Far East Journal of Mathematical Sciences (FJMS) © 2014 Pushpa Publishing House, Allahabad, India

Published Online: December 2014

Available online at http://pphmj.com/journals/fjms.htm

Volume 94, Number 2, 2014, Pages 203-216

\mathcal{X} -INJECTIVE AND GORENSTEIN \mathcal{X} -INJECTIVE MODULES

C. Selvaraj and A. Umamaheswaran

Department of Mathematics

Periyar University

Salem - 636 011, Tamil Nadu, India

e-mail: selvavlr@yahoo.com

ruthreswaran@gmail.com

Abstract

In this paper, we study the notion of Gorenstein \mathcal{X} -injective module with respect to its complete injective resolution and give its characterization, where $\mathcal{X}^{\perp} = \mathcal{U}_{\mathcal{X}}$ and $\mathcal{X} = \{N \in R\text{-}Mod \mid N \text{ is finitely presented and } Ext_R^1(N,M)=0, \forall M\in\mathcal{U}_{\mathcal{X}}\}$. We prove that (i) the class of all \mathcal{X} -injective modules and the class of all Gorenstein \mathcal{X} -injective modules are injectively resolving, respectively, (ii) if R is a coherent ring, then every R-module M has an \mathcal{X} -injective cover. Finally, we show that if $0\to M_1\to M_2\to M_3\to 0$ is an exact sequence of R-modules with M_2 and M_3 Gorenstein \mathcal{X} -injective R-modules, then M_1 is Gorenstein \mathcal{X} -injective if and only if $Ext_R^1(G',M_1)=0$ for all \mathcal{X} -injective R-modules G'.

Received: August 6, 2014; Accepted: September 26, 2014

2010 Mathematics Subject Classification: 16E10, 18G10, 18G05.

Keywords and phrases: \mathcal{X} -injective module, Gorenstein \mathcal{X} -injective cover, Gorenstein

 \mathcal{X} -flat module.

Communicated by E. Thandapani

1. Introduction

Throughout this paper, *R* denotes an associative ring with identity and all *R*-modules, if not specified otherwise, are left *R*-modules. *R-Mod* denotes the category of left *R*-modules.

Let $\mathscr C$ be a class of left R-modules. Following [2], we say that a map $f \in Hom_R(C,M)$ with $C \in \mathscr C$ is a $\mathscr C$ -precover of M, if the group homomorphism $Hom_R(C',f): Hom_R(C',C) \to Hom_R(C',M)$ is surjective for each $C' \in \mathscr C$. A $\mathscr C$ -precover $f \in Hom_R(C,M)$ of M is called a $\mathscr C$ -cover of M if f is right minimal. That is, fg = f implies that g is an automorphism for each $g \in End_R(C)$. $\mathscr C \subseteq R$ -Mod is a precovering class (resp. covering class) provided that each module has a $\mathscr C$ -precover (resp. $\mathscr C$ -cover). Dually, we have the definition of $\mathscr C$ preenvelope (resp. $\mathscr C$ -envelope).

Given a class \mathscr{C} of left R-modules, we write

$$\mathcal{C}^{\perp} = \{ N \in R - Mod \mid Ext_R^1(M, N) = 0, \forall M \in \mathcal{C} \},$$

$$^{\perp}\mathcal{C} = \{ N \in R - Mod \mid Ext_R^1(N, M) = 0, \forall M \in \mathcal{C} \}.$$

A class \mathscr{C} of left R-modules is said to be *injectively resolving* [5] if \mathscr{C} contains all injective modules and if given an exact sequence of left R-modules

$$0 \to A \to B \to C \to 0$$

with $A \in \mathcal{C}$, the conditions $B \in \mathcal{C}$ and $C \in \mathcal{C}$ are equivalent. The $\mathcal{U}_{\mathcal{X}}$ -coresolution dimension of M, denoted by $cores \cdot dim_{\mathcal{U}_{\mathcal{X}}}(M)$, is defined to be the smallest nonnegative integer n such that $Ext_R^{n+1}(A, M) = 0$ for all R-modules $A \in \mathcal{X}$ (if no such n exists, set $cores \cdot dim_{\mathcal{U}_{\mathcal{X}}}(M) = \infty$).

The notion of Gorenstein injective module was introduced by Enochs and Jenda in [3]. An *R*-module *M* is called *Gorenstein injective* if there is an

exact sequence $\cdots \to E_1 \to E_0 \to E^0 \to E^1 \to \cdots$ of injective *R*-modules such that $M = \ker(E^0 \to E^1)$ and the functor $Hom_R(I, -)$ preserves the exact sequence whenever *I* is an injective *R*-module.

In this paper, we define a class $\mathcal{U}_{\mathcal{X}} = \{M \in R\text{-}Mod \mid \text{ there exists a finitely presented } R\text{-}module } N \text{ such that } Ext_R^1(N,M) = 0\}.$ It follows that we can define a class $\mathcal{X} = \{N \in \mathcal{N} \mid Ext_R^1(N,M) = 0, \forall M \in \mathcal{U}_{\mathcal{X}}\}$, where \mathcal{N} is the class of all finitely presented R-modules. We get $\mathcal{X}^{\perp} = \mathcal{U}_{\mathcal{X}}$, that is, $\mathcal{U}_{\mathcal{X}}$ is the class of all \mathcal{X} -injective R-modules. Thus $(^{\perp}\mathcal{U}_{\mathcal{X}}, \mathcal{U}_{\mathcal{X}})$ is a cotorsion theory.

This paper is organized as follows: In Section 2, we prove that the class $\mathcal{U}_{\mathcal{X}}$ of all \mathcal{X} -injective R-modules is injectively resolving and if R is a coherent ring, then every R-module M has an \mathcal{X} -injective cover.

In the last section, we define a Gorenstein \mathcal{X} -injective module with respect to its complete injective resolution and give its characterization. Finally, we show that if $0 \to M_1 \to M_2 \to M_3 \to 0$ is an exact sequence of R-modules with M_2 and M_3 Gorenstein \mathcal{X} -injective R-modules, then M_1 is Gorenstein \mathcal{X} -injective if and only if $Ext^1_R(G', M_1) = 0$ for all \mathcal{X} -injective R-modules G'.

2. Covers and Envelopes of \mathcal{X} -injective Modules

In this section, we define a class $\mathcal{X} = \{N \in \mathcal{N} \mid Ext_R^1(N, M) = 0, \forall M \in \mathcal{U}_{\mathcal{X}}\}$, where \mathcal{N} is the class of all finitely presented R-modules. We begin with the following definition.

Definition 2.1 [7]. A left *R*-module *M* is called \mathcal{X} -injective if $Ext_R^1(X, M) = 0$ for all left *R*-modules $X \in \mathcal{X}$.

Proposition 2.2. The class $\mathcal{U}_{\mathcal{X}}$ of all \mathcal{X} -injective modules is closed under pure submodules.

Proof. Let A be a pure submodule of an \mathcal{X} -injective module M. Then there is a pure exact sequence $0 \to A \to M \to M/A \to 0$ and a functor $Hom_R(N, -)$ preserves this sequence is exact whenever N is finitely presented. This implies that the sequence

$$0 \to Hom_R(N, A) \to Hom_R(N, M) \to Hom_R(N, M/A)$$
$$\to Ext_R(N, A) \to 0$$

is also exact for all $N \in \mathcal{X}$. It follows that $Ext_R^1(N, A) = 0$ for all $N \in \mathcal{X}$, as desired.

Theorem 2.3. Every R-module has an \mathcal{X} -injective preenvelope.

Proof. Let M be an R-module. By [4, Lemma 5.3.12], there is a cardinal number \aleph_{α} such that for any R-homomorphism $\phi: M \to G$ with G an \mathcal{X} -injective R-module, there exists a pure submodule A of G such that $|A| \leq \aleph_{\alpha}$ and $\phi(M) \subset A$. Clearly, $\mathcal{U}_{\mathcal{X}}$ is closed under direct products and by Proposition 2.2, A is \mathcal{X} -injective. Hence the theorem follows by [4, Proposition 6.2.1].

Proposition 2.4. The class $\mathcal{U}_{\mathcal{X}}$ of all \mathcal{X} -injective R-modules is injectively resolving.

Proof. Let $0 \to M_1 \overset{\phi}{\to} M_2 \overset{\psi}{\to} M_3 \to 0$ be an exact sequence of left R-modules with $M_1 \in \mathcal{U}_{\mathcal{X}}$. If $M_3 \in \mathcal{U}_{\mathcal{X}}$, then $M_2 \in \mathcal{U}_{\mathcal{X}}$ since the class $\mathcal{U}_{\mathcal{X}}$ is closed under extension. Let $M_2 \in \mathcal{U}_{\mathcal{X}}$ and $G \in \mathcal{X}$. By [5, Theorem 3.2.1(a)], G has a special $\mathcal{U}_{\mathcal{X}}$ -precover. Then there exists an exact sequence $0 \to K \to A \to G \to 0$ with $A \in \mathcal{U}_{\mathcal{X}}$ and $K \in \mathcal{U}_{\mathcal{X}}$. We prove that M_3 is \mathcal{X} -injective, i.e., to prove that $Ext^1_R(G, M_3) = 0$. For this, it suffices to

extend any $\alpha \in Hom_R(K, M_3)$ to an element of $Hom_R(A, M_3)$. Clearly, K has $\mathcal{U}_{\mathcal{X}}$ -precover,

$$0 \to K' \xrightarrow{f} A' \xrightarrow{g} K \to 0,$$

where $K, K' \in \mathcal{U}_{\mathcal{X}}$ and $A' \in \mathcal{U}_{\mathcal{X}}$. As the class $\mathcal{U}_{\mathcal{X}}$ is closed under extensions, $A' \in \mathcal{U}_{\mathcal{X}}$. Since $\alpha \circ g : A' \to M_3$ with $A' \in \mathcal{U}_{\mathcal{X}}$ and M_1 an \mathcal{X} -injective R-module, then there exists $\beta : A' \to M_2$ such that $\psi \circ \beta = \alpha \circ g$. That is the following diagram is commutative:

$$A' \xrightarrow{g} K$$

$$\downarrow \beta \qquad \qquad \downarrow \alpha$$

$$M_2 \xrightarrow{\psi} M_3$$

Now, we define $\beta \upharpoonright_{im\phi} : A' \to im\phi$, where \upharpoonright is a restriction map. Then there exists $\gamma : K' \to M_1$ such that $\beta \upharpoonright_{im\phi} (f(K')) = \phi \gamma(K')$. Hence, we have the following commutative diagram:

$$0 \longrightarrow K' \xrightarrow{f} A' \xrightarrow{g} K \longrightarrow 0$$

$$\downarrow \uparrow \qquad \qquad \downarrow \alpha \qquad \qquad \downarrow \alpha$$

$$\downarrow \gamma \qquad \qquad \downarrow \beta \qquad \qquad \downarrow \alpha$$

$$0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow 0$$

The \mathcal{X} -injectivity of M_1 yields a homomorphism $\gamma_1:A'\to M_1$ such that $\gamma=\gamma_1\circ f$. So for each $k'\in K'$, we get $(\beta\circ f)(k')=(\phi\circ\gamma)(k')=(\phi\circ(\gamma_1\circ f))(k')$. Then there exists a map $\beta_1\in Hom_R(K,M_2)$ such that $\beta=\beta_1\circ g$ and we get $\alpha=\psi\circ\beta_1$. That is, the following diagram is commutative:

Since M_2 is \mathcal{X} -injective, there exists $\rho \in Hom_R(A, M_2)$ such that $\beta_1 = \rho \circ f$. Thus $\alpha = \psi \circ \beta_1 = \psi \circ (\rho \circ f)$, where $\psi \circ \rho \in Hom_R(A, M_3)$. Hence M_3 is \mathcal{X} -injective.

Proposition 2.5. The class $\mathcal{U}_{\mathcal{X}}$ is injectively resolving if and only if for every pure submodule A of M, M/A is also \mathcal{X} -injective.

Proof. Assume that $\mathcal{U}_{\mathcal{X}}$ is injectively resolving. Let $M \in \mathcal{U}_{\mathcal{X}}$ and A be a pure submodule of M. By Proposition 2.2, A is \mathcal{X} -injective. From the short exact sequence $0 \to A \to M \to M/A \to 0$, we get M/A is \mathcal{X} -injective. Conversely, assume that for every $M \in \mathcal{U}_{\mathcal{X}}$ and every pure submodule A of M, M/A is \mathcal{X} -injective. Let $0 \to M_1 \to M_2 \to M_3 \to 0$ be an exact sequence of R-modules with M_1 , $M_2 \in \mathcal{U}_{\mathcal{X}}$. By the \mathcal{X} -injectivity of M_1 , we get $imf \subset M_2$ is also \mathcal{X} -injective. Thus imf is pure in M_2 . By assumption, $M_2/imf \in \mathcal{U}_{\mathcal{X}}$. Since $M_2/imf \cong M_3$, $M_3 \in \mathcal{U}_{\mathcal{X}}$. Hence $\mathcal{U}_{\mathcal{X}}$ is injectively resolving since $E \in \mathcal{U}_{\mathcal{X}}$ for all injective R-modules E.

Theorem 2.6. Let R be a coherent ring. Then every R-module M has an \mathcal{X} -injective cover.

Proof. Let M be an R-module with $|M| = \alpha$. Let κ be a cardinal as in [1, Theorem 5]. By [4, Lemma 5.3.12], we show that any homomorphism $G \to M$ with $G \in \mathcal{U}_{\mathcal{X}}$ factors through an \mathcal{X} -injective R-module G' with $|G'| \leq \kappa$.

Let $\phi \in Hom_R(G, M)$ and $G \in \mathcal{U}_{\mathcal{X}}$. If $|G| \leq \kappa$, then the assertion holds by taking G' = G. So we may assume that $|G| \geq \kappa$. Let $K = \ker \phi$. Thus $|G/K| \leq \lambda$ since G/K can be embedded in M. By [1, Theorem 5], K contains a nonzero submodule H which is pure in G. It follows that H is \mathcal{X} -injective by Proposition 2.2. Hence G/H is \mathcal{X} -injective by Proposition 2.4.

If $|G/H| \leq \kappa$, then the desired result follows immediately since ϕ factors through G/H. Now, we assume that $|G/H| \geq \kappa$. Define a class $\mathcal{C} = \{C \mid H \leq C \leq K \text{ and } G/C \in \mathcal{U}_{\mathcal{X}}\}$. Since $H \in \mathcal{C}$, \mathcal{C} is a nonempty class. Let $\{C_{\beta} \in \mathcal{C} \mid \beta \in I\}$ be a sequence of R-modules. Then we have $H \leq \bigcup C_{\beta} \leq K$ and $G/\bigcup C_{\beta} = G/\underline{\lim}C_{\beta} = \underline{\lim}(G/C_{\beta})$ is \mathcal{X} -injective since direct limit of \mathcal{X} -injective R-modules is \mathcal{X} -injective. Thus $\bigcup C_{\beta} \in \mathcal{C}$. Hence G' is a maximal element of the class \mathcal{C} by the Zorn's Lemma.

Suppose $|G/G'| \ge \kappa$. Since $G' \subset K$, there exists $\gamma : G/G' \to M$ such that $\ker \gamma = K/G'$. Now, $|(G/G')/(K/G')| = |G/K| \le \lambda$. By Lemma [1, Theorem 5], K/G' contains a nonzero submodule F/G' which is pure in G/G'. Then F/G' is $\mathcal X$ -injective by Proposition 2.2. Therefore, $G/F \cong (G/G')/(F/G')$ is $\mathcal X$ -injective by Proposition 2.5. This implies that $F \in \mathcal C$, which is a contradiction to the maximality of G'.

Finally, it is clear that G/G' is \mathcal{X} -injective and ϕ factors through G/G'. Clearly, $\mathcal{U}_{\mathcal{X}}$ is closed under direct sums. It follows that M has an \mathcal{X} -injective precover. Since R is a coherent ring, $\mathcal{U}_{\mathcal{X}}$ is closed under direct limits. Therefore, M has an \mathcal{X} -injective cover.

3. Gorenstein \mathcal{X} -injective Modules

We define the following definition with respect to a complete injective resolution of a module:

Definition 3.1. An *R*-module *M* is called *Gorenstein* \mathcal{X} -injective if there is an exact sequence

$$\cdots \rightarrow I_1 \rightarrow I_0 \rightarrow I^0 \rightarrow I^1 \rightarrow \cdots$$

of injective R-modules such that $M=\ker(I^0\to I^1)$ and such that $Hom_R(G,-)$ leaves the above sequence exact whenever G is an $\mathcal X$ -injective R-module.

Remark 3.2. (1) The following implications are straightforward. Every injective module is Gorenstein \mathcal{X} -injective and every Gorenstein \mathcal{X} -injective is Gorenstein injective.

- (2) If $\mathbb{I}: \cdots \to I_1 \to I_0 \to I^0 \to I^1 \to \cdots$ is a sequence of injective R-modules and $Hom_R(G, -)$ preserves the exact sequence whenever G is an \mathcal{X} -injective R-module, then by symmetry, all the images, the kernels and the cokernels of \mathbb{I} are Gorenstein \mathcal{X} -injective.
- (3) The class of Gorenstein \mathcal{X} -injective R-modules is closed under direct products.

Lemma 3.3. Let M be a Gorenstein \mathcal{X} -injective R-module. Then

- (1) $Ext_R^i(G, M) = 0$ for all \mathcal{X} -injective R-modules G and all $i \ge 1$.
- (2) The injective dimension of M is zero or infinite.

Proof. (1) Let $0 \to G \to I^0 \to I^1 \to \cdots$ be an injective resolution of G. By hypothesis, the functor $Hom_R(G', -)$ preserves the exact sequence whenever G' is an \mathcal{X} -injective R-module. It follows that $Ext_R^i(G', M) = 0$ for all \mathcal{X} -injective R-modules G' and all $i \ge 1$ by definition.

(2) Assume that $id(M) < \infty$. Then there is an exact sequence $0 \to M$ $\to I^0 \to I^1 \to \cdots \to I^n \to 0$ of injective R-modules I^i such that $Hom_R(G', -)$ preserves the exact sequence whenever G' is an $\mathcal X$ -injective R-module. It follows that M is injective.

Now we give some characterizations of Gorenstein \mathcal{X} -injective R-modules.

Theorem 3.4. Let R be a coherent ring. Then the following are equivalent for an R-module M:

- (1) M is Gorenstein \mathcal{X} -injective.
- (2) M has an exact left \mathcal{X} -injective resolution and $\operatorname{Ext}_R^i(G, M) = 0$ for all \mathcal{X} -injective R-modules G and all $i \geq 1$.

(3) M has an exact left \mathcal{X} -injective resolution and $\operatorname{Ext}^i_R(G,M)=0$ for all R-modules G with cores $\cdot \dim_{\mathcal{U}_{\mathcal{X}}}(G) < \infty$ and all $i \geq 1$.

Proof. (1) \Rightarrow (2) follows by Lemma 3.3 and (2) \Rightarrow (3) holds by dimension shifting.

(3) \Rightarrow (1) Let $\phi: G_0 \to M$ be an $\mathcal X$ -injective cover of M. Then there is an exact sequence $0 \to G_0 \overset{\iota}{\to} E \to L \to 0$ with E an injective envelope of G_0 . By Proposition 2.4, L is \mathcal{X} -injective. Thus, there exists $\overline{\phi} \in Hom_R(E, M)$ such that $\phi = \overline{\phi}i$ since $Ext_R^1(L, M) = 0$. It follows that there is $\phi' \in Hom_R(E, G_0)$ such that $\phi \phi' = \overline{\phi}$ since ϕ is an \mathcal{X} -injective cover of M. Therefore, $\phi = \phi(\phi'i)$, and hence $\phi'i$ is an isomorphism. It follows that G_0 is injective. For any \mathcal{X} -injective R-module G, it is easy to verify that $Hom_R(G, G_0) \to Hom(G, im(f)) \to 0$ is exact since ϕ is an \mathcal{X} -injective cover of M. However, the exactness of $0 \to \ker(\phi) \to G_0 \to G_0$ $im(\phi) \to 0$ yields the exact sequence $Hom_R(G, G_0) \to Hom(G, im(\phi)) \to$ $Ext_R^1(G, \ker(\phi)) \to 0$. Thus $Ext_R^1(G, \ker(\phi)) = 0$. So $\ker(\phi)$ has an \mathcal{X} -injective cover $G_1 \to \ker(\phi)$ with G_1 injective by the proof above. Continuing this process, we can get a complex $\cdots \to G_1 \to G_0 \to M \to 0$ with each G_i an injective module such that Hom(G, -) preserves the exact sequence. Note that $Ext_R^i({}_RR, M) = 0$ for all $i \ge 1$ and $Ext_0({}_RR, M) \cong M$ since M has an exact left \mathcal{X} -injective resolution. So the complex $\cdots \to G_1 \to G_0 \to M \to 0$ is exact. On the other hand, we have an exact sequence $0 \to M \to G^0 \to G^1 \to \cdots$ of with each G^i an injective module such that Hom(G, -) preserves the exact sequence since $Ext_R^i(G, M) = 0$ for all \mathcal{X} -injective R-modules G and all $i \geq 1$. Now, we get an exact sequence $\cdots \to G_1 \to G_0 \to G^0 \to G^1 \to \cdots$ of injective *R*-modules with $M = \ker(G^0 \to G^1)$. So M is Gorenstein \mathcal{X} -injective. **Lemma 3.5.** Let $0 \to M_1 \to M_2 \to M_3 \to 0$ be an sequence of R-modules. If M_1 and M_3 are Gorenstein \mathcal{X} -injective R-modules, then so is M_2 . That is, the class of all Gorenstein \mathcal{X} -injective modules is closed under extensions.

Lemma 3.6. An R-module M is Gorenstein \mathcal{X} -injective if and only if there exists an exact sequence of modules $0 \to N \to I \to M \to 0$ such that I is injective and N is Gorenstein \mathcal{X} -injective.

Proof. The direct implication is clear by the definition of Gorenstein \mathcal{X} -injective module. Conversely, let

$$0 \to N \stackrel{\alpha}{\to} I \to M \to 0 \tag{1}$$

be an exact sequence of modules with I an injective module and N be a Gorenstein \mathcal{X} -injective module. Then for any \mathcal{X} -injective R-module G', we get $Ext_R^i(G',N)=0$ for all $i\geq 1$ by Lemma 3.3, and hence we have $Ext_R^i(G',M)=0$ for all $i\geq 1$ by using the long exact sequence $Ext_R^i(G',N)\to Ext_R^i(G',N)$. Since N is Gorenstein \mathcal{X} -injective, there exists an exact sequence of injective R-modules

$$\cdots \to I_1 \to I_0 \xrightarrow{\beta} N \to 0 \tag{2}$$

such that the functor $Hom_R(G', -)$ preserves the exact sequence whenever G' is an \mathcal{X} -injective R-module. From the sequences (1) and (2), we get an exact sequence

$$\cdots \to I_1 \to I_0 \xrightarrow{\alpha\beta} I \to M \to 0 \tag{3}$$

with each I_i and I are injective R-modules and such that the functor $Hom_R(G', -)$ preserves the exact sequence whenever G' is an X-injective R-module. Consider an injective resolution of M,

$$0 \to M \to I^0 \to I^1 \to \cdots. \tag{4}$$

Since $Ext_R^i(G', M) = 0$ for all \mathcal{X} -injective R-modules G' and all $i \geq 1$, the functor $Hom_R(G', -)$ preserves the above exact sequence (4). From the sequences (3) and (4), we get an exact sequence of injective R-modules

$$\cdots \rightarrow I_1 \rightarrow I_0 \stackrel{\alpha\beta}{\rightarrow} I \rightarrow I^0 \rightarrow I^1 \rightarrow \cdots$$

such that $M = \ker(I^0 \to I^1)$ which remains exact after applying the functor $Hom_R(G', -)$ for any $\mathcal X$ -injective R-module G'. So M is Gorenstein $\mathcal X$ -injective. \square

Theorem 3.7. The class \mathcal{GXI} of Gorenstein \mathcal{X} -injective R-modules is injectively resolving.

Proof. Consider an exact sequence of *R*-modules $0 \to M_1 \to M_2 \to M_3 \to 0$ with M_1 a Gorenstein $\mathcal X$ -injective *R*-module. If M_3 is Gorenstein $\mathcal X$ -injective, then by Lemma 3.5, M_2 is Gorenstein $\mathcal X$ -injective. If M_2 is Gorenstein $\mathcal X$ -injective, then by Lemma 3.6, there exists a short exact sequence of *R*-modules $0 \to N \to I \to M_2 \to 0$ with *I* an injective *R*-module and *N* a Gorenstein $\mathcal X$ -injective *R*-module. Consider the following pullback diagram:

By Lemma 3.5, we get from the left vertical sequence that X is Gorenstein \mathcal{X} -injective. Therefore, by the middle horizontal sequence and

Lemma 3.6, M_3 is Gorenstein \mathcal{X} -injective. This proves that the class \mathcal{GXI} is injectively resolving.

Corollary 3.8. The class \mathcal{GXI} is closed under direct summands.

Proof. It follows from Theorem 3.7 and [6, Proposition 1.4].

Theorem 3.9. Let $0 \to M_1 \to M_2 \to M_3 \to 0$ be an exact sequence of R-modules. If M_2 and M_3 are Gorenstein \mathcal{X} -injective, then M_1 is Gorenstein \mathcal{X} -injective if and only if $\operatorname{Ext}^1_R(G', M_1) = 0$ for all \mathcal{X} -injective R-modules G'.

Proof. The direct implication follows by Lemma 3.3. We now prove the sufficiency. Let $0 \to M_1 \overset{\alpha}{\to} M_2 \overset{\beta}{\to} M_3 \to 0$ be a short exact sequence of modules such that M_2 and M_3 are Gorenstein $\mathcal X$ -injective and $Ext^1_R(G',M_1)=0$ for all $\mathcal X$ -injective R-modules G'. Then there exist exact sequences of R-modules

$$\mathbb{N}: \cdots \to I_1 \to I_0 \to N \to 0$$

$$\mathbb{M}: \cdots \to J_1 \to J_0 \to M \to 0$$

with each I_i and J_i injective, which remain exact after applying $Hom_R(G',-)$ for any $\mathcal X$ -injective R-module G'. It is easy to see that the homomorphism $\beta \in Hom(M_2,M_3)$ can be lifted to a chain map $\overline{\beta}:\mathbb N\to\mathbb M$. Define a class $\mathcal C$ is a mapping cone of $\overline{\beta}:\mathbb N\to\mathbb M$. Since $\overline{\beta}$ is a quasi-isomorphism (both $\mathbb M$ and $\mathbb N$ are exact), the long exact sequence of homology for the mapping cone shows that $\mathcal C$ is exact. Also, the sequence $\mathcal C$ of modules remains exact after applying the functor $Hom_R(G',-)$ for any $\mathcal X$ -injective R-module G' since both $\mathbb N$ and $\mathbb M$ are so. Consider the following commutative diagram:

where $K' = \ker(J_0 \oplus N \to M)$. Clearly, the sequence $0 \to \mathcal{A} \to \mathcal{B} \to \mathcal{D} \to 0$ is exact. Since the sequences \mathcal{B} and \mathcal{D} are exact, we get that \mathcal{A} is exact. Moreover, \mathcal{A} remains exact after applying the functor $Hom_R(G', -)$ for any \mathcal{X} -injective R-module G' since both \mathcal{B} and \mathcal{D} are so. It is easy to see that there exists a homomorphism $k \in Hom_R(K, K')$ such that the following diagram commutes:

$$0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow 0$$

$$\downarrow^k \qquad \qquad \downarrow^i \qquad \qquad \parallel$$

$$0 \longrightarrow K' \longrightarrow J_0 \oplus M_2 \longrightarrow M_3 \longrightarrow 0$$

where $i \in Hom_R(M_2, J_0 \oplus M_2)$ is the canonical injection. By the five lemma, we get that k is monomorphic. By the snake lemma, we have $im(k) \cong im(i) = M_2$. Thus, the sequence of R-modules $0 \to M_1 \to K' \to J_0 \to 0$ is exact. Moreover, this short exact sequence splits by assumption $Ext_R^1(J_0, M_1) = 0$. Hence $K' \cong J_0 \oplus M_1$. On the other hand, one can check that $Ext_R^i(G', M_1) = 0$ for all \mathcal{X} -injective R-modules G' and all $i \geq 1$, and so $Ext_R^i(G', K') \cong Ext_R^1(G', J_0 \oplus M_1) = 0$ for all \mathcal{X} -injective R-modules G' and all $i \geq 1$, the injective resolution

$$\mathbb{K}': 0 \to K' \to I^0 \to I^1 \to \cdots$$

of K' remains exact after applying $Hom_R(G', -)$ for any \mathcal{X} -injective R-module G'. Assembling the sequences \mathbb{K}' and \mathcal{A} , we get the strongly complete injective resolution of K',

$$\cdots \rightarrow J_2 \oplus I_1 \rightarrow J_1 \oplus I_0 \rightarrow I^0 \rightarrow I^1 \rightarrow \cdots,$$

where $K' \cong J_0 \oplus K$ is Gorenstein \mathcal{X} -injective, as desired.

Acknowledgement

The first author was partially supported by UGC Project grant No. 41-773/2012(SR). The second author was supported by UGC Non SAP BSR grant No. 11-105/2008(BSR).

References

- [1] I. Bican, R. El. Bashir and E. E. Enochs, All modules have flat covers, Bull. London Math. Soc. 33 (2001), 385-390.
- [2] E. E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), 189-209.
- [3] E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995), 611-633.
- [4] E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, de Gruyter Exp. Math., Vol. 30, Walter de Gruyter, Berlin-New York, 2000.
- [5] R. Göbel and J. Trlifaj, Approximations and Endomorphisms Algebras of Modules, de Gruyter, Berlin, 2000.
- [6] H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), 167-193.
- [7] L. Mao and N. Q. Ding, \mathcal{L} -injective hulls of modules, Bull. Aus. Math. Soc. 74 (2006), 37-44.
- [8] J. Xu, Flat covers of modules, Lecture Notes in Mathematics, Vol. 1634, Springer-Verlag, Germany, 1996.