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Abstract 

We give a characterization of Gorenstein toric Fano varieties of 
dimension n with index n among toric varieties. As an application, we 
give a stronger version of Fujita’s freeness conjecture and also give a 
simple proof of Fujita’s very ampleness conjecture on Gorenstein toric 
varieties. 

0. Introduction 

A nonsingular projective variety X is called Fano if its anti-canonical 
divisor XK−  is ample. For a Fano variety X, the number { ;max: N∈= iiX  

iDK X =−  for ample divisor }D  is called the Fano index, or simply index. 

Kobayashi and Ochiai [6] showed that a Fano variety X of dimension n with 
index 1+n  is the projective n-space and that a Fano variety with index n is 
the hyperquadric. 
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First, we give a characterization of the projective space among toric 
varieties. 

Theorem 1. Let X be a projective toric variety of dimension         
( ).2≥nn  We assume that there exists an ample line bundle L on X with 

( ) ,0,dim =ω⊗Γ ⊗
X

nLX  where Xω  is the dualizing sheaf of X. Then X is 

the projective space of dimension n. 

This is not a new result. If we consider the lattice polytope corresponding 
to a polarized toric variety ( ),, LX  then this is a characterization of the basic 

lattice simplex treated by Batyrev and Nill [2, Proposition 1.4]. In this article, 
we use the normality of some multiple of lattice polytope in order to 
characterize Gorenstein toric Fano varieties. In particular, we use this 
characterization in the form stated as Lemma 3 in Section 1. Theorem 1 is 
obtained as Corollary 1 in Section 1. 

We also give a characterization of a Gorenstein toric Fano variety of 
dimension n with index n among toric varieties. 

Theorem 2. Let X be a projective toric variety of dimension      
( ).2≥nn  We assume that there exists an ample line bundle L on X with 

( ) .1,dim =ω⊗Γ ⊗
X

nLX  Then X is a Gorenstein toric Fano variety of 

dimension n with index n. 

Batyrev and Nill obtained a classification of lattice polytope P of 
dimension n such that the multiple ( )Pn 1−  does not contain lattice points in 

its interior [2, Theorem 2.5]. This can be interpreted as a classification of 

polarized toric variety ( )LX ,  with ( ( ) ) .0, 1 =ω⊗Γ −⊗
X

nLX  We do not 

use their classification but do an elementary argument about the shape of 
polytopes. 

In this paper, we call a variety of dimension n, simply an n-fold. We see 
that a Gorenstein toric Fano surface with index 2 is the quadratic surface 

11 PP ×  or the weighted projective plane ( ).2,1,1P  For higher dimension 

,3≥n  we see that the weighted projective n-space ( )2...,,2,1,1P  is a 
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Gorenstein toric Fano n-fold with index n. We also have other toric Fano     
n-folds with index n. 

Theorem 3. Let X be a Gorenstein toric Fano variety of dimension 
( )2≥nn  with index n. Let D be an ample Cartier divisor on X with 

.nDK X =−  Then D is very ample and ( )DX ,  is a quadratic hypersurface 

in 1+nP  which is a cone over a plane conic, i.e., the weighted projective 

space ( ),2...,,2,1,1P  or a cone over the quadratic surface .311 PPP ×  

We may expect the same characterization of a Gorenstein toric Fano      
n-fold with index 1−n  among toric varieties for .3≥n  We give a special 
case as Proposition 4 in Section 5. 

Theorem 4. Let X be a projective toric variety of dimension     
( ).3≥nn  We assume that there exists an ample line bundle L on X          

with ( ) 1,dim +=Γ nLX  and ( ( ) ) .1,dim 1 =ω⊗Γ −⊗
X

nLX  Then X is a 

Gorenstein toric Fano variety of dimension n with index .1−n  

Batyrev and Juny [1] classified Gorenstein toric Fano n-folds with index 
.1−n  For the proof of Theorem 4, we do not use the classification of 

Batyrev and Juny. We also remark that there exists a non-Gorenstein toric   
n-fold X with the ample line bundle L such that ( ) 1,dim +=Γ nLX  and 

( ( ) ) 1,dim 2 =ω⊗Γ −⊗
X

nLX  for every .4≥n  We give examples in the 

last of this article. 

As a corollary of above theorems, we obtain a strong version of Fujino’s 
Theorem [3] for Gorenstein toric varieties. This is given in Section 4. The 
theorem of this type is called “Fujita’s freeness conjecture” [4], in general. 

Theorem 5. Let X be a Gorenstein projective toric variety of dimension 

( ).2−nn  We assume that X is not the projective space, a 1−nP -bundle over 
1P  nor a Gorenstein toric Fano n-fold with index n. If an ample line bundle 

L on X satisfies that the intersection number with every irreducible invariant 
curve is at least ,1−n  then the adjoint bundle XKL +  is nef. 
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We also give a simple proof of the following theorem, which is a special 
case of theorem of Payne [10] for Gorenstein toric varieties. This is given       
in Section 5. The theorem of this type is also called “Fujita’s very ampleness 
conjecture”, in general. 

Theorem 6. Let X be a Gorenstein projective toric variety of dimension 
n not isomorphic to the projective space. If an ample line bundle L on X 
satisfies that the intersection number with every irreducible invariant curve 
is at least ,1+n  then the adjoint bundle XKL +  is very ample. 

We note that the condition on the intersection number “at least 1+n ” is 
trivially best possible for Gorenstein toric Fano n-folds with index n. We 
remark, however, that even if we make an exception on X as in Theorem 5, 
we cannot weaken the condition “at least ”.1+n  We give examples in 

Section 5 for all dimensions .3≥n  

1. Toric Varieties and Lattice Polytopes 

In this section, we recall the correspondence between polarized toric 
varieties and lattice polytopes and give criterions for polytopes to be basic. 

Let nM Z=  be a free abelian group of rank n and RZR ⊗= MM :  
nR�≅  the extension of coefficients into real numbers. We define a lattice 

polytope P in RM  as the convex hull { }rmmP ...,,Conv: 1=  of a finite 

subset { }rmm ...,,1  of M. We define the dimension of a lattice polytope P       

as that of the smallest affine subspace containing P. A polytope of dimension 
n is often called an n-polytope. 

The space ( )LX ,Γ  of global sections of an ample line bundle L on a 

toric variety X of dimension n is parametrized by the set of lattice points in a 
lattice polytope P of dimension n (see, for instance, Oda’s book [9, Section 

2.2] or Fulton’s book [5, Section 3.5]). And k times tensor product kL⊗  
corresponds to the polytope { }.;: PxMkxkP ∈∈= R  Furthermore, the 

surjectivity of the multiplication map 
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( ) ( ) ( ( ) )1,,, +⊗⊗ Γ→Γ⊗Γ kk LXLXLX  

is equivalent to the equality 

 ( ) ( )( ) .1 MPkMPMkP ∩∩∩ +=+  (1) 

In particular, the dimension of the space of global sections of XL ω⊗  is 

equal to the number of lattice points contained in the interior of P, i.e., 

( ) ( ){ }.Int,dim MPLX X ∩�=ω⊗Γ  

A lattice polytope P is called normal if the equality (1) holds for all .1≥k  

By using the generalized Castelnuovo’s Lemma of Mumford [7], we         
can prove the following lemma. We can also prove this in terms of lattice 
polytopes. 

Lemma 1. Let P be a lattice polytope of dimension n. If there exists      
an integer r with 11 −≤≤ nr  satisfying the condition that the multiple rP 
does not contain lattice points in its interior, then the equality 

( ) ( )( ) MPkMPMkP ∩∩∩ 1+=+  

holds for all integers .rnk −≥  

Even if P contains lattice points in its interior, then we have a result of 
Nakagawa [8]. 

Theorem 7 (Nakagawa [8]). If a lattice polytope P is dimension n, then 
the equality 

( ) ( )( ) MPkMPMkP ∩∩∩ 1+=+  

holds for all integers .1−≥ nk  

Let { }nee ...,,1  be a Z -basis of M. A lattice polytope is called basic if it 

is isomorphic to the n-simplex 

{ }n
n ee ...,,,0Conv: 10 =∆  

by a unimodular transformation of M. For a basic n-simplex P, we see       
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that ( ) ∅=MnP ∩Int  and ( )( ) .11Int =+ MPn ∩�  A lattice polytope P of 

dimension n is called an empty lattice n-simplex if the set of lattice points in 
P are only 1+n  vertices. 

Lemma 2. Let P be an empty lattice n-simplex. If the multiple ( )Pn 1−  

does not contain lattice points in its interior, then it is basic. 

Proof. From Lemma 1, we see that P is normal, that is, the equality (1) 
holds for all .1≥k  

By taking a parallel transformation of M so that the origin is a vertex of 
P, set { }....,,,0Conv 1 nmmP =  Set the cone 

( ) .: 010 RRR MmmPC n ⊂++= ≥≥ "  

Then the normality of P implies that the semi-group ( ) MPC ∩  is generated 

by ....,,1 nmm  This proves the lemma. 
 

Lemma 3. Let P be a lattice n-polytope. If the multiple nP does not 
contain lattice points in its interior, then it is basic. 

Proof. By a parallel transformation of M, we may assume that the origin 
coincides with a vertex of P. 

First, we treat the case that P is a lattice n-simplex { }....,,,0Conv 1 nmm  

If P is an empty lattice simplex, then it is basic by Lemma 2. We assume   
that a face { }rmmF ...,,,0Conv 1=  has a lattice point m in its relative 

interior. Then nr mmm +++ + "1  is contained in the interior of nP. This 

contradicts to the assumption. If a face { }rmmF ...,,Conv 1=′  contains a 

lattice point m in its interior, then nr mmm +++ + "1  is contained in the 

interior of nP. Thus, we see that P is an empty lattice simplex if it is a lattice 
simplex. 

Next, we treat the general case. Let ( ) ( )PPC 00 : ≥= R  be the cone of P 

with apex 0. If a lattice point in P is contained in the interior of the cone 
( ),0 PC  then it is contained in the interior of 2P. 
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When ,2=n  we see P is a triangle, hence, it is basic by the first part of 
the proof. 

In general, set .3≥n  Let { }tmm ...,,1  be the set of the end points of all 

edges of P through the origin. We may assume that { }nmm ...,,1  is linearly 

independent. Set { }....,,,0Conv: 1 nmmQ =  Then Q is basic by the first part 

because nQ =dim  and ( ) .Int ∅=MnQ ∩  

If ,nt >  that is, ,QP ≠  then we have a facet, say 

{ }11 ...,,,0Conv −= nmmF  

of Q which is not a facet of P. Since ( ) MFn ∩Int  contains a lattice point,  

it would be a lattice point in the interior of nP. This contradicts to the 
assumption. Hence, we see that ,nt =  that is, P is a lattice n-simplex. By the 

first part of this proof, it is basic. 
 

We may consider Lemma 3 as a characterization of the projective           
n-space among toric varieties. 

Corollary 1. Let X be a projective toric variety of dimension ( ).2≥nn  

We assume that there exists an ample line bundle L on X with ( ,dim XΓ  

) .0=ω⊗⊗
X

nL  Then X is the projective space nP  and ( ).1O=L  

2. Gorenstein Fano with Index n 

In this section, we will give a characterization of a Gorenstein toric Fano 
n-fold with index n among toric varieties. 

Let M be a free abelian group of rank 2≥n  and RMP ⊂  a lattice       

n-polytope. For a vertex v of P, make the cone 

( ) ( ) ( ){ }.and0;: 0 PxrMvxrvPPCv ∈≥∈−=−= ≥ RR  

We call P Gorenstein at v if there exists a lattice point 0m  in ( )PCv  such 

that the equality 
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( )( ) ( ) MPCmMPC vv ∩∩ += 0Int  

holds. We call P Gorenstein if it is Gorenstein at all vertices. 

We also define the notion of very ampleness. P is called very ample at v 
if the semi-group ( ) MPCv ∩  is generated by ( ) MvP ∩−  and P is called 

very ample if it is very ample at all vertices. 

Let { }nee ...,,1  be a Z -basis of M. Set 

{ },...,,,20,Conv: 21 nn eeeP =  

{ }....,,,,,0,Conv: 32121 nn eeeeeeQ +=  

Then they are very ample Gorenstein polytopes and ( ){ } =MnPn ∩Int�  

( ){ } .1Int =MnQn ∩�  The polytope nP  corresponds to the polarized variety 

( ) ( )( ).2,2...,,2,1,1 OP  The polygon 2Q  corresponds to ( ( )),1,1,11 OPP ×  

and nQ  corresponds to a cone over the quadratic surface .311 PPP ×  

Proposition 1. Let RMP ⊂  be a lattice n-polytope for 2≥n  satisfying 

the condition ( ){ } .1Int =MnP ∩�  Then P is isomorphic to nP  or nQ  by a 

unimodular transformation of M. 

For the proof, we fix notations. Take a vertex .Pv ∈  We may set so   
that the origin coincides with v by a parallel transformation of M. Let 
{ }tmm ...,,1  be the set of the end points of all edges through the origin and 

define as 

 { }....,,0,Conv: 1 tmmQ =  (2) 

Set { } ( ) .Int~ MnPm ∩=  We note that ( )Pn 1−  does not contain lattice 

points in its interior because if Mm ∈′  is in the interior of ( ) ,1 Pn −  then 

{ }timm i ...,,1; =+′  is in the interior of nP. Hence, ( ) .1Int ∅=− MQn ∩  

First, consider the case when .2=n  Then .2== nt  Since MP ∩Int  

,∅=  we may set ,11 aem =  22 bem =  with positive integers .ba ≥          
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When P is a triangle, we see that 2== ba  or ,1=b  and the condition 

( ){ } 12Int =MP ∩�  implies ,2=a  .1=b  Thus, .2PP ≅  

If P is not a triangle, then 1=b  and P is a quadrangle with the other 
vertex 21 ece +  for .1≥c  Since 2P contains only one lattice point in its 

interior, we see .1== ca  This P coincides with .2Q  

In the following, we set .3≥n  

Lemma 4. Let Q be the n-polytope defined in (2). Assume that 
( ) { }.~Int mMnQ =∩  Then Q is isomorphic to nP  or .nQ  

Proof. Since m~  is contained in the interior of ( ) ( ),QCPC vv =  by the 

Carathéodory’s theorem, we may choose n elements from tmm ...,,1  such 

that the simplicial cone spanned by them contains m~  and furthermore we  
can choose rmm ...,,1  so that the subcone spanned by them contains m~  in its 

relative interior by renumbering. 

Set { }rmmG ...,,Conv: 1=  and { }.,0Conv:~ GG =  Then .~dim rG =  

Since ( ) ∅=− MGn ∩~1Int  and ( ) ,~1Int ∅≠+ MGn ∩  we have <− 1n  

,1+r  hence, .1−≥ nr  We separate our argument into two cases:  

Case (a): .1−= nr  Since ( ) ,~1Int ∅=− MGn ∩  we see that G~  is 

basic from Lemma 3. Let H be the hyperplane in RM  containing .~G  We can 

divide Q into the union of two n-polytopes ( )1Q  and ( )2Q  separated by H. 

Since Gnm ~~ ∈  and ( ){ } ,1Int =MnQ ∩�  we see that ( ( ) ) ∅=MnQ i ∩Int  

for .2,1=i  Thus, ( )iQ  is basic. We may set jj em =  for nj ...,,1=  so 

that ( ) { },,~Conv1 neGQ =  ( ) { }12 ,~Conv += nmGQ  and .1+= nt  Furthermore, 

we set 

.11111 nnnn eeaeam −++= −−+ "  

Since Q is convex, we see that 0≥ia  and ∑ ≤≤ i ia .21  If 12 −== naa "  
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,0=  then 11 em =  would not be a vertex of Q. Hence, we have ,121 == aa  

.013 === −naa "  If we set 1+−=′ nii mee  for 1...,,1 −= ni  and =′ne  

,0 1+− nm  then 211 eeme nn ′+′=− +  and { }nee ′′ ...,,1  is a Z -basis of M. 

Thus, we see that Q is isomorphic to .nQ  

Case (b): .nr =  If ,nt >  then there is a facet, say =:F  

{ }11 ...,,,0Conv −nmm  of G~  which is not facet of Q, that is, the relative 

interior of F is contained in the interior of Q. Since ( ) ,Int ∅≠MnF ∩  the 

interior of nQ would contain lattice points more than one. Thus, we have 
.nt =  

Take the primitive elements Mmi ∈′  for ni ...,,1=  so that iii mam ′=  

with positive integers .ia  Set { }....,,,0Conv: 1 nmmQ ′′=′  We may set ≥1a  

.12 ≥≥≥ naa "  For ,12 −≤≤ nr  set 

{ }....,,,0Conv: 1 rr mmF =  

If 2F  contains lattice points in its relative interior, then the interior of 

( )Qn 1−  would contain lattice points. Thus, ,221 == aa  or .12 =a  If 

,221 == aa  then 22F  contains lattice points more than two in its relative 

interior, hence, the interior of nQ would contain lattice points more than two. 
Thus, we have .12 =a  

When ,21 ≥a  set 

{ }....,,,Conv: 21 nmmmG ′=  

Since the relative interior of G is contained in the interior of Q and 
,1dim −= nG  the interior of ( )Gn 1−  does not contain lattice points, 

hence, G is basic from Lemma 3. Since the number of lattice points in the 
interior of nG is one, we see .21 =a  Set 

{ }....,,,,0Conv:~
21 nmmmG ′=  
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Since Gn ~
 could not contain lattice points in its interior, it is basic. Thus, Q is 

isomorphic to .nP  

When ,11 =a  we see that Q is not basic because of the assumption 

( ) .Int ∅≠MnQ ∩  If Q is an empty lattice simplex, then the condition 

( ) ∅=− MQn ∩1Int  implies that Q is basic by Lemma 2. Thus, there 

exists a lattice point v in Q other than its vertices. After renumbering, assume 
that rF  contains v with the smallest dimension. We note rF  does not contain 

lattice points in its interior. Set 

{ }....,,Conv: 1 rr mmF =′  

Since v is contained in the relative interior of ,rF ′  it is contained in the 

relative interior of ,2 rF  hence, it is contained in that of ( ) .2 Qrn −+  Thus, 

we have .2=r  In this case, we see that Q is isomorphic to .nP  
 

Proof of Proposition 1. We separate our argument into two cases 
according to the existence of interior lattice points of nQ: 

Case I: ( ) .Int ∅=MnQ ∩  Then Q is basic by Lemma 3 and .QP ≠  Let 

v′  be a vertex of P not contained in Q. If v′  is contained in the interior of  
the cone ( ),PCv  then it would be contained in the interior of 2P. Thus, v′  is 

contained in the relative interior of a face cone 

rmm 010 ≥≥ ++ RR "  

with 12 −≤≤ nr  by renumbering, if necessary. Let PG ⊂  be the face 
containing rmm ...,,1  and .v′  Then v′  is contained in the relative interior    

of 2G and nr mmv +++′ + "1  is also contained in the interior of 

( ) ,2 Prn +−  hence, 2≤r  and .2=r  Since ( )( ) ,1Int ∅=− MPn ∩  the 

face G does not contain lattice points in its relative interior. Since 
{ }nmm ...,,1  is a Z -basis of M, we can write as 

21 mamv +=′  
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with a positive integer a. If ,2≥a  then the number of lattice points in the 
interior of nP would be more than one. Thus, 1=a  and P is isomorphic       
to .nQ  

Case II: ( ) .Int ∅≠MnQ ∩  Since ( ){ } ,1Int =MnP ∩�  we have ( )nQInt  

{ }.~mM =∩  If ,QP ≠  then there exists a facet F of Q which is not a facet 

of P. Since ( ) ,Int ∅≠MnF ∩  they would be contained in the interior of nP 

and do not coincide with ,~m  which contradicts to the assumption. Thus, we 

have .QP =  This case has been proved in Lemma 4. 
 

We note that Proposition 1 is an interpretation of Theorems 2 and 3 in 
terms of lattice polytopes. 

3. A Certain Class of Gorenstein n-polytopes 

In this section, for ,3≥n  we determine an n-polytope P such that 

( )Pn 1−  does not contain lattice points in its interior. This polytope will 

play an important role in the next section. 

We recall that a basic n-simplex is isomorphic to 

{ }....,,,0Conv 10 n
n ee=∆  

Now, for positive integers ,21 naaa ≤≤≤ "  set 

{ }.,...,,,Conv: 1111
1

0 nnnnnn
n

n eaeaeeaeR −−
− ++∆=  

Then nR  is a nonsingular n-polytope and ( )( ) .1Int ∅=− MRn n ∩  We also 

know ( )( ) ( )( ) .1Int1Int ∅=−=− MQnMPn nn ∩∩  

Proposition 2. Let RMP ⊂  be a Gorenstein n-polytope for 3≥n  

satisfying the conditions ( )( ) ∅=− MPn ∩1Int  and ( )( ) .Int ∅≠MnP ∩  

Then P is isomorphic to ,nP  nQ  or nR  by a unimodular transformation        

of M. 
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As in the proof of Proposition 1, we take a vertex v of P so that v 
coincides with the origin 0 of M. Since P is Gorenstein, the cone ( ) =PCv  

( )vP −≥0R  contains the lattice point 0m  in its interior such that 

 ( )( ) ( ) .Int 0 MPCmMPC vv ∩∩ +=  (3) 

Let { }tρρ ...,,1  be the set of all rays of the cone ( ).PCv  For each i, let im   

be the generator of the semigroup ,Mi ∩ρ  that is, .0 ii mM ≥=ρ Z∩  Let 

{ }....,,,0Conv: 1 tmmQ =  

Let { }sFF ...,,1  be the set of all facets containing 0 of Q. For an ,jF    

set H the hyperplane containing .jF  Take a basis { }nee ...,,1  so that 

{ }11 ...,, −nee  are contained in H and that the cone ( )PCv  is contained in the 

part of nonnegative coefficient of .ne  Then, from the equality (3), we see 

that 

{ } ( )( ) { }00 Int,Conv mMPCmrF vj =∩∩  

for any positive integer r. 

From this observation, we have a useful lemma. 

Lemma 5. Let Q be the n-polytope defined above. If 0m  is not contained 

in the interior of 2Q, then { }tmm ...,,Conv 1  is a facet of Q. 

Proof. Let F be a facet of Q such that it does not contain 0 and it meets 
with the half line .00m≥R  We assume that F does not contain all s.’im  For a 

vertex im  of F, let { }rii FF ...,,1  be the set of all facets of Q containing .im  

We may assume that a vertex 1ij Fm ∈  is not contained in F. We can choose 

a vertex kik Fm ∈  so that the relative interior of the segment [ ]kj mm ,  is 

contained in the interior of Q from the convexity. If 0m  is not contained in 

the interior of the convex hull of the union of cones ( ) ( ),...,,1 rii FCFC  then 

the lattice point kj mm +  is contained in the union of { },,2Conv 0mF ji  

which contradicts to our observation. 
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If 0m  is contained in the convex hull of the union of ( ) ( ),...,,1 rii FCFC  

then we can choose another vertex im ′  of F instead of im  outside of the 

convex hull of the union such that there is a facet 1iF ′  containing im ′  with a 

vertex jm ′  not contained in F. By the same reason, this does not occur. Thus, 

Q has a facet containing all m’s. 
 

Corollary 2. Let Q be the n-polytope defined in Lemma 5. Assume that 
( ) ∅≠MrQ ∩Int  for some .2 nr ≤≤  Then 0m  is contained in the interior 

of rQ. 

Proof. First, we assume that Q′  has a facet F containing all ....,,1 tmm  

Let �
QM∈ν  be the rational point in the dual space to QM  such that the 

hyperplane { }1,;:1 =ν∈= xMxH R  contains F. We note that the parallel 

hyperplane { }0,0 =ν= xH  touches the cone ( )QCv  at one point 0, in 

particular, we have 0, ≥ν x  for all ( ).QCx v∈  

Set ( ) .Int~ MrQm ∩∈  Then .~, rm <ν  If 0m  is not contained in the 

interior of rQ, then ., 0 rm ≥ν  Since ( )QCv  is Gorenstein at 0, there exists 

( ) MnQm ∩∈′  such that mmm ′+= 0
~  by the equality (3). But .0, <′ν m  

This is a contradiction. Thus, we have ( ).Int0 rQm ∈  

If 0m  is not contained in the interior of 2Q, then Q has a facet F 

containing all s.’im  This proves Corollary 2. 
 

Remark 1. When ,2=n  the statement for 1=r  in Corollary 2 also 
trivially holds because Q is a triangle. 

We also define a Gorenstein Fano n-polytope nQ′  isomorphic to nQ  as 

{ }.,...,,,0Conv: 211 nnn eeeeeQ −+=′  

Lemma 6. Let Q be the n-polytope defined above. Assume that 
( ) ∅=− MQn ∩1Int  and that ( ) .Int ∅≠MnQ ∩  Then Q is isomorphic to 

nP  or .nQ′  
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Proof. Since 0m  is contained in the interior of ( ),PCv  as in the proof of 

Lemma 4, we can choose rmm ...,,1  so that the simplicial cone spanned by 

them contains 0m  in its relative interior by renumbering. 

Set { }rmmG ...,,Conv: 1=  and { }....,,0Conv:~ GG =  Then we have 

1−= nr  or .nr =  We separate our argument into two cases: 

Case (a): .1−= nr  Since ( ) ,~1Int ∅=− MGn ∩  we see that G~  is basic 

from Lemma 3. We note that ( ) ( ).Int~Int110 nQGnmmm n ⊂∈++= −"  As 

in the proof of Lemma 4, take the hyperplane H in RM  containing ,~G  and 

divide Q into the union of two n-polytopes ( )1Q  and ( )2Q  separated by H. 

If ( ( ) ) ∅=MnQ i ∩Int  for ,2,1=i  then nn QQQ ≅′=  as in the proof 

of Lemma 4. 

Assume that ( ( ) ) .Int 1 ∅≠MnQ ∩  Set ( ( ) ) .Int~
1 MnQm ∩∈  Since Q is 

Gorenstein at 0 and 0m  is contained in the boundary of ( ) ,~1 Gn −  hence,     

in that of ( ) ( ),1 1Qn −  there exists ( ( ) ) MHQm ∩\1∈′  with .~
0 mmm ′+=  

Consider the n-polytope { }.~,Conv GmR ′=  We see that m~  is not contained 

in the interior of nR. Since m~  is in the interior of ( ) ,1nQ  the lattice point m′  

must be contained in the interior of ( ).1Q  This is a contradiction. Thus, we 

see that ( )iQ  are basic. 

Case (b): .nr =  From Corollary 2, we have ( ).~Int0 Gnm ∈  We note that 

( ) ∅=− MGn ∩~1Int  by assumption. 

First, consider the case that ,nt =  that is, .~GQ =  We claim that 

( ) { }.~Int 0mMGn =∩  If Mm ∈~  is a lattice point in the interior of Gn ~
 other 

than ,0m  then there would exist a lattice point Gm ~
∈′  with mmm ′+= 0

~  

and m′  would be in the interior of .~G  This contradicts to the assumption. We 

confirm the claim. In this case, we know that nPGQ ==
~  from Lemma 4. 
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Next, consider the case .nt >  Then there is a facet, say =− :1nF  

{ }11 ...,,,0Conv −nmm  of G~  which is not a facet of Q and is basic because 

of ( ) .1Int 1 ∅=− − MFn n ∩  We can choose a new Z -basis { }nee ′′ ...,,1  of 

M as ii em ′=  for 1...,,1 −= ni  and nnn eaeam ′++′= "11  with .0≥ia  

We note that 2≥na  because G~  is not basic. Since ( ) ,~1Int ∅=− MGn ∩  

we see that G~  is normal from Lemma 1. Thus, G~  contains a lattice point u 
whose nth coordinate is one. 

Let { }nrr mmmF ,...,,,0Conv:~
11 −=′  be the face containing u with the 

smallest dimension. If u is in the relative interior, then we see 1=r  by the 

assumption. Then nnn eam ′=  and .neu ′=  In this case, G~  is nonsingular at 0 

and ( ) .Int110 MnGemmm nn ∩" ∈′+++= −  The point 11 −++ nmm "  

is contained in the interior of nQ. Equation (3) implies that ,Qen ∈′−  which 

contradicts to 0 is a vertex of Q. 

If u is in the relative interior of the face { }nrr mmmF ,...,,Conv: 11 −=′  

of ,~
rF ′  then 2=r  and ,1 nnn eaem ′+′=  .1 neeu ′+′=  When ,2=na  G~  is 

Gorenstein at 0 and coincides with ,nP  hence, ummm n +++= −120 "  

( ) .~Int MGn ∩∈  Since 11 −++ nmm "  is in ( ),Int nQ  the point ne′−  is 

contained in Q. This contradicts to 1m  is a vertex of Q. 

In the case that ,3≥na  we can decompose G~  into a union of 1−na  

basic n-simplices with vertices ( ){ }nnn ejeejeee ′+′′−+′′′ − 1112 ,1,...,,  for 

.1...,,1 −= naj  If 0m  is in the relative interior of the cone of dimension 

,1−n  say ( ),,...,, 112 nn ejeeeC ′+′′′ −  then it contradicts by the above reason. 

If 0m  is contained in the interior of the cone of one on these n-simplices,    

say ( )( ),,1,...,, 1112 nnn ejeejeeeC ′+′′−+′′′ −  then +′++′= −120 neem "  

( )( ) ( ).1 11 nn ejeeje ′+′+′−+′  In this case, it contradicts to that the cone is 

strictly convex. Thus, the case that nt >  does not occur. 
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Proof of Proposition 2. We separate our argument into two cases 
according to the existence of interior lattice points of nQ: 

Case I: ( ) .Int ∅=MnQ ∩  Then Q is basic and .QP ≠  Let v′  be a 

vertex of P not contained in Q. As in the proof of Proposition 1, we may set 

ii em =  for ni ...,,1=  and we can write as 

21 eaev +=′  

with a positive integer a. We note that .10 neem ++= "  

Set 

{ }neevG ...,,,Conv: 2′=    and   { }.,0Conv:~ GG =  

Then 0m  is contained in the relative interior of ( )Gn 1−  and in the interior 

of .~Gn  In other words, P is included in the prism written as ...,,01 ≥x  

1,0 2 ≤++≥ nn xxx "  by using the coordinates ( )nxx ...,,1  of .RM  

If v′  is the only vertex of P other than ,...,,1 nmm  then 1=a  and P is 

isomorphic to nQ  otherwise the vertex 3m  is not Gorenstein. 

Let jjj eeav += 1  for nj ...,,2=  be vertices of P. We may set 

02 ≥≥≥ naa "  and .13 ≥a  If 11 ≥−na  and ,0=na  then the vertex nm  

is not Gorenstein. Thus, .nRP ≅  

Case II: ( ) .Int ∅≠nQ  Lemma 6 shows that ( )nQm Int0 ∈  and that Q 

coincides with nQ′  (Case (a)) or nP  (Case (b)). We have to consider the case 

that .QP ≠  

In Case (a), we have 

{ }.,...,,,0Conv 211 nnn eeeeeQQ −+=′=  

We note that 1+n  vertices of nQ′  except 0 are on a hyperplane. Set 

{ }.,...,,Conv~
211 nn eeeeeF −+=  Since it is not simplex, ( )Fn ~1Int −  
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.∅≠M∩  If ,QP ≠  then F~  is not a facet of P. This contradicts to 

( ) .1Int ∅=− MPn ∩  Thus, .QP =  

In Case (b), we have 

{ }....,,,2,0Conv 21 nn eeePQ ==  

We note that ( ) .110 nn Pneem −∉++= "  Consider the prism 

( )1,0...,,0 21 ≤++≥≥ nn xxxx "  

by using the coordinates ( )nxx ...,,1  of .RM  The point 0m  is contained in 

the boundary of the ( )1−n -tuple of the prism. We see that if ,QP ≠  then 

nRP ≅  as in Case I. 
 

4. Fujita’s Freeness Conjecture 

In this section, we give a proof of Theorem 5, which is a strong version 
of Fujino’s theorem [3] but restricted to Gorenstein toric varieties. 

We recall the construction of the polarized toric n-fold ( )LX ,  from a 

lattice n-polytope P (see, for instance, [9] or [5]). For simplicity, we assume 
that all toric varieties are defined over the complex number field .C  Let N   
be a free abelian group of rank n and M be the dual with the natural pairing 

.:, Z→× NM  Let ×⊗= CZNTN :  be the algebraic torus of dimension 

n. Then the group of characters ( )×C,Homgr NT  can be identified with M 

and we have [ ].Spec MTN C=  Let RMP ⊂  be a lattice n-polytope. From 

P, we construct a polarized toric n-fold ( )LX ,  satisfying the equality 

 ( ) ( ),, meLX
MPm

C
∩∈
⊕≅Γ  (4) 

where we write as ( )me  the character corresponding to a lattice point 

.Mm ∈  Since X contains NT  as an open subset, we can consider ( )me  as a 

rational function on X. 
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For a vertex v of P, let ( ) RNv ⊂σ  be the cone dual to the cone 

( ) ( ) .0 RR MvPPCv ⊂−= ≥  Let Φ be the set of all faces of cones ( )vσ  for 

all vertices of P. The Φ is a complete fan in N and defines a toric variety       
X of dimension n. We note that X is covered by affine open sets =:vU  

( )[ ].Spec PCM v∩C  Here we define a line bundle L so that 

( ) ( ) ( )[ ]., PCMveLU vv ∩C=Γ  

Then L is generated by global sections and ample. By definition, L satisfies 
(4). 

Furthermore, we assume that X is Gorenstein. For each vertex v, the cone 
( )PCv  contains the lattice point vm  satisfying the equality 

 ( )( ) ( ) .Int MPCmMPC vvv ∩∩ +=  (5) 

Thus, we see that XKL +  is generated by global sections if P contains all 

vm  in its interior. 

Proposition 3. Let X be a projective Gorenstein toric n-fold with    
.2≥n  Let L be an ample line bundle on X satisfying the condition that 

( ) 0, ≠+Γ XKLX  and that the intersection number 1−≥⋅ nCL  for all 

irreducible invariant curves C. Then XKL +  is nef. 

Proof. Let RMP ⊂  be the lattice n-polytope corresponding to L. The 

condition ( ) 0, ≠+Γ XKLX  is interpreted to .Int ∅≠MP ∩  Since P is 

Gorenstein, for each vertex v of P, there exists the lattice point vm  satisfying 

equation (5). From the above observation, it suffices to show that the lattice 
points vm  are contained in the interior of P for all vertices v. 

As in the proof of Proposition 1, we take a vertex v of P so that v 
coincides with the origin 0 of M. Let { }tmm ...,,1  be the set of the nearest 

points on all edges through the vertex 0=v  and { }....,,,0Conv: 1 tmmQ =  
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Then ( )Qn 1−  is contained in P because all edges of P have length at least 

.1−n  If ( ) ,1Int ∅≠− MQn ∩  then we see that ( ) PQnmv Int1Int ⊂−∈  

by Corollary 2. We assume that ( ) .1Int ∅=− MQn ∩  

If ( ) ,Int ∅=MnQ ∩  then Q is basic, hence, nt =  and we may set 

ii em =  with a Z -basis { }nee ...,,1  of M. Then we have .1 nv eem ++= "  

Let m′  be a lattice point in the interior of P different from .vm  Then since 

( ) ( ){ }menen n ′−− ,1...,,1Conv 1  contains ,vm  the polytope P contains vm  

in its interior. 

If ( ) ,Int ∅≠MnQ ∩  then Q is not basic and ( )nQmv Int∈  by 

Corollary 2. From Lemma 6, we see that Q is ,nQ′  that is, ,3≥n  1+= nt  

and ii em =  for ni ...,,1=  and nn eeem −+=+ 211  for a Z -basis 

{ }nee ...,,1  of M. In particular, Q has the facet F containing all s’im  and 

.11 −++= nv eem "  Since ( ) ,1 Fnmv −∈  the condition ∅≠MP ∩Int  

implies that ( ) PQn ≠− 1  and .IntPmv ∈  
 

By combining Propositions 2 and 3 and Lemma 3, we obtain the proof of 
Theorem 5. 

5. Fujita’s Very Ampleness Conjecture 

In this section, we will give a proof of Theorem 6. Let RMP ⊂  be the 

Gorenstein lattice n-polytope corresponding to L. As in the previous section, 
for a vertex v of P denote vm  the lattice point satisfying equation (4). As in 

the proof of Proposition 3, we take a vertex v of P so that v coincides with 
the origin 0 of M. Let { }tmm ...,,1  be the set of the nearest points on all 

edges through the vertex 0=v  and { }....,,,0Conv: 1 tmmQ =  We know that 

vm  is contained in the interior of ( ) .1 Qn +  

If ( ) ∅=− MQr ∩1Int  and ( ) ∅≠MrQ ∩Int  for some r with ≤2  

,nr ≤  then ( )rQmv Int∈  by Corollary 2 and ( )Qrn −+ 1  is normal by 
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Lemma 1 and 

( ) ( ) .Int1Int1 PQnQrnmv ⊂+⊂−++  

When ( ) ,Int ∅≠MQ ∩  we see that vm  is contained in the interior of 2Q 

from Corollary 2 and ( )Qn 1−  is normal from Theorem 7, hence, +vm  

( )Qn 1−  is contained in the interior of ( ) .1 Qn +  This implies that XKL +  

is very ample on the affine open set .vU  

Assume that ( ) .Int ∅=MnQ ∩  Then Q is basic, nt =  and ii em =    

for a Z -basis { }nee ...,,1  of M. In particular, Q is normal and "+= 1emv  

.ne+  Let F be the facet of Q containing all .ie  Then all iv em +  are 

contained in the relative interior of ( ) .1 Fn +  Since ( )QnP 1+≠  by 

assumption, all iv em +  are contained in the interior of P. This implies that 

XKL +  is very ample on this .vU  This completes the proof of Theorem 6. 

We remark that the condition 1+≥⋅ nCL  is best possible for all 
dimensions .2≥n  A Gorenstein toric Fano n-fold with index n corresponding 
to nP  or nQ  trivially attains the bound for all .2≥n  

Besides Gorenstein toric Fano n-fold with index n, we also have a 
Gorenstein toric Fano n-fold with index 1−n  which attains the bound 
“ 1+n ”. 

For ,3≥n  we define a lattice n-simplex as 

{ }....,,,2,,,0Conv: 432121 nn eeeeeeeD ++=  

Then it is not very ample and satisfies ( ) ∅=− MDn n ∩2Int  and 

( )( ) ,11Int =− MDn n ∩�  hence, nD2  is normal. If we denote by 0m  the 

unique interior lattice point of ( ) ,1 nDn −  then we have 

( ) ( ) .1Int20 MDnMDm nn ∩∩ +=+  

Payne has pointed out the case 3=n  in [10]. 
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We can characterize nD  among polarized toric varieties as the following 

way. 

Proposition 4. Let D be an empty lattice n-simplex for .3≥n  Assume 

that ( )( ) .11Int =− MDn ∩�  Then D is isomorphic to .nD  

Proof. We note that D is not basic. 

Consider the case .3=n  An empty lattice 3-simplex D is written as 

{ }32121 ,,,0Conv qepeeeeD ++=  

with qp <≤1  and ( ) 1,gcd =qp  by [9]. Then ( ) .12Int −= qMD ∩�  

Hence, 2=q  and .3DD ≅  

Set .4≥n  We may write as 

{ }nmmD ...,,,0Conv 1=  

for linearly independent ....,,1 Mmm n ∈  

First, we assume that the facet { }11 ...,,,0Conv −= nmmF  is basic, that 

is, ii em =  for .1...,,1 −= ni  Then ( ) .2Int ∅=− MFn ∩  We may write 

as 

nnn eaeam ++= "11  

with 0≥ia  for 1...,,1 −= ni  and .1≥na  Set H the hyperplane containing 

F. Moreover, we assume that all the facets of D are basic. Then the nth 
coordinates of lattice points in ( ) HDn \2−  are at least a. On the other hand, 

since ( )( ) ( )DnMDn 2,11Int −=− ∩�  does not contain lattice points in its 

interior, hence, 2D is normal by Lemma 1. Since ( )Dnn 2,22 −−≤  is also 

normal, hence, there exists a lattice point in it whose nth coordinate is 1. 
Then .1=a  This implies that D is basic and contradicts to the assumption. 
Then we see that at least one facet of D is not basic. 
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Next, if the facet F is not basic, then ( )Fn 2−  contains lattice points     

in its interior, in fact, interior lattice point is unique point in ( ) .1Int Dn −    

By induction on n, we see that the facet F is isomorphic to 1−nD  and 

( ) .11 −++= neeMF ZZZ "∩  Since 2D is normal, we can take ,nn em =  

hence, .nDD ≅  
 

We remark that “ 1−n ” in Proposition 4 is essential. For ,4≥n  we 

define a lattice n-simplex as 

{ }.3,...,,,0Conv: 32111 nn eeeeeeP +++= −  

We note that P is not Gorenstein. Set .2: 11 nn eeem +++=′ −"  Then we 

see that ( ) { }.2Int mMPn ′=− ∩  
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