋅⋅,  denotes the inner 

product, double prime denotes that the first and the last terms are halved, and 
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In this and some similar methods we have to calculate the N elements of 

vector Y and 2N  ( )12where −⋅= kMN  elements of matrix K in equation 

(11). This number of elements for Hybrid Taylor-Block Pulse, Hybrid 

Legendre-Block Pulse and Legendre wavelets methods cost at least ( )2NO  

operations for calculating vector Y and ( )3NO  operations for calculating 

matrix K [1, 3, 4]. But Chebyshev wavelets basis functions and the Fast 
Fourier Transform (FFT) technique can be used to evaluate Y in (11) in 
( )NNO ln  operations and same as above relations can be done to calculate 

the elements of matrix K in (11) by two dimensional Gauss Chebyshev 

quadrature formulae in ( )NNO ln2  operations [1]. 

5. Illustrative Examples 

In this section, we consider some linear integro-differential equations and 
solve them by introduced method. 

Example 1. Consider the integro-differential equations 
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with the exact solution 

( ) sesx =  

and 

( ) ( ) ( ) ( ) ( ) ( )∫ ==+−+′
1

0
22 ,00, xsysxdttxsttssx  (13) 

with the exact solution 

( ) ( )ssx sin=  

and 

( ) ( ) ( ) ( ) ( ) ( ) ( )∫ =′==++′−′′
1

0
22 ,00,00,2 xxsydttxtssxsx  (14) 

with the exact solution 

( ) 12 += ssx  

and the suitable right hand sides. In Table 1, ,2Nxx −=ε  Nx  is the 

approximate solution and 2
1

2
−= AAc  is the condition number of 

system (11) with .22
012

TT
KPPaPaIaA T λ+++=  This table shows the 

2-norm of the error and condition number of coefficient matrix of equation 
(11) with 2=k  and various values of M for the equations (12), (13) and 
(14). The tables show that by increasing M the 2-norm of the error decreases 
rapidly also Figures 1.1 and 1.2 show the approximate and exact solutions of 
equations (12) and (13) also the method gives the exact solution of equation 
(14) (the last column of Table 1 gives the errors approximately zero). 
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Figure 1.1. Equation (12). 

Table 1. Numerical results for Example 1 

 (12) (13) (14) 

M ε c ε c ε 

2 21045.2 −⋅  1.75 21027.2 −⋅  1.48 121012.0 −⋅  

3 31071.6 −⋅  1.86 41090.1 −⋅  1.56 151011.0 −⋅  

4 41070.6 −⋅  1.87 61038.7 −⋅  1.56 181013.0 −⋅  

5 61087.5 −⋅  1.87 81033.6 −⋅  1.57 201014.0 −⋅  

6 81039.4 −⋅  1.87 91000.2 −⋅  1.57 231013.0 −⋅  
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Figure 1.2. Equation (13). 

Example 2. Consider the integro-differential equation 

( )
( )

( ) ( ) ( ) ( )∫ +−
+

+−=−−′
1

02 ,1ln1
11,

2ln
1 ssssxdttxtsksx  (15) 

with ( ) 1,
+

= t
stsk  and the exact solution 

( ) ( ).1ln += ssx  

Table 2 shows the 2-norm of the error and condition number of 
coefficient matrix of equation (11) with various values of k, M for four 
methods: Taylor-Block Pulse (TBP) [3], Legendre-Block Pulse (LBP) [4], 
Legendre Wavelet (LW) [5] and Chebyshev Wavelets (CW) also Figure 1.2 
shows the approximate and exact solutions. 

Table 2. Numerical results for Example 2 
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Table 2 shows that the error due to Legendre Wavelet and Chebyshev 
wavelet methods are approximately the same but better than the Taylor-
Block Pulse and Legendre-Block Pulse methods. Because of the fewer 
operations of using Chebyshev Wavelet with respect to the Legendre 
Wavelet (as discussed in Section 4) we would prefer the Chebyshev Wavelet 
method. 

6. Conclusion 

The Chebyshev wavelets and their operational matrix of integration have 
been obtained in general and used in solving integro-differential equations. 
The operation count and error estimate and condition number of coefficients 
of four methods have been compared with each other and concluded the 
superiority of our method to others. 
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