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Abstract

We give a characterization of Gorenstein toric Fano varieties of
dimension n with index n among toric varieties. As an application, we
give a stronger version of Fujita’s freeness conjecture and also give a
simple proof of Fujita’s very ampleness conjecture on Gorenstein toric
varieties.

0. Introduction

A nonsingular projective variety X is called Fano if its anti-canonical
divisor —Ky is ample. For a Fano variety X, the number iy = max{i € N;
—Kyx =iD for ample divisor D} is called the Fano index, or simply index.
Kobayashi and Ochiai [6] showed that a Fano variety X of dimension n with
index n +1 is the projective n-space and that a Fano variety with index n is
the hyperquadric.
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First, we give a characterization of the projective space among toric

varieties.

Theorem 1. Let X be a projective toric variety of dimension

n(n>2). We assume that there exists an ample line bundle L on X with

dimT(X, I®" ® 0y ) = 0, where oy is the dualizing sheaf of X. Then X is

the projective space of dimension n.

This is not a new result. If we consider the lattice polytope corresponding

to a polarized toric variety (X, L), then this is a characterization of the basic

lattice simplex treated by Batyrev and Nill [2, Proposition 1.4]. In this article,
we use the normality of some multiple of lattice polytope in order to
characterize Gorenstein toric Fano varieties. In particular, we use this
characterization in the form stated as Lemma 3 in Section 1. Theorem 1 is
obtained as Corollary 1 in Section 1.

We also give a characterization of a Gorenstein toric Fano variety of
dimension » with index n among toric varieties.

Theorem 2. Let X be a projective toric variety of dimension
n(n>2). We assume that there exists an ample line bundle L on X with
dimT(x, %" ® oy)=1. Then X is a Gorenstein toric Fano variety of
dimension n with index n.

Batyrev and Nill obtained a classification of lattice polytope P of
dimension 7 such that the multiple (n —1) P does not contain lattice points in
its interior [2, Theorem 2.5]. This can be interpreted as a classification of
polarized toric variety (X, L) with T'(X, 120D @ g y)=0. We do not
use their classification but do an elementary argument about the shape of
polytopes.

In this paper, we call a variety of dimension n, simply an n-fold. We see
that a Gorenstein toric Fano surface with index 2 is the quadratic surface
P! x P! or the weighted projective plane P(1, 1, 2). For higher dimension
n >3, we see that the weighted projective n-space P(1, 1, 2, ..., 2) is a



A Characterization of Gorenstein Toric Fano n-folds with Indexn ... 67

Gorenstein toric Fano n-fold with index n. We also have other toric Fano
n-folds with index .

Theorem 3. Let X be a Gorenstein toric Fano variety of dimension
n (n>2) with index n. Let D be an ample Cartier divisor on X with

—K y = nD. Then D is very ample and (X, D) is a quadratic hypersurface

in P"' uhich is a cone over a plane conic, i.e., the weighted projective

space P(1, 1, 2, ..., 2), or a cone over the quadratic surface P! x P! & P3.

We may expect the same characterization of a Gorenstein toric Fano
n-fold with index »n —1 among toric varieties for n > 3. We give a special

case as Proposition 4 in Section 5.

Theorem 4. Let X be a projective toric variety of dimension
n(n>3). We assume that there exists an ample line bundle L on X
with dimT(X, L) =n+1 and dimT(X, [2" ) ® 0y ) =1. Then X is a
Gorenstein toric Fano variety of dimension n with index n — 1.

Batyrev and Juny [1] classified Gorenstein toric Fano n-folds with index
n —1. For the proof of Theorem 4, we do not use the classification of

Batyrev and Juny. We also remark that there exists a non-Gorenstein toric
n-fold X with the ample line bundle L such that dimT'(X, L)=n+1 and

dim(X, 202 g oy)=1 for every n>4. We give examples in the
last of this article.

As a corollary of above theorems, we obtain a strong version of Fujino’s
Theorem [3] for Gorenstein toric varieties. This is given in Section 4. The
theorem of this type is called “Fujita’s freeness conjecture” [4], in general.

Theorem 5. Let X be a Gorenstein projective toric variety of dimension

n (n—2). We assume that X is not the projective space, a P" "' -bundle over

P! nor a Gorenstein toric Fano n-fold with index n. If an ample line bundle
L on X satisfies that the intersection number with every irreducible invariant

curve is at least n — 1, then the adjoint bundle L + K y is nef.
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We also give a simple proof of the following theorem, which is a special
case of theorem of Payne [10] for Gorenstein toric varieties. This is given
in Section 5. The theorem of this type is also called “Fujita’s very ampleness

conjecture”, in general.

Theorem 6. Let X be a Gorenstein projective toric variety of dimension
n not isomorphic to the projective space. If an ample line bundle L on X
satisfies that the intersection number with every irreducible invariant curve

is at least n + 1, then the adjoint bundle L + K y is very ample.

We note that the condition on the intersection number “at least n +1” is
trivially best possible for Gorenstein toric Fano n-folds with index n. We
remark, however, that even if we make an exception on X as in Theorem 5,

we cannot weaken the condition “at least n+1”. We give examples in

Section 5 for all dimensions n > 3.
1. Toric Varieties and Lattice Polytopes

In this section, we recall the correspondence between polarized toric

varieties and lattice polytopes and give criterions for polytopes to be basic.

Let M =Z" be a free abelian group of rank n and M, =M ®, R

=R" the extension of coefficients into real numbers. We define a lattice
polytope P in My as the convex hull P := Conv{my, ..., m,} of a finite
subset {my, ..., m,} of M. We define the dimension of a lattice polytope P

as that of the smallest affine subspace containing P. A polytope of dimension

n is often called an n-polytope.

The space T'(X, L) of global sections of an ample line bundle L on a

toric variety X of dimension » is parametrized by the set of lattice points in a
lattice polytope P of dimension #n (see, for instance, Oda’s book [9, Section
2.2] or Fulton’s book [5, Section 3.5]). And k times tensor product 12k
corresponds to the polytope kP = {kx € Mp; x € P}. Furthermore, the

surjectivity of the multiplication map
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rx, (¥ er(x, L) > r(x, 2k+)
is equivalent to the equality
kPYNM +PNM =((k+1)P)N M. @)
In particular, the dimension of the space of global sections of L ® oy is
equal to the number of lattice points contained in the interior of P, i.e.,
dim[(X, L® wy) =t{(Int P) M}.
A lattice polytope P is called normal if the equality (1) holds for all £ > 1.

By using the generalized Castelnuovo’s Lemma of Mumford [7], we
can prove the following lemma. We can also prove this in terms of lattice
polytopes.

Lemma 1. Let P be a lattice polytope of dimension n. If there exists
an integer r with 1 <r < n —1 satisfying the condition that the multiple rP

does not contain lattice points in its interior, then the equality
kP)NM +PNM=((k+1)P)NM
holds for all integers k > n —r.

Even if P contains lattice points in its interior, then we have a result of
Nakagawa [8].

Theorem 7 (Nakagawa [8]). If a lattice polytope P is dimension n, then
the equality

kP)NM +PNM=((k+1)P)NM
holds for all integers k > n —1.

Let {e, ..., e,} be a Z -basis of M. A lattice polytope is called basic if it

is isomorphic to the n-simplex
Aj = Conv{0, ey, ..., ¢, }

by a unimodular transformation of M. For a basic n-simplex P, we see
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that Int(nP)(\ M = & and #Int((n +1)P) 1 M = 1. A lattice polytope P of
dimension 7 is called an empty lattice n-simplex if the set of lattice points in
P are only n +1 vertices.

Lemma 2. Let P be an empty lattice n-simplex. If the multiple (n —1) P

does not contain lattice points in its interior, then it is basic.

Proof. From Lemma 1, we see that P is normal, that is, the equality (1)
holds for all k£ = 1.

By taking a parallel transformation of M so that the origin is a vertex of
P, set P = Conv{0, my, ..., m, }. Set the cone

C(P) = Rzoml + e+ Rzomn C M]R'

Then the normality of P implies that the semi-group C(P)(\ M is generated

by my, ..., m,. This proves the lemma. g

Lemma 3. Let P be a lattice n-polytope. If the multiple nP does not

contain lattice points in its interior, then it is basic.

Proof. By a parallel transformation of M, we may assume that the origin
coincides with a vertex of P.
First, we treat the case that P is a lattice n-simplex Conv{0, my, ..., m,,}.

If P is an empty lattice simplex, then it is basic by Lemma 2. We assume

that a face F = Conv{0, my, ..., m,.} has a lattice point m in its relative
interior. Then m + m,. .y +--- + m,, is contained in the interior of nP. This
contradicts to the assumption. If a face F' = Conv{my, ..., m,} contains a
lattice point m in its interior, then m + m,; + --- + m,, is contained in the
interior of nP. Thus, we see that P is an empty lattice simplex if it is a lattice
simplex.

Next, we treat the general case. Let Cy(P) := R5((P) be the cone of P

with apex 0. If a lattice point in P is contained in the interior of the cone
Co(P), then it is contained in the interior of 2P.
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When n = 2, we see P is a triangle, hence, it is basic by the first part of
the proof.

In general, set n > 3. Let {my, ..., m,} be the set of the end points of all
edges of P through the origin. We may assume that {my, ..., m,} is linearly
independent. Set Q := Conv{0, my, ..., m,}. Then Q is basic by the first part
because dimQ = n and Int(nQ) N M = Q.

If t > n, thatis, P # O, then we have a facet, say
F = Conv{0, my, ..., m,_1}

of Q which is not a facet of P. Since Int(n)F () M contains a lattice point,

it would be a lattice point in the interior of nP. This contradicts to the

assumption. Hence, we see that ¢ = n, that is, P is a lattice n-simplex. By the

first part of this proof, it is basic. U

We may consider Lemma 3 as a characterization of the projective

n-space among toric varieties.

Corollary 1. Let X be a projective toric variety of dimension n (n > 2).

We assume that there exists an ample line bundle L on X with dimI['(X,

" ® oy ) = 0. Then X is the projective space P" and L = O(1).
2. Gorenstein Fano with Index n

In this section, we will give a characterization of a Gorenstein toric Fano

n-fold with index n among toric varieties.

Let M be a free abelian group of rank n > 2 and P c Mp a lattice

n-polytope. For a vertex v of P, make the cone
C,(P)=Rso(P-v)={r(x—v) e Mp; r >0 and x € P}.

We call P Gorenstein at v if there exists a lattice point m( in C,(P) such

that the equality
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(IntC,,(P))NM =mg + C,(P)N M
holds. We call P Gorenstein if it is Gorenstein at all vertices.

We also define the notion of very ampleness. P is called very ample at v
if the semi-group C,(P)(\ M is generated by (P —v)(1 M and P is called

very ample if it is very ample at all vertices.
Let {ej, ..., e,} be a Z -basis of M. Set
P, = Conv{0, 2¢, ey, ..., €, },
0, = Conv{0, ¢, e5, ] + €, €3, ..., €, }.
Then they are very ample Gorenstein polytopes and f{Int(nP,)\ M} =
H{Int(nQ, ) M} = 1. The polytope P, corresponds to the polarized variety
(P(1, 1, 2, ..., 2), O(2)). The polygon Q, corresponds to (' <P, 01, 1)),

and Q,, corresponds to a cone over the quadratic surface P! x P! & P3.

Proposition 1. Let P ¢ My be a lattice n-polytope for n > 2 satisfying
the condition #{Int(nP)(\ M} = 1. Then P is isomorphic to P, or O, by a

unimodular transformation of M.

For the proof, we fix notations. Take a vertex v € P. We may set so
that the origin coincides with v by a parallel transformation of M. Let
{my, ..., m;} be the set of the end points of all edges through the origin and

define as
O = Conv{0, my, ..., m,}. (2)
Set {m} = Int(nP)(N M. We note that (n—1)P does not contain lattice

points in its interior because if m' € M is in the interior of (n —1)P, then

{m' + m;; i =1, ..., t} is in the interior of nP. Hence, Int(n —1)Q N M = &.

First, consider the case when n = 2. Then ¢ = n = 2. Since IntP " M

=(J, we may set m; =ae, mp =be, with positive integers a = b.
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When P is a triangle, we see that a =b =2 or b =1, and the condition

H{Int(2P)(\ M} =1 implies a =2, b =1. Thus, P = P,.

If P is not a triangle, then b =1 and P is a quadrangle with the other

vertex ce| + e, for ¢ > 1. Since 2P contains only one lattice point in its

interior, we see a = ¢ = 1. This P coincides with Q5.

In the following, we set n > 3.

Lemma 4. Let Q be the n-polytope defined in (2). Assume that
Int(nQ) N\ M = {m}. Then Q is isomorphic to B, or Q,,.

Proof. Since m is contained in the interior of C,(P)= C,(Q), by the
Carathéodory’s theorem, we may choose n elements from mj, ..., m; such
that the simplicial cone spanned by them contains m and furthermore we
can choose my, ..., m, so that the subcone spanned by them contains m in its
relative interior by renumbering.

Set G = Conv{my, .., m.} and G = Conv{0, G}. Then dimG = r.
Since Int(n —1)G N M =@ and Int(n +1)G N M = B, we have n—1<
r + 1, hence, r > n — 1. We separate our argument into two cases:

Case (a): r=n—1. Since Int(n —1)GNM = &, we see that G is
basic from Lemma 3. Let H be the hyperplane in M containing G. We can
divide Q into the union of two n-polytopes Q) and Q) separated by H.
Since m € nG and #{Int(nQ) N M} =1, we see that Int(nQ;)) M =&
for i =1, 2. Thus, Q(i) is basic. We may set m; =e; for j=1,..,n so
that Q) = Conv{G, e, }, Op) = Conv{G,m,,,} and ¢ =n+1. Furthermore,
we set

My =@+ +a, 16,1 — €.

Since Q is convex, we see that @; > 0 and 1 < Zi a; <2 lfay=--=a,,
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=0, then m; = ¢; would not be a vertex of Q. Hence, we have a; = a, =1,
az =--=a,_; =0. Ifweset ¢ =¢; —m,, fori=1,..,n—1and e, =
0—m,,;, then e, —m,,1 =¢ +e> and {e|, ..., e,} is a Z-basis of M.
Thus, we see that Q is isomorphic to Q,,.

Case (b): r=n 1If t>n, then there is a facet, say F =
Conv{0, my, ..., m,_;} of G which is not facet of Q, that is, the relative

interior of F is contained in the interior of Q. Since Int(nF)(\ M # &, the

interior of nQ would contain lattice points more than one. Thus, we have
t=n.

!

Take the primitive elements m; € M for i =1, ..., n so that m; = a;m;
with positive integers @;. Set Q' := Conv{0, mj, ..., m,}. We may set a; >

ay 2--2a, 21. For 2<r<n-1, set
F, = Conv{0, my, ..., m,.}.

If F, contains lattice points in its relative interior, then the interior of
(n —1)Q would contain lattice points. Thus, a; =ay =2, or a, =1. If
a; = ay =2, then 2F, contains lattice points more than two in its relative

interior, hence, the interior of nQ would contain lattice points more than two.

Thus, we have a, = 1.
When a; 2 2, set
G = Conv{mj, my, ..., m,}.

Since the relative interior of G is contained in the interior of Q and
dimG = n -1, the interior of (n—1)G does not contain lattice points,

hence, G is basic from Lemma 3. Since the number of lattice points in the

interior of nG is one, we see a; = 2. Set

G = Conv{0, m}, my, ..., m,}.
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Since nG could not contain lattice points in its interior, it is basic. Thus, Q is

isomorphic to P,.
When a; =1, we see that QO is not basic because of the assumption
Int(nQ)NM = &. If Q is an empty lattice simplex, then the condition

Int(n —1)Q N M =& implies that Q is basic by Lemma 2. Thus, there

exists a lattice point v in Q other than its vertices. After renumbering, assume

that F,. contains v with the smallest dimension. We note F,. does not contain

lattice points in its interior. Set
F! = Conv{my, ..., m,.}.

Since v is contained in the relative interior of F}, it is contained in the
relative interior of 2F,, hence, it is contained in that of (2 + n — r)Q. Thus,

we have r = 2. In this case, we see that Q is isomorphic to B,. O

Proof of Proposition 1. We separate our argument into two cases

according to the existence of interior lattice points of nQ:

Case I: Int(nQ) N\ M = &. Then Q is basic by Lemma 3 and P = Q. Let

V' be a vertex of P not contained in Q. If V' is contained in the interior of
the cone C,,(P), then it would be contained in the interior of 2P. Thus, V' is

contained in the relative interior of a face cone

Ryomy + -+ Ryom,
with 2 <7 < n—1 by renumbering, if necessary. Let G — P be the face
containing my, ..., m, and v'. Then V' is contained in the relative interior
of 2G and V' +m,  +---+m, is also contained in the interior of
(n—r+2)P, hence, r <2 and r = 2. Since (Int(n —1)P)N M = O, the

face G does not contain lattice points in its relative interior. Since

{my, ..., m,} is a Z -basis of M, we can write as

vi=amy +my
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with a positive integer a. If a > 2, then the number of lattice points in the

interior of nP would be more than one. Thus, @ =1 and P is isomorphic

to Q.

Case II: Int(nQ)N\ M = &. Since f#{Int(nP)( M} = 1, we have Int(nQ)
N M ={m}. If P # Q, then there exists a facet F of Q which is not a facet
of P. Since Int(nF) M # &, they would be contained in the interior of nP
and do not coincide with 72, which contradicts to the assumption. Thus, we
have P = Q. This case has been proved in Lemma 4. O

We note that Proposition 1 is an interpretation of Theorems 2 and 3 in

terms of lattice polytopes.
3. A Certain Class of Gorenstein n-polytopes

In this section, for n >3, we determine an n-polytope P such that
(n —1)P does not contain lattice points in its interior. This polytope will

play an important role in the next section.

We recall that a basic n-simplex is isomorphic to
Ay = Conv{0, ¢, ..., e, }.

Now, for positive integers a; < ay < -+ < a,,, set

. n—1
R, = Conv{Ayy ', e + @e,, ..., €41 + ay_1€,, ey}

Then R,, is a nonsingular n-polytope and (Int(n —1)R,) 1 M = &. We also
know (Int(n —1)B,)N M = (Int(n —1)0,) N M = Q.

Proposition 2. Let P c My be a Gorenstein n-polytope for n >3
satisfying the conditions (Int(n —1)P)(\ M = and (Int(nP))\ M = .
Then P is isomorphic to B,, O, or R, by a unimodular transformation

of M.
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As in the proof of Proposition 1, we take a vertex v of P so that v

coincides with the origin 0 of M. Since P is Gorenstein, the cone C,(P) =

R (P — v) contains the lattice point my in its interior such that
(IntC,(P)NM =my + C,(P)N M. (3)
Let {pj, ..., p;} be the set of all rays of the cone C,(P). For each i, let m;
be the generator of the semigroup p; (1 M, thatis, p; 1M = Zsym;. Let
O = Conv{0, my, ..., m;}.
Let {F], ..., Fy} be the set of all facets containing 0 of Q. For an F;,
set H the hyperplane containing F;. Take a basis {ej, .., e,} so that

{e1, ..., e,_1} are contained in H and that the cone C,,(P) is contained in the
part of nonnegative coefficient of e,. Then, from the equality (3), we see

that
Conv{rF;, my} N (IntC,(P)N M) = {my}
for any positive integer r.
From this observation, we have a useful lemma.

Lemma 5. Let Q be the n-polytope defined above. If myy is not contained

in the interior of 2Q, then Conv{my, ..., m;} is a facet of Q.

Proof. Let F be a facet of Q such that it does not contain 0 and it meets
with the half line R ym,. We assume that /' does not contain all m;’s. For a

vertex m; of F, let {F;

e Fir} be the set of all facets of Q containing m;.

We may assume that a vertex m; € Fj is not contained in F. We can choose

a vertex my € Fj, so that the relative interior of the segment [m iz my | is

contained in the interior of Q from the convexity. If m is not contained in

the interior of the convex hull of the union of cones C(F; ), ..., C(F; ), then
J

the lattice point m; + my is contained in the union of ConV{ZFil,, mo },

which contradicts to our observation.
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If my is contained in the convex hull of the union of C(F} ), ..., C(F; ),
then we can choose another vertex m; of F instead of m; outside of the
convex hull of the union such that there is a facet F containing m; with a

vertex m  not contained in F. By the same reason, this does not occur. Thus,

0 has a facet containing all m’s. U

Corollary 2. Let Q be the n-polytope defined in Lemma 5. Assume that
Int(rQ) N M # D for some 2 < r < n. Then my is contained in the interior

of rQ.

Proof. First, we assume that Q' has a facet F' containing all my, ..., m;.
Let ve M @ be the rational point in the dual space to Mg such that the
hyperplane H; = {x € Mp; (v, x) = 1} contains . We note that the parallel
hyperplane Hg = {{v, x) = 0} touches the cone C,(Q) at one point 0, in
particular, we have (v, x) > 0 forall x € C,(Q).

Set m e Int(rQ) N M. Then (v, m) < r. If mq is not contained in the
interior of 0, then (v, m0> > r. Since C,(Q) is Gorenstein at 0, there exists
m' € (nQ)(\ M such that m = my + m' by the equality (3). But (v, m') <0.
This is a contradiction. Thus, we have m € Int(rQ).

If my is not contained in the interior of 2Q, then QO has a facet F

containing all m;’s. This proves Corollary 2. ]

Remark 1. When 7n = 2, the statement for » =1 in Corollary 2 also

trivially holds because Q is a triangle.
We also define a Gorenstein Fano n-polytope Q;, isomorphic to O, as
0, = Conv{0, ¢, ..., e,, e, + e — ¢, }.

Lemma 6. Let Q be the n-polytope defined above. Assume that
Int(n —1)O N M =D and that Int(nQ) N\ M # B. Then Q is isomorphic to

B, or Q.
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Proof. Since my is contained in the interior of C,(P), as in the proof of
Lemma 4, we can choose my, ..., m,. so that the simplicial cone spanned by

them contains my in its relative interior by renumbering.

Set G := Conv{my, .., m,} and G = Conv{0, ..., G}. Then we have

r =n—1 or r = n. We separate our argument into two cases:
Case (a): r = n—1. Since Int(n —1)G N M = &, we see that G is basic
from Lemma 3. We note that my = my +--- + m,_; € Int(nG) < Int(nQ). As

in the proof of Lemma 4, take the hyperplane H in My containing G, and
divide Q into the union of two n-polytopes Q(l) and Q(z) separated by H.

If Int(nQ;)) 1M = for i =1, 2, then Q =0, = 0, as in the proof
of Lemma 4.

Assume that Int(nQy)) N M # &. Set m € Int(nQ(;)) N M. Since Q is
Gorenstein at 0 and m( is contained in the boundary of (n — 1)5, hence,
in that of (n—1)Q(), there exists m' € (Q)\H)N M with m = mqy + m'.
Consider the n-polytope R = Conv{m', G}. We see that 7 is not contained
in the interior of nR. Since m is in the interior of nQ), the lattice point m'
must be contained in the interior of ;). This is a contradiction. Thus, we

see that ();) are basic.

Case (b): » = n. From Corollary 2, we have m, € Int(nG). We note that
Int(n —1)G N M = & by assumption.

First, consider the case that ¢ =n, that is, O = G. We claim that
Int(nG) N\ M = {my}. If i € M is a lattice point in the interior of nG other
than m, then there would exist a lattice point m' € G with 7 = mg + m’

and m' would be in the interior of G. This contradicts to the assumption. We

confirm the claim. In this case, we know that O = G = P, from Lemma 4.
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Next, consider the case ¢ > n. Then there is a facet, say F,_;:=
Conv{0, my, ..., m,_;} of G which is not a facet of Q and is basic because
of Int(n —1)F,_; N M = J&. We can choose a new Z -basis {ef, ..., e} of
Mas m; =e¢; for i=1,..,n—1 and m, = aje| +--- + a,e,, with a; > 0.
We note that @, > 2 because G is not basic. Since Int(n —1)G N M = @,

we see that G is normal from Lemma 1. Thus, G contains a lattice point u

whose nth coordinate is one.

Let F. := Conv{0, my, ..., m,_y, m,} be the face containing u with the
smallest dimension. If u is in the relative interior, then we see » =1 by the
assumption. Then m, = a,e; and u = e),. In this case, G is nonsingular at 0
and my =my + - +m,_| +e, € Int(nG)( M. The point my + -+ m,_;
is contained in the interior of nQ. Equation (3) implies that —e], € O, which

contradicts to 0 is a vertex of Q.

If u is in the relative interior of the face F) = Conv{my, ..., m,_, m,}

~

of F!, then r =2 and m, = ¢| + a e, u =¢f +e,. When a, =2, G is
Gorenstein at 0 and coincides with P,, hence, mg =my + -+ m,_| +u
e Int(nG)N M. Since my +---+m,_; is in Int(nQ), the point —e/, is
contained in Q. This contradicts to m; is a vertex of Q.

In the case that a, >3, we can decompose G into a union of a, —1
basic n-simplices with vertices {e5, ..., €,_1, ¢f + (j —1)e},, ¢ + je,,} for
j=1..a, -1 1f mg is in the relative interior of the cone of dimension
n—1, say C(é, ..., e,_;, ] + je,), then it contradicts by the above reason.
If myg is contained in the interior of the cone of one on these n-simplices,
say C(é5, ..., ep_1, €1 +(j —1)e,, e| + je,), then my=¢€5 +--+e,_; +

(ef +(j—1Dey,)+ (ef + jey,). In this case, it contradicts to that the cone is

strictly convex. Thus, the case that ¢ > n does not occur. O
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Proof of Proposition 2. We separate our argument into two cases

according to the existence of interior lattice points of nQ:

Case I. Int(nQ)N\ M = . Then Q is basic and P = Q. Let V' be a

vertex of P not contained in Q. As in the proof of Proposition 1, we may set

m; = ¢; for i =1, ..., n and we can write as
Vi =ae + e
with a positive integer a. We note that my = ¢ +--- + ¢,,.
Set
G = Conv{V, ey, .., ¢,} and G := Conv{0, G}.

Then my is contained in the relative interior of (n —1)G and in the interior
of nG. In other words, P is included in the prism written as x; > 0, ...,
x, >0, xp +--+ x,, <1 by using the coordinates (xi, ..., x,,) of M.

If V' is the only vertex of P other than my, ..., m,, then a =1 and P is

isomorphic to (,, otherwise the vertex mj is not Gorenstein.

Let vi=aje +e; for j=2,..,n be vertices of P. We may set
ay >2-->a, >20and a3 >1. If a, 1 21 and a, = 0, then the vertex m,

is not Gorenstein. Thus, P = R,,.

Case II: Int(nQ) # &. Lemma 6 shows that m( e Int(nQ) and that Q
coincides with Q,, (Case (a)) or P, (Case (b)). We have to consider the case
that P = Q.

In Case (a), we have
0 =0, =Conv{0, ¢, ..., e,, | +e; —¢,}.

We note that n+1 vertices of Q) except 0 are on a hyperplane. Set

F = Conviey, ..., e,, e, + e, —e,}. Since it is not simplex, Int(n—1)F
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NM=@. If P#Q, then F is not a facet of P. This contradicts to
Int(n —1)PN M = <. Thus, P = Q.

In Case (b), we have
QO = P, = Conv{0, 2¢,, ey, ..., e, }.
We note that my = e; +--- + e, & (n —1)P,. Consider the prism
(x20,..,x,>20,x +--+x, <1)
by using the coordinates (xi, ..., x,,) of Mp. The point my is contained in

the boundary of the (n —1)-tuple of the prism. We see that if P # Q, then
P =R, asinCase L. t

4. Fujita’s Freeness Conjecture

In this section, we give a proof of Theorem 5, which is a strong version
of Fujino’s theorem [3] but restricted to Gorenstein toric varieties.
We recall the construction of the polarized toric n-fold (X, L) from a

lattice n-polytope P (see, for instance, [9] or [5]). For simplicity, we assume
that all toric varieties are defined over the complex number field C. Let N

be a free abelian group of rank » and M be the dual with the natural pairing
(,): M xN — Z. Let Ty = N ® C* be the algebraic torus of dimension
n. Then the group of characters Hom, (7, C™) can be identified with M

and we have Ty = Spec C[M]. Let P = My be a lattice n-polytope. From
P, we construct a polarized toric n-fold (X, L) satisfying the equality

rx,L)= @ Cem), 4)

mePN\M

where we write as e(m) the character corresponding to a lattice point
m € M. Since X contains Ty as an open subset, we can consider e(m) as a

rational function on X.
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For a vertex v of P, let o(v) c Np be the cone dual to the cone
C,(P)=Rs¢(P—-v) c M. Let ®@ be the set of all faces of cones o(v) for

all vertices of P. The @ is a complete fan in N and defines a toric variety

X of dimension n. We note that X is covered by affine open sets U, =

Spec C[M N C,(P)]. Here we define a line bundle L so that
LUy, L) = e(v)C[M N C,(P)].

Then L is generated by global sections and ample. By definition, L satisfies
4.

Furthermore, we assume that X is Gorenstein. For each vertex v, the cone

C,(P) contains the lattice point m,, satisfying the equality
(IntC,(P))NM =m, + C,(P)N M. 5)

Thus, we see that L + Ky is generated by global sections if P contains all
m,, in its interior.

Proposition 3. Let X be a projective Gorenstein toric n-fold with

n>2. Let L be an ample line bundle on X satisfying the condition that
['(X, L+ Ky)#0 and that the intersection number L-C >n—1 for all

irreducible invariant curves C. Then L + K y is nef.

Proof. Let P — My be the lattice n-polytope corresponding to L. The
condition T'(X, L+ Ky ) # 0 is interpreted to IntP M # . Since P is
Gorenstein, for each vertex v of P, there exists the lattice point m, satisfying

equation (5). From the above observation, it suffices to show that the lattice

points m,, are contained in the interior of P for all vertices v.

As in the proof of Proposition 1, we take a vertex v of P so that v

coincides with the origin 0 of M. Let {my, ..., m;} be the set of the nearest

points on all edges through the vertex v =0 and Q := Conv{0, my, ..., m;}.
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Then (n —1)Q is contained in P because all edges of P have length at least
n—1.If Int(n - )0 N M # &, then we see that m,, € Int(n —1)Q < IntP
by Corollary 2. We assume that Int(n —1)Q N M = <.

If Int(nQ) M =, then Q is basic, hence, ¢ =n and we may set
m; = e; with a Z -basis {ey, ..., e,} of M. Then we have m, = ¢ + -+ ¢,,.
Let m' be a lattice point in the interior of P different from m,. Then since
Conv{(n —1)ey, ..., (n —1)e,, m'} contains m,, the polytope P contains m,
in its interior.

If Int(nQ)NM # <, then Q is not basic and m, € Int(nQ) by
Corollary 2. From Lemma 6, we see that Q is Q,,, thatis, n >3, t =n+1
and m; =¢; for i=1..,n and m, | =¢ +e —e, for a Z-basis
{ef, ..., e,} of M. In particular, Q has the facet F' containing all m;’s and
m, = e+ +e,_1. Since m, € (n—1)F, the condition IntP M # &

implies that (n —1)Q # P and m,, € IntP. O

By combining Propositions 2 and 3 and Lemma 3, we obtain the proof of

Theorem 5.
5. Fujita’s Very Ampleness Conjecture

In this section, we will give a proof of Theorem 6. Let P < My be the
Gorenstein lattice n-polytope corresponding to L. As in the previous section,

for a vertex v of P denote m,, the lattice point satisfying equation (4). As in

the proof of Proposition 3, we take a vertex v of P so that v coincides with

the origin 0 of M. Let {my, ..., m;} be the set of the nearest points on all
edges through the vertex v = 0 and Q := Conv{0, my, ..., m,}. We know that

m,, is contained in the interior of (n + 1)Q.

If Int(r—1)0NM = and Int(rQ) M # & for some r with 2 <
r <n, then m, € Int(rQ) by Corollary 2 and (n+1-r)Q is normal by
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Lemma 1 and

m, +(n+1-r)0 < Int(n +1)Q < IntP.

When Int(Q) N\ M # &, we see that m,, is contained in the interior of 2Q
from Corollary 2 and (n—1)Q is normal from Theorem 7, hence, m, +
(n —1)Q is contained in the interior of (n + 1)Q. This implies that L + K y

is very ample on the affine open set U,,.

Assume that Int(nQ)(\ M = &. Then Q is basic, t =n and m; = ¢;
for a Z-basis {e|, ..., e,} of M. In particular, O is normal and m, = ¢ + -+
+¢,. Let F be the facet of O containing all ¢;. Then all m, +e¢; are
contained in the relative interior of (n+1)F. Since P # (n+1)Q by
assumption, all m, + e; are contained in the interior of P. This implies that

L + K y is very ample on this U,,. This completes the proof of Theorem 6.

We remark that the condition L-C >n+1 is best possible for all
dimensions n > 2. A Gorenstein toric Fano n-fold with index n corresponding

to P, or Q, trivially attains the bound for all n > 2.

Besides Gorenstein toric Fano n-fold with index n, we also have a
Gorenstein toric Fano n-fold with index »n —1 which attains the bound

“n+1”.
For n > 3, we define a lattice n-simplex as
D, = Conv{0, |, ey, €] + ey + 2e3, €4, ..., €, ).

Then it is not very ample and satisfies Int(n—2)D, 1M = and
#(Int(n — 1)D,)) N M =1, hence, 2D, is normal. If we denote by m( the

unique interior lattice point of (n —1)D,,, then we have
mo + (2D, )N M =TInt(n+1)D, N M.

Payne has pointed out the case #n = 3 in [10].
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We can characterize D, among polarized toric varieties as the following

way.
Proposition 4. Let D be an empty lattice n-simplex for n > 3. Assume
that §(Int(n —1)D)(\ M = 1. Then D is isomorphic to D,,.
Proof. We note that D is not basic.
Consider the case n = 3. An empty lattice 3-simplex D is written as

D = Conv{0, ¢, 5, ¢ + pey + ge3}

with 1< p<gq and ged(p, ¢) =1 by [9]. Then fInt(2D)\M =g —1.
Hence, ¢ =2 and D = D;.

Set n > 4. We may write as
D = Conv{0, my, ..., m,}
for linearly independent my, ..., m,, € M.

First, we assume that the facet F = Conv{0, my, ..., m,_;} is basic, that
is, m; =¢; for i =1,..,n—1. Then Int(n —2)F N M = &. We may write

as
m, =aqe +---+a,e,

with ¢; 20 for i =1, ..., n—1 and a, > 1. Set H the hyperplane containing
F. Moreover, we assume that all the facets of D are basic. Then the nth
coordinates of lattice points in (n — 2) D\H are at least a. On the other hand,
since #(Int(n —1)D)\ M =1, (n — 2) D does not contain lattice points in its
interior, hence, 2D is normal by Lemma 1. Since 2 < n —2, (n — 2)D is also

normal, hence, there exists a lattice point in it whose nth coordinate is 1.
Then a =1. This implies that D is basic and contradicts to the assumption.

Then we see that at least one facet of D is not basic.
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Next, if the facet F is not basic, then (n —2)F contains lattice points
in its interior, in fact, interior lattice point is unique point in Int(n —1)D.
By induction on n, we see that the facet F' is isomorphic to D, _; and
Z(F N\ M) = Zey + -+ + Ze,_;. Since 2D is normal, we can take m,, = e,,

hence, D = D, O

We remark that “n —1” in Proposition 4 is essential. For n > 4, we

define a lattice n-simplex as
P = Conv{0, e[, ..., ,_1, €| + €5 + e3 + 3¢, }.

We note that P is not Gorenstein. Set m' := ¢; +--- + ¢,,_; + 2¢,. Then we

see that Int(n —2)P N M = {m'}.
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