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Abstract 

Suppose H is a complex Hilbert space and ( )HLT ∈  is a bounded 

linear operator. In this paper, we show that if ( )HLT ∈  is a totally 

paranormal with no eigenvalues, then { }( ) ( )TIHT −λ=λ N  for all 

.C∈λ  We also show that if ( )HLT ∈  is a totally paranormal with 

no eigenvalues, then T is algebraic if and only if the spectrum ( )Tσ        

is finite. Finally, it is shown that that if ( )HLT ∈  is a totally 
paranormal operator on a complex Hilbert space H with property       
( ),δ  then T has a nontrivial invariant subspace. As a corollary,       

every hyponormal operator with ( )δ  has a nontrivial closed invariant 
subspace. 

1. Introduction and Preliminaries 

Throughout the paper, H and K stand for infinite-dimensional complex 
Hilbert spaces, and ( )KHL ,  denotes for the Banach space of all bounded 

linear operators from H to K. For a bounded linear operator ( ) =∈ :HLT  
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( ),, HHL  let ( ) HT ⊆N  and ( ) KT ⊆R  denote the kernel and range      

of ( ),, KHLT ∈  respectively. For ( ),HLT ∈  we denote by ( ),Tpσ  ( )Tσ  

and ( )Tρ  the point spectrum, the spectrum and the resolvent set of T, 

respectively, and let ( )TLat  stand for the collection of all T-invariant closed 

linear subspaces of H. For ( ),TLatT ∈  let YT |  denote the operator given 

by the restriction of T to Y. A closed subspace M  of H is called an invariant 
subspace of T if ( ) .MM ⊆T  Also, M  is called nontrivial if { } M≠0  

.H≠  A linear subspace M  of H is said to be T-hyperinvariant if 
( ) MM ⊆S  for every bounded linear operator S on H that commutes with 

T. 

The invariant subspace problem asks whether every operator on a 
complex separable Hilbert space has a nontrivial invariant subspace. In 1966, 
Bernstein and Robinson [3] proved that if ( )HLT ∈  is a polynomially 

compact operator, i.e., ( )Tp  is compact for some non-zero polynomial p, 

then T has a nontrivial invariant subspace. Recall that a subnormal operator 
on a Hilbert space is the restriction of a normal operator to an invariant 
subspace. In 1978, Brown [4] proved that every subnormal operator has a 
nontrivial invariant subspace. In 1988, Brown et al. [6] proved that every 
contraction on the Hilbert space whose spectrum contains the unit circle has a 
nontrivial invariant subspace. It is well known that every subnormal operator 
is hyponormal. In 1987, Brown proved [5] that every hyponormal operator 

( )HLT ∈  has a nontrivial invariant subspace whenever ( )( ) ( )( ),TRTC σ≠σ  

where ( )( )TC σ  denotes the continuous functions on ( )Tσ  and ( )( )TR σ  

denotes the closure in the ( )( )TC σ  norm of the rational functions on ( )Tσ  

with poles outside of ( ).Tσ  An example of Banach space that admits an 

operator without any nontrivial invariant subspace was given by Enflo [9, 10] 
and Read [20]. 

An operator ( )HLT ∈  on the Hilbert space H is said to be paranormal 

if 
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xxTTx 22 ≤  for all .Hx ∈  

If TI −λ  is paranormal for every ,C∈λ  then we say that T is totally 
paranormal. 

The following alternative definition is well known. An operator 
( )HLT ∈  is paranormal if and only if 

ITTTT 222 20 λ+λ−≤ ∗∗  for all ,0>λ  

see [1] and [23]. Equivalently, T is paranormal if and only if 

( )22222
2
1 xxTTx λ+≤λ  for every Hx ∈  and for all .0>λ  

The class of paranormal operators is a generalization of the class                  
of normal operators and several interesting properties have been proved           
by many authors. Every hyponormal operator (in particular, subnormal, 
quasinormal and normal) is paranormal. It is well known that if ( )HLT ∈  is 

paranormal, then nT  is paranormal for all positive integer .N∈n  Moreover, 

if ( )HLT ∈  is paranormal, then ( ) ( )2TT NN =  and ( ),TrT =  the 

spectral radius of T. It is easily seen that all hyponormal operators are totally 
paranormal. 

In this paper, we prove that if ( )HLT ∈  is a totally paranormal with 

( ) ,∅=σ Tp  then { }( ) ( )TIHT −λ=λ N  for all .C∈λ  We also prove that 

if ( )HLT ∈  is a totally paranormal with ( ) ,∅=σ Tp  then T is algebraic       

if and only if the spectrum ( )Tσ  is finite. Finally, we prove that if T is a 

totally paranormal operator with property ( ),δ  then T has a nontrivial closed 

invariant subspace. As a corollary, every hyponormal operator with ( )δ  has a 

nontrivial closed invariant subspace. 

We begin with several basic definitions and notations. Let H be an 
infinite-dimensional complex separable Hilbert space, and let ( ).HLT ∈  Let 

U be an open subset of the complex numbers ,C  and we denote by ( )HUO ,  
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the Fréchet space of analytic H-valued functions on U endowed with the 
topology of local uniform convergence. If ( ),HLT ∈  then we define :UT  

( ) ( )HUOHUO ,, →  by 

( ) ( ) ( ) ( )λ−λ=λ fTIfTU  for each ( )HUOf ,∈  and .U∈λ  

For each closed ,C⊆F  we will denote by ( )FHT  the linear manifold          

of all vectors Hx ∈  such that ( ) ( ) ,xfTI =λ−λ  ,\FC∈λ  for some 

( ).,\ HFOf C∈  For an open set ,C⊆G  let ( )GHT  denote the union of 

all spaces ( ),KHT  where K runs through all compact subsets of G. 

We say that ( )HLT ∈  has the single-valued extension property 

(abbreviated SVEP) provided that UT  is injective for every open .C⊆U  In 

the case when T has the SVEP, the local spectrum of a vector ,Hx ∈  

denoted by ( ),xTσ  is defined as the smallest compact set K with ( ).KHx T∈  

In this case, the local resolvent of x is the unique function ∈f  

( ( ) )HxO T ,\σC  satisfying ( ) ( ) ,xfTI =λ−λ  ( ).\ xTσ∈λ C  Obviously, we 

have ( ) ( )TxT σ⊆σ  and ( )xTσ  is closed. The local resolvent set ( )xTρ  of 

T at the point Hx ∈  is the set defined by ( ) ( ).\: xx TT σ=ρ C  

It is easily seen from definition that for each closed ,C⊆F  ( )FHT  is  

a linear subspace T-invariant of H, but need not closed in general, see [8]. 
Recall that an operator ( )HLT ∈  is said to have Dunford’s property ( )C  

(for short, property (C)) if, for each closed sets ,C⊆F  ( )FHT  is closed. 

The following proposition is found in [17]. 

Proposition 1.1. Let ( )HLT ∈  be a bounded linear operator on a 

Hilbert space H and every set ,C⊆F  the following assertions hold: 

(a) ( )FHT  is a T-invariant linear subspace of H. 

(b) ( ) ( ) ( )FHFHTI TT =−λ  for all .\FC∈λ  
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(c) ( ) { }( )λ⊆−λ T
n HTIN  for all C∈λ  and .N∈n  

(d) T has SVEP if and only if ( ) { }.0=∅TH  

(e) If T has SVEP and C⊆GF ,  are closed and disjoint, then the 

decomposition ( ) ( ) ( )GHFHGFH TTT +=∪  holds as an algebraic direct 

sum. 

Recall that an operator ( )HLT ∈  is said to have Bishop’s property ( )β  

provided that for every open ,C⊆U  the mapping UT  is injective and has 

dense range. An operator ( )HLT ∈  has decomposition property ( )δ  if =H  

( ) ( ),VHUH TT +  where { }VU ,  is an open cover of ( ).Tσ  It is not difficult 

to see that decompositions property ( )δ  is inherited by quotients. Recall 

from Proposition 1.2.19 of [17] that property ( )β  implies property ( ),C  and 

in turn implies SVEP. It can be shown that the converse implications do not 
hold in general as can be seen from [8] and [18]. 

In 1992, Laursen [16] proved that all totally paranormal operators have 
property ( )C  and moreover, if ( )HLT ∈  is a totally paranormal with no 

eigenvalues, then 

( ) ( )∩
F

T TIFH
\C∈λ

−λ= R  for all closed sets .C⊆F  

Recently, Uchiyama and Tanahashi [24] proved that all totally paranormal 
operators have Bishop’s property ( ).β  

Recall that an operator ( )HLT ∈  is called decomposable provided that 

for each open cover { }VU ,  of the complex plane ,C  there exist ∈ZY ,  

( )TLat  for which 

( ) UYTZYH ⊆|σ+= ,    and   ( ) .VZT ⊆|σ  

This class is quite general, containing for example all compact operators, 
normal operators on the Hilbert spaces, Dunford’s spectral operators and 
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generalized scalar operators. Moreover, a simple application of the Riesz 
functional calculus shows that all operators with totally disconnected 
spectrum are decomposable, see the monographs by [8], [17] and [25]. 

As shown in [2], an operator ( )HLT ∈  has property ( )β  if and only          

if it is similar to the restriction of a decomposable operator to an invariant 
subspace. Also, an operator ( )HLT ∈  has property ( )δ  if and only if it is 

the quotient of a decomposable operator. Moreover, properties ( )β  and ( )δ  

are dual to each other, in the sense that an operator ( )HLT ∈  satisfies ( )β  if 

and only if its adjoint has property ( ),δ  and conversely, T has property ( )δ  

if and only if its adjoint has property ( ).β  Clearly, an operator ( )HLT ∈  is 

decomposable if and only if it has both properties ( )β  and ( ).δ  

It is easily seen that if T is the unilateral shift on ,2A  then T is 

paranormal, and its adjoint ∗T  is normaloid, i.e., ( ).TrT =  Moreover, ∗T  

does not have the SVEP and hence T is not decomposable. 

The following proposition is found in [17]. 

Proposition 1.2. If ( )HLT ∈  is decomposable, then T has property ( ),β  

and for each closed ,C⊆F  ( )FHT  is a T-hyperinvariant subspace with 

( )( ) .FFHT T ⊆|σ  

2. Invariant Subspaces for Totally Paranormal Operators 

The following theorem is found in [24]. 

Theorem 2.1. If ( )HLT ∈  is paranormal, then T has property ( ).β  In 

particular, every totally paranormal operator has property ( ).β  

The following theorem is found in [16]. 

Theorem 2.2. If ( )HLT ∈  is a totally paranormal with no eigenvalues, 

then 
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( ) ( )∩
F

T TIFH
\C∈λ

−λ= R  for all closed sets .C⊆F  

An operator ( )HLT ∈  on a complex Hilbert space H is said to be 

algebraic if ( ) 0=Tp  for some non-zero complex polynomial p. It is clear 

that if ( )HLT ∈  is algebraic, then by the spectral mapping theorem, the 

spectrum ( )Tσ  is finite. 

Proposition 2.3. Let ( )HLT ∈  be a totally paranormal with no 

eigenvalues. Then the following assertions hold: 

(a) { }( ) ( )TIHT −λ=λ N  for all .C∈λ  

(b) T is algebraic if and only if the spectrum ( )Tσ  is finite. 

Proof. (a) By Proposition 1.1(c), ( ) { }( )λ⊆−λ THTIN  for all .C∈λ  

It follows from Theorem 2.2 and Proposition 1.1(d) that 

( ) ( ) { }∩
C∈λ

=∅=−λ .0THTIR  

We want to show that 
( ) { }( ) { }.0=λ−λ THTI  

It suffices to show that ( ) { }( ) ( )TIRHTI T −μ⊆λ−λ  for all .C∈μ  

Clearly, this is true if .λ=μ  Assume .λ≠μ  By Proposition 1.1(b), 

{ }( ) ( ) { }( )λ−μ=λ TT HTIH   for all { }.\ λ∈μ C  

Thus we have 

( ) { }( ) { }( ) ( ) { }( ) ( ).TIHTIHHTI TTT −μ⊆λ−μ=λ⊆λ−λ R  

(b) Clearly, if T is algebraic, then ( )Tσ  is finite. Now assume that the 

spectrum ( )Tσ  is finite. Since T has property ( ),β  T has SVEP. Then by 

Proposition 1.1(e), ( ) { }nT λλλ=σ ...,,, 21  implies 

( )( ) { }( ) { }( ).1 nTTT HHTHH λ++λ=σ= "  
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Clearly, by (a), we have ( ) ( ).1 TITIH n −λ++−λ= NN "  Hence 

( ) ( ) ( ) 021 =−λ−λ−λ TITITI n"  on H. This shows that T is algebraic. 

This completes the proof. 
 

In 1997, Read [22] proved that there exist decomposable operators on a 
complex Banach space without a nontrivial closed invariant subspace. 

We can now prove the main result of this section. 

Theorem 2.4. Let ( )- HLT ∈  be a totally paranormal operator on a 

complex Hilbert space H of dimension greater than 1. Suppose that T has 
property ( ).δ  Then T has a nontrivial invariant subspace. 

Proof. Let ( )HLT ∈  be a totally paranormal operator with property 

( ).δ  Then T is decomposable. We consider the following two different cases 

( ) ∅≠σ Tp  and ( ) .∅=σ Tp  

Case I. ( ) .∅≠σ Tp  

Let ( ).Tpσ∈λ  Then ( ) { }0≠−λ TIN  and ( )TI −λN  is a closed 

invariant subspace of H. Obviously, either ( ) HTI ≠−λN  or ( )TI −λN  

.H=  Suppose ( ) .HTI ≠−λN  Then ( )TI −λN  is a nontrivial closed 

invariant subspace of H. Suppose ( ) .HTI =−λN  Then .IT λ=  Since 

,2dim ≥H  the linear subspace generated by for some non-zero Hx ∈  is a 
one-dimensional T-invariant subspace of H. 

Case II. ( ) .∅=σ Tp  

By Theorem 2.2, T is decomposable with property 

( ) ( )∩
F

T TIFH
\C∈λ

−λ= R  for all closed sets .C⊆F  

At first, suppose that ( )Tσ  contains at least two points. Let ( ).Tσ∈λ  Then 

{ }( )λTH  is a closed T-hyperinvariant subspace of H and { }( )( )λ|σ THT  
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{ },λ⊆  by Proposition 1.2. We claim that { }( )λTH  is nontrivial. Let U be  

an arbitrary open neighborhood of λ in .C  We choose another open set 

C⊆V  such that V∉λ  and { }VU ,  is an open covering of .C  Since T is 

decomposable, we obtain 

{ }( ) ( ) { }( )( ) UHTVHHH TTT ⊆λ|σ+λ= ,    and   ( )( ) .VVHT T ⊆|σ  

It remains to show that { }( )λTH  is nontrivial. Suppose { }( ) { }.0=λTH  Then 

( ) ( )( ) ,VVHTT T ⊆|σ=σ  which contradicts .V∉λ  Suppose { }( ) .HHT =λ  

Then ( ) { }( )( ) { },λ⊆λ|σ=σ THTT  which contradicts that ( )Tσ  contains at 

least two points. Hence { }( )λTH  is a nontrivial invariant subspace. 

Finally, we assume that ( )Tσ  is a singleton. It follows from Proposition 

2.3 that NIT +λ=  for some C∈λ  and some nilpotent operator ( ).HLN ∈  

Let N∈q  be the smallest integer for which ,0=qN  and choose an Hx ∈  

for which .01 ≠− xN q  The linear subspace generated by xN q 1−  is a       
one-dimensional T-invariant linear subspace of H. Hence T has a nontrivial 
invariant subspace. 
 

It is well known that every hyponormal operator is a totally paranormal 
operator. As an immediate application of Theorem 2.4, we obtain 

Corollary 2.5. Every hyponormal operator with property ( )δ  has a 

nontrivial invariant subspace. 

Clearly, every subnormal operator is hyponormal and every subnormal 
operator has property ( ).δ  We have the following: 

Corollary 2.6. Every subnormal (in particular, normal) operator has a 
nontrivial invariant subspace. 
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