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Abstract

In this paper, we study the notion of Gorenstein X -injective module
with respect to its complete injective resolution and give its

characterization, where X~ = Uy and X ={N e R-Mod |N is

finitely presented and Ext%e(N, M) =0, VM € Uy} We prove that

(i) the class of all X" -injective modules and the class of all Gorenstein
X -injective modules are injectively resolving, respectively, (ii) if R is
a coherent ring, then every R-module M has an X -injective cover.
Finally, we show that if 0 > M; > M, - M3 — 0 is an exact

sequence of R-modules with M, and Mg Gorenstein X -injective

R-modules, then M; is Gorenstein A -injective if and only if

EXt]Q(G’, M) = 0 forall X -injective R-modules G'.
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1. Introduction

Throughout this paper, R denotes an associative ring with identity and all
R-modules, if not specified otherwise, are left R-modules. R-Mod denotes the
category of left R-modules.

Let & be a class of left R-modules. Following [2], we say that a map
f € Homg(C, M) with C e ¥ is a & -precover of M, if the group
homomorphism Homg(C’, f): Homg(C', C) - Homg(C’, M) is surjective
for each C'e ¥. A € -precover f € Homg(C, M) of M is called a
% -cover of M if f is right minimal. That is, fg = f implies that g is an
automorphism for each g € Endg(C). ¥ < R-Mod is a precovering class

(resp. covering class) provided that each module has a & -precover (resp. €
-cover). Dually, we have the definition of ¥ preenvelope (resp. ¥
envelope).

Given aclass € of left R-modules, we write
¢+ ={N € R-Mod |Exth(M, N) =0, VM € ¢},
1% = (N e R-Mod |Exti(N, M) =0, YM € €.

A class ¥ of left R-modules is said to be injectively resolving [5] if
% contains all injective modules and if given an exact sequence of left
R-modules

0O0>>A—>B—>C-—>0

with A e €, the conditions B € € and C € € are equivalent. The U -

coresolution dimension of M, denoted by cores - dimuX(M), is defined to

be the smallest nonnegative integer n such that ExtE‘;*l(A, M) =0 for all

R-modules A e X' (if no such n exists, set cores - dim;,. (M) = o).

The notion of Gorenstein injective module was introduced by Enochs
and Jenda in [3]. An R-module M is called Gorenstein injective if there is an
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exact sequence --- »> E; > Eg — EO 5 E' > . of injective R-modules

such that M = ker(E® — E') and the functor Homg(1, —) preserves the

exact sequence whenever | is an injective R-module.

In this paper, we define a class Uy = {M € R-Mod | there exists a
finitely presented R-module N such that Extk(N, M) = 0}. It follows that
we can define a class X = {N e N/ |Extk(N, M) =0, VM e Uy}, where
N is the class of all finitely presented R-modules. We get xt = U y, that

is, Uy is the class of all X -injective R-modules. Thus (U y, Uy ) is a
cotorsion theory.

This paper is organized as follows: In Section 2, we prove that the class
Uy of all X -injective R-modules is injectively resolving and if R is a

coherent ring, then every R-module M has an X’ -injective cover.

In the last section, we define a Gorenstein X -injective module with
respect to its complete injective resolution and give its characterization.
Finally, we show that if 0 > M; > My, — M3 — 0 is an exact sequence

of R-modules with M, and M3 Gorenstein X -injective R-modules, then

M, is Gorenstein X -injective if and only if Extk(G’, My)=0 for all

X -injective R-modules G'.
2. Covers and Envelopes of X -injective Modules

In this section, we define a class X ={N e N|Ext%{(N, M) =0,
VM € Uy}, where N is the class of all finitely presented R-modules. We
begin with the following definition.

Definition 2.1 [7]. A left R-module M is called X -injective if
Ext%e(x, M) = 0 for all left R-modules X € X.
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Proposition 2.2. The class U/, of all X -injective modules is closed
under pure submodules.

Proof. Let A be a pure submodule of an & -injective module M. Then
there is a pure exact sequence 0 > A—> M — M/A — 0 and a functor
Homg (N, —) preserves this sequence is exact whenever N is finitely

presented. This implies that the sequence
0 - Homg(N, A) - Homg(N, M) —» Homg(N, M/A)

— Extg(N, A) > 0

is also exact for all N e X. It follows that EXt]R(N, A)=0 forall N € X,

as desired. O

Theorem 2.3. Every R-module has an X’ -injective preenvelope.

Proof. Let M be an R-module. By [4, Lemma 5.3.12], there is a cardinal
number X, such that for any R-homomorphism ¢: M — G with G an
X -injective R-module, there exists a pure submodule A of G such that
| A <X, and ¢(M) <= A Clearly, U y is closed under direct products and
by Proposition 2.2, A is X -injective. Hence the theorem follows by [4,
Proposition 6.2.1]. O

Proposition 2.4. The class U/, of all A -injective R-modules is

injectively resolving.

Proof. Let 0 — Mli Mzi M3 — 0 be an exact sequence of left
R-modules with My e U . If M3 e Uy, then M, € U 5 since the class
U y is closed under extension. Let My, € U and G € X. By [5, Theorem
3.2.1(a)], G has a special U y -precover. Then there exists an exact sequence

0>K->A—->G—>0with Aelly and K € U . We prove that M3 is

X -injective, i.e., to prove that Ext%e(G, M3) = 0. For this, it suffices to
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extend any o € Homg (K, M3) to an element of Homg (A, M3). Clearly, K
has U y -precover,

f g
0K -A>K =0,

where K, K'elUy and A" e U,. As the class Uy is closed under
extensions, A'e U y. Since aog: A" —> Mg with A'e U/ and M; an
X -injective R-module, then there exists f: A" — M, such that y o =
a o g. That is the following diagram is commutative:

a2 K

|

| B l «

v,
Now, we define B [jmg : A" — im¢, where | is a restriction map. Then there
exists y : K" — My such that B [img(f(K")) = ¢v(K"). Hence, we have the

following commutative diagram:

f g
0 K’ A K 0
| |
|y | B la
0 M, Mo My —— 0

The X -injectivity of My yields a homomorphism y; : A” — M; such that
y=vyyof. So for each k'eK’, we get (Bo f)(k')=(doy)(k')=
(do(ygo f))(k). Then there exists a map By € Homg(K, M5) such that
B=Pyog and we get o =wyoPq. That is, the following diagram is
commutative:

0 K’ ALK 0

T

v ’\/1// B | 1// al

A

0 My M, My ——= 0
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Since M, is X -injective, there exists p € Homg(A, M,) such that
By =pof. Thus a =yoPy =wyo(po f), where yop e Homg(A Mj).

Hence M3 is X -injective. O

Proposition 2.5. The class Uy is injectively resolving if and only if for

every pure submodule A of M, M/A is also X -injective.

Proof. Assume that I/ 5 is injectively resolving. Let M € U/ 5 and A be

a pure submodule of M. By Proposition 2.2, A is X -injective. From the short
exact sequence 0 > A—> M — M/A — 0, we get M/A is X -injective.

Conversely, assume that for every M e U/, and every pure submodule A of

f
M, M/A is X -injective. Let 0 > M;—>M, —> M3 — 0 be an exact

sequence of R-modules with M1, M, € U . By the X -injectivity of My,
we get imf < M, is also X -injective. Thus imf is pure in M,. By
assumption, M, /imf e U 5. Since M, /imf = M3, M3 e U . Hence U y

is injectively resolving since E € U 5 for all injective R-modules E. O

Theorem 2.6. Let R be a coherent ring. Then every R-module M has an
X -injective cover.
Proof. Let M be an R-module with | M | = a. Let « be a cardinal as in

[1, Theorem 5]. By [4, Lemma 5.3.12], we show that any homomorphism
G —> M with G € Uy factors through an X -injective R-module G’ with

|G'| < k.

Let ¢ € Homg(G, M) and G e Uy. If |G|<k, then the assertion
holds by taking G’ = G. So we may assume that |G | > k. Let K = ker ¢.
Thus |G/K | < A since G/K can be embedded in M. By [1, Theorem 5], K

contains a nonzero submodule H which is pure in G. It follows that H is X -
injective by Proposition 2.2. Hence G/H is X -injective by Proposition 2.4.
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If |G/H|<x, then the desired result follows immediately since ¢
factors through G/H. Now, we assume that |G/H | > x. Define a class
C={C/|H<C<KandG/Cely} Since HeC, C is a nonempty
class. Let {Cg € C|B < 1} be a sequence of R-modules. Then we have H <
UCg <K and G/UCg =G/limCq = lim(G/Cp) is A -injective since
direct limit of X -injective R-modules is X -injective. Thus UCB e C.

Hence G’ is a maximal element of the class C by the Zorn’s Lemma.

Suppose |G/G'| > k. Since G’ < K, there exists y: G/G' — M such
that kery = K/G". Now, |(G/G")/(K/G")|=|G/K|<A. By Lemma [1,
Theorem 5], K/G' contains a nonzero submodule F/G’ which is pure in
G/G'. Then F/G’ is X -injective by Proposition 2.2. Therefore, G/F =
(G/G")/(F/G') is X -injective by Proposition 2.5. This implies that F € C,
which is a contradiction to the maximality of G'.

Finally, it is clear that G/G’ is X -injective and ¢ factors through
G/G’. Clearly, Uy is closed under direct sums. It follows that M has an
A -injective precover. Since R is a coherent ring, U 4 is closed under direct

limits. Therefore, M has an X -injective cover. O

3. Gorenstein X -injective Modules

We define the following definition with respect to a complete injective
resolution of a module:

Definition 3.1. An R-module M is called Gorenstein X -injective if there
IS an exact sequence
R O i N s (R N
of injective R-modules such that M = ker(1° — Il) and such that
Homg (G, —) leaves the above sequence exact whenever G is an X -injective
R-module.
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Remark 3.2. (1) The following implications are straightforward.
Every injective module is Gorenstein X -injective and every Gorenstein
X -injective is Gorenstein injective.

@1l 1l->1lg—> 195 1t5 . isa sequence of injective
R-modules and Homg (G, —) preserves the exact sequence whenever G is an

X -injective R-module, then by symmetry, all the images, the kernels and the
cokernels of T are Gorenstein X -injective.

(3) The class of Gorenstein X -injective R-modules is closed under direct
products.

Lemma 3.3. Let M be a Gorenstein X -injective R-module. Then
(1) ExtiR(G, M) =0 for all X -injective R-modules G and all i > 1.
(2) The injective dimension of M is zero or infinite.

Proof. (1) Let 0 > G > 19 5 11 - .. be an injective resolution of
G. By hypothesis, the functor Homg(G’, —) preserves the exact sequence
whenever G’ is an X -injective R-module. It follows that ExtiR(G’, M)=0
for all X -injective R-modules G" and all i > 1 by definition.

(2) Assume that id(M) < oo. Then there is an exact sequence 0 — M

S19 515 5" 50 of injective  R-modules I' such that
Homg (G', —) preserves the exact sequence whenever G’ is an X’ -injective

R-module. It follows that M is injective. O

Now we give some characterizations of Gorenstein X -injective
R-modules.

Theorem 3.4. Let R be a coherent ring. Then the following are
equivalent for an R-module M:

(1) M is Gorenstein X -injective.
(2) M has an exact left X" -injective resolution and ExtiR(G, M) =0 for
all X -injective R-modules G and all i > 1.
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(3) M has an exact left X" -injective resolution and ExtiR(G, M) =0 for

all R-modules G with cores - dimy, ,, (G)<w andall i >1.

Proof. (1) = (2) follows by Lemma 3.3 and (2) = (3) holds by
dimension shifting.

(3) = (1) Let ¢: Gy —> M be an X -injective cover of M. Then there is

an exact sequence 0 — GO—I>E — L —» 0 with E an injective envelope
of Gg. By Proposition 2.4, L is X -injective. Thus, there exists
& € Homg(E, M) such that ¢ = §i since Exti(L, M) =0. It follows that
there is ¢’ € Homg(E, Gy) such that ¢¢' = ¢ since ¢ is an X -injective
cover of M. Therefore, ¢ = ¢(¢'i), and hence ¢'i is an isomorphism. It
follows that G is injective. For any X -injective R-module G, it is easy to
verify that Homg (G, Gy) — Hom(G, im(f)) — 0 is exact since ¢ is an
X -injective cover of M. However, the exactness of 0 — ker(¢) > Gy —
im(¢) — 0 yields the exact sequence Homg (G, Gy) — Hom(G, im(¢)) —
Extk (G, ker(¢)) —> 0. Thus Extk(G, ker(¢)) =0. So ker(¢) has an
X -injective cover G; — ker(¢) with G; injective by the proof above.
Continuing this process, we can get a complex :-- > G; > Gg > M —» 0
with each G; an injective module such that Hom(G, —) preserves the exact

sequence. Note that ExtiR(R R, M) =0 forall i >1 and Exty(gR, M) =M

since M has an exact left X -injective resolution. So the complex
-+ —> G > Gy &> M — 0 is exact. On the other hand, we have an exact

sequence 0 > M — G% - G — ... of with each G' an injective module

such that Hom(G, —) preserves the exact sequence since ExtiR(G, M)=0
for all & -injective R-modules G and all i >1. Now, we get an exact

sequence --- > Gy > Gy — G 56l of injective R-modules with

M = ker(G® — G1). So M is Gorenstein X -injective. O
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Lemma 3.5. Let 0 > My > My, > M3 - 0 be an sequence of
R-modules. If M, and M3 are Gorenstein X -injective R-modules, then so
is My. That is, the class of all Gorenstein X -injective modules is closed

under extensions.

Proof. It is straightforward. O

Lemma 3.6. An R-module M is Gorenstein X -injective if and only if
there exists an exact sequence of modules 0 > N — I - M — 0 such that
I is injective and N is Gorenstein X’ -injective.

Proof. The direct implication is clear by the definition of Gorenstein
X -injective module. Conversely, let

o
0>N->I->M->0 (1)

be an exact sequence of modules with | an injective module and N be a
Gorenstein X -injective module. Then for any X -injective R-module G’,

we get ExtiR(G', N)=0 forall i >1 by Lemma 3.3, and hence we have
ExtiR(G', M) =0 forall i >1 by using the long exact sequence ExtiR(G', N)

- ExtiR(G', ) - ExtiR”(G', N). Since N is Gorenstein X’ -injective, there
exists an exact sequence of injective R-modules

p
>l > 1lp>N->0 2

such that the functor Homg(G’, —) preserves the exact sequence whenever

G’ is an X -injective R-module. From the sequences (1) and (2), we get an
exact sequence

of
o>l lg>1>M->0 3)

with each 1; and | are injective R-modules and such that the functor
Homg(G', —) preserves the exact sequence whenever G’ is an X-injective
R-module. Consider an injective resolution of M,
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0o>MoI10 51t 4)

Since ExtiR(G', M) =0 forall X -injective R-modules G’ and all i > 1, the
functor Homg(G', —) preserves the above exact sequence (4). From the
sequences (3) and (4), we get an exact sequence of injective R-modules
af
R e [l [ N
such that M = ker(lo - Il) which remains exact after applying the functor
Homg(G', —) for any X -injective R-module G'. So M is Gorenstein

X -injective. O

Theorem 3.7. The class GXZ of Gorenstein X -injective R-modules is
injectively resolving.

Proof. Consider an exact sequence of R-modules 0 > M; - M, —
M3 — 0 with M4 a Gorenstein X -injective R-module. If M3 is Gorenstein
A -injective, then by Lemma 3.5, M, is Gorenstein X -injective. If M5 is

Gorenstein X -injective, then by Lemma 3.6, there exists a short exact
sequence of R-modules 0 > N -1 - M, —» 0 with | an injective

R-module and N a Gorenstein X -injective R-module. Consider the following
pullback diagram:

0 0
N——N
0 X I M 0
|
0 M, M, M 0
0 0

By Lemma 3.5, we get from the left vertical sequence that X is
Gorenstein X -injective. Therefore, by the middle horizontal sequence and
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Lemma 3.6, M3 is Gorenstein X -injective. This proves that the class GAT

is injectively resolving. O
Corollary 3.8. The class GXT is closed under direct summands.

Proof. It follows from Theorem 3.7 and [6, Proposition 1.4]. g

Theorem 3.9. Let 0 > M; - M, - M3 — 0 be an exact sequence
of R-modules. If M, and Mg are Gorenstein X -injective, then Mq is

Gorenstein X -injective if and only if Exth(G’, Mq) = 0 for all X -injective

R-modules G'.

Proof. The direct implication follows by Lemma 3.3. We now prove the

a B
sufficiency. Let 0 > My —> M, - M3 — 0 be a short exact sequence of

modules such that M, and Mg are Gorenstein X -injective and

EXt]Q (G', Mq) = 0 for all X -injective R-modules G'. Then there exist exact

sequences of R-modules

N:-w->Ili—>1g>N->0

M:—>5J;>Jg—>M->0

with each 1; and J; injective, which remain exact after applying
Homg(G', —) for any X -injective R-module G'. It is easy to see that
the homomorphism B € Hom(M,, M3) can be lifted to a chain map

B : N — M. Define a class C is a mapping cone of B : N — M. Since B
is a quasi-isomorphism (both M and N are exact), the long exact sequence
of homology for the mapping cone shows that C is exact. Also, the sequence
C of modules remains exact after applying the functor Homg(G', —) for any
X -injective R-module G’ since both N and M are so. Consider the
following commutative diagram:
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AZ"‘%Jz@Il%Jl@IO K/ 0 0

P T

B: i — ol — 1Dy —= JgON — M ——= 0

l l |

D: ... 0 0 M M 0

where K’ =ker(Jg ©® N —> M). Clearly, the sequence 0 > A > B —
D — 0 is exact. Since the sequences B and D are exact, we get that A is
exact. Moreover, .4 remains exact after applying the functor Homg (G', -)
for any A -injective R-module G’ since both B and D are so. It is easy to
see that there exists a homomorphism k € Homg(K, K') such that the

following diagram commutes:

0 M,y M, Ms 0
L
0 K’ Jo © My My 0

where i € Homg(M,, Jo @ M,) is the canonical injection. By the five
lemma, we get that k is monomorphic. By the snake lemma, we have
im(k) = im(i) = M,. Thus, the sequence of R-modules 0 > M; —» K’ —
Jo — 0 is exact. Moreover, this short exact sequence splits by assumption
Exth(Jo, Mq) =0. Hence K'=Jy@® M;. On the other hand, one can
check that ExtiR(G’, M;) =0 for all X -injective R-modules G’ and all
i>1 and so ExtiR(G’, K') = Ext(G/, Jo ® My) =0 for all X -injective
R-modules G’ and all i > 1, the injective resolution
K:0->K 519511 5.
of K’ remains exact after applying Homg(G’, —) for any X -injective

R-module G'. Assembling the sequences K' and A, we get the strongly
complete injective resolution of K’
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L@l 5@l 1951t
where K’ = Jo @ K is Gorenstein X -injective, as desired. O
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