Far East Journal of Mathematical Sciences (FJMS) © 2014 Pushpa Publishing House, Allahabad, India Published Online: December 2014 Available online at http://pphmj.com/journals/fjms.htm Volume 94, Number 1, 2014, Pages 33-45

β-OPEN SETS IN BICLOSURE SPACES

Jeeranunt Khampakdee

Department of Mathematics Faculty of Science Mahasarakham University Mahasarakham 44150, Thailand e-mail: jeeranunt.k@msu.ac.th

Abstract

The purpose of this paper is to introduce the concept of β -open sets in biclosure spaces and investigate their fundamental properties. Moreover, we give the concepts of β -open maps and β -continuous maps and their characterizations.

1. Introduction

The concept of Čech closure spaces was introduced and studied in [3]. In 2003, Šlapal [6] introduced generalized Čech closure operators which are called *closure operators*. Later, some properties of closed sets in closure spaces were studied by Boonpok and Khampakdee [2]. In 2009, Boonpok [1] introduced biclosure spaces and provided a characterization of closed sets of some kind in the product of biclosure spaces. In [5], Khampakdee and Boonpok introduced the notions of semi-open sets and semi-closed sets in biclosure spaces.

In this paper, we introduce and study β -open sets in biclosure spaces and

Received: June 10, 2014; Accepted: September 9, 2014

2010 Mathematics Subject Classification: 54A05.

Keywords and phrases: β -open sets, biclosure spaces, β -open maps, β -continuous maps.

investigate some of their fundamental properties. Then we use β -open sets to define β -open maps and β -continuous maps. We obtain certain properties of β -openness and β -continuity in biclosure spaces.

2. Preliminary Notes

In this section, we recall some basic definitions and notations of closure spaces and biclosure spaces in [1, 2] and [5].

A map $u: P(X) \to P(X)$ defined on the power set P(X) of a set X is called a *closure operator* [2] on X and the pair (X, u) is called a *closure space* if the following axioms are satisfied:

- (A1) $u\emptyset = \emptyset$,
- (A2) $A \subseteq uA$ for every $A \subseteq X$,
- (A3) $A \subseteq B \Rightarrow uA \subseteq uB$ for all $A, B \subseteq X$.

A subset $A \subseteq X$ is *closed* in the closure space (X, u) if uA = A and it is *open* if its complement is closed. The empty set and the whole space are both open and closed.

If (X, u) and (Y, v) are closure spaces, then a map $f:(X, u) \to (Y, v)$ is called:

- (i) open (respectively, closed) if the image of each open (respectively, closed) set in (X, u) is open (respectively, closed) in (Y, v),
- (ii) continuous if $f(uA) \subseteq vf(A)$ for every subset $A \subseteq X$. One can see that, if f is continuous, then the inverse image under f of each open set in (Y, v) is open in (X, u).

The product [1] of a family $\{(X_{\alpha}, u_{\alpha}) : \alpha \in J\}$ of closure spaces, denoted by $\prod_{\alpha \in J} (X_{\alpha}, u_{\alpha})$, is the closure space $\left(\prod_{\alpha \in J} X_{\alpha}, u\right)$, where

 $\prod_{\alpha \in J} X_{\alpha}$ denotes the Cartesian product of the sets X_{α} , $\alpha \in J$ and u is the

closure operator generated by the projections $\pi_{\alpha}: \prod_{\alpha \in J} X_{\alpha} \to X_{\alpha}, \ \alpha \in J$,

i.e., is defined by $uA = \prod_{\alpha \in J} u_{\alpha} \pi_{\alpha}(A)$ for each $A \subseteq \prod_{\alpha \in J} X_{\alpha}$. Clearly, π_{α} is continuous for each $\alpha \in J$.

Since $\pi_{\beta}: \prod_{\alpha \in J} X_{\alpha} \to X_{\beta}$ is continuous whenever $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$ is the

product of a family $\{(X_{\alpha}, u_{\alpha}) : \alpha \in J\}$ of closure spaces, $G_{\beta} \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is

open in $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$ for every open set G_{β} in $(X_{\beta}, u_{\beta}), \beta \in J$.

A biclosure space [5] is a triple (X, u_1, u_2) , where X is a set and u_1, u_2 are two closure operators on X.

A subset A of a biclosure space (X, u_1, u_2) is called *closed* if u_1u_2A = A. The complement of closed set is called *open*.

One can see that, A is open in (X, u_1, u_2) if and only if A is open in both (X, u_1) and (X, u_2) .

Let (X, u_1, u_2) be a biclosure space. A biclosure space (Y, v_1, v_2) is called a *subspace* of (X, u_1, u_2) if $Y \subseteq X$ and $v_i A = u_i A \cap Y$ for all $i \in \{1, 2\}$ and every subset A of Y.

Let (X, u_1, u_2) and (Y, v_1, v_2) be biclosure spaces and let $i \in \{1, 2\}$. Then a map $f: (X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ is called:

(i) *i-open* (respectively, *i-closed*) if the map $f:(X, u_i) \to (Y, v_i)$ is open (respectively, closed) for all $i \in \{1, 2\}$,

- (ii) *open* (respectively, *closed*) if f is i-open (respectively, i-closed) for all $i \in \{1, 2\}$,
- (iii) *i-continuous* if the map $f:(X, u_i) \to (Y, v_i)$ is continuous for all $i \in \{1, 2\}$,
 - (iv) continuous if f is i-continuous for all $i \in \{1, 2\}$.

Proposition 2.1 [5]. Let (X, u_1, u_2) and (Y, v_1, v_2) be biclosure spaces and let $f: (X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ be a map. If f is open, then f(G) is open in (Y, v_1, v_2) for every open subset G of (X, u_1, u_2) .

Proposition 2.2 [5]. Let (X, u_1, u_2) and (Y, v_1, v_2) be biclosure spaces and let $f: (X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ be a map. If f is continuous, then $f^{-1}(H)$ is open in (X, u_1, u_2) for every open subset H of (Y, v_1, v_2) .

3. Main Results

In this section, we introduce the concept of β -open sets in biclosure spaces and investigate some of their properties.

Definition 3.1. A subset A of a biclosure space (X, u_1, u_2) is called β -open if there exists an open subset G of (X, u_1) such that $G \subseteq A$ and $u_2A \subseteq u_2G$. The complement of a β -open subset of X is called β -closed.

Clearly, if (X, u_1, u_2) is a biclosure space and A is open (respectively, closed) in (X, u_1) , then A is β -open (respectively, β -closed) in (X, u_1, u_2) .

The converse is not true as shown in the following example.

Example 3.2. Let $X = \{1, 2, 3\}$ and define a closure space u_1 on X by $u_1\varnothing = \varnothing$, $u_1\{1\} = u_1\{2\} = u_1\{1, 2\} = \{1, 2\}$, $u_1\{3\} = \{2, 3\}$, and $u_1\{1, 3\} = u_1\{2, 3\} = u_1X = X$. Define a closure operator u_2 on X by $u_2\varnothing = \varnothing$, $u_2\{1\} = \{1, 3\}$, $u_2\{2\} = \{1, 2\}$, $u_2\{3\} = u_2\{1, 2\} = u_2\{1, 3\} = u_2\{2, 3\} = u_2X = X$.

It follows that $\{3\}$ is an open subset of (X, u_1) such that $\{3\} \subseteq \{1, 3\}$ and $u_2\{1, 3\} \subseteq u_2\{3\}$. Hence, $\{1, 3\}$ is β -open in (X, u_1, u_2) . But $\{1, 3\}$ is not open in (X, u_1) . Moreover, $\{2\}$ is β -closed in (X, u_1, u_2) but $\{2\}$ is not closed in (X, u_1) .

Theorem 3.3. Let (X, u_1, u_2) be a biclosure space and let $A \subseteq X$. Then A is β -closed if and only if there exists a closed subset F of (X, u_1) such that $A \subseteq F$ and $u_2(X - A) \subseteq u_2(X - F)$.

Proof. Let A be β -closed in (X, u_1, u_2) . Then there exists an open set G in (X, u_1) such that $G \subseteq X - A$ and $u_2(X - A) \subseteq u_2G$. Since G is open in (X, u_1) , there exists a closed subset F of (X, u_1) such that G = X - F. But $A \subseteq X - G$ and $u_2(X - A) \subseteq u_2G$. Thus, $A \subseteq F$ and $u_2(X - A) \subseteq u_2(X - F)$.

Conversely, by the assumption, there is a closed subset F of (X, u_1) such that $A \subseteq F$ and $u_2(X - A) \subseteq u_2(X - F)$. Since F is closed in (X, u_1) , there exists an open subset G of (X, u_1) such that F = X - G. It follows that $A \subseteq X - G$ and $u_2(X - A) \subseteq u_2(X - (X - G)) = u_2G$. Hence, $G \subseteq X - A$ and $u_2(X - A) \subseteq u_2G$. Thus, X - A is β -open in (X, u_1, u_2) . Therefore, A is β -closed in (X, u_1, u_2) .

Theorem 3.4. Let (X, u_1, u_2) be a biclosure space and A be a β -open subset in (X, u_1, u_2) . If $A \subseteq B$ and $u_2B \subseteq u_2A$, then B is β -open.

Proof. Let A be β -open in (X, u_1, u_2) . Then there exists an open set G in (X, u_1) such that $G \subseteq A$ and $u_2A \subseteq u_2G$. Since $A \subseteq B$ and $u_2B \subseteq u_2A$, $G \subseteq A \subseteq B$ and $u_2B \subseteq u_2A \subseteq u_2G$. Therefore, B is β -open in (X, u_1, u_2) .

Theorem 3.5. Let (Y, v_1, v_2) be a biclosure subspace of (X, u_1, u_2) and let A be a subset of Y. If A is β -open in (X, u_1, u_2) , then A is β -open in (Y, v_1, v_2) .

Proof. Let A be a β -open set in (X, u_1, u_2) . Then there exists an open set G in (X, u_1) such that $G \subseteq A$ and $u_2A \subseteq u_2G$. It follows that $u_2A \cap Y$ $\subseteq u_2G \cap Y$. Hence, $G \subseteq A$ and $v_2A \subseteq v_2G$. Since G is open in (X, u_1) , $v_1(Y-G)=u_1(Y-G)\cap Y\subseteq u_1(X-G)\cap Y=(X-G)\cap Y=Y-G$. Thus, Y-G is closed in (Y, v_1) , i.e., G is open in (Y, v_1) . Therefore, A is β -open in (Y, v_1, v_2) .

Definition 3.6. Let $\{A_{\alpha}\}_{\alpha \in J}$ be a collection of subsets in a set X. A closure operator u on X is called *generalized additive* if $u \bigcup_{\alpha \in J} A_{\alpha} = \bigcup_{\alpha \in J} u A_{\alpha}$.

Example 3.7. Let $X = \{1, 2, 3\}$ and define a closure operator u on X by $u\emptyset = \emptyset$, $u\{1\} = \{1\}$, $u\{2\} = u\{3\} = u\{1, 2\} = u\{1, 3\} = u\{2, 3\} = uX = X$. Then u is generalized additive on X.

Theorem 3.8. Let $\{A_{\alpha}\}_{\alpha \in J}$ be a collection of β -open sets in a biclosure space (X, u_1, u_2) . If u_2 is generalized additive, then $\bigcup_{\alpha \in J} A_{\alpha}$ is a β -open set in (X, u_1, u_2) .

Proof. Let A_{α} be β -open in (X, u_1, u_2) for all $\alpha \in J$. Hence, there exists an open set G_{α} in (X, u_1) such that $G_{\alpha} \subseteq A_{\alpha}$ and $u_2A_{\alpha} \subseteq u_2G_{\alpha}$ for each $\alpha \in J$. Thus, $\bigcup_{\alpha \in J} G_{\alpha} \subseteq \bigcup_{\alpha \in J} A_{\alpha}$ and $\bigcup_{\alpha \in J} u_2A_{\alpha} \subseteq \bigcup_{\alpha \in J} u_2G_{\alpha}$. Since u_2 is additive,

$$u_2 \bigcup_{\alpha \in J} A_\alpha = \bigcup_{\alpha \in J} u_2 A_\alpha \subseteq \bigcup_{\alpha \in J} u_2 G_\alpha = u_2 \bigcup_{\alpha \in J} G_\alpha.$$

As G_{α} is open in (X, u_1) for all $\alpha \in J$, $u_1 \cap_{\alpha \in J} (X - G_{\alpha}) \subseteq u_1(X - G_{\alpha})$

= $X - G_{\alpha}$ for each $\alpha \in J$. Thus, $u_1 \cap_{\alpha \in J} (X - G_{\alpha}) \subseteq \cap_{\alpha \in J} (X - G_{\alpha})$. It follows that $\bigcap_{\alpha \in J} (X - G_{\alpha})$ is closed in (X, u_1) , i.e., $\bigcup_{\alpha \in J} G_{\alpha}$ is open in (X, u_1) . Therefore, $\bigcup_{\alpha \in J} A_{\alpha}$ is β -open in (X, u_1, u_2) .

If $\{A_{\alpha}\}_{\alpha \in J}$ is a collection of β -open sets in a biclosure space (X, u_1, u_2) but u_2 is not generalized additive, then $\bigcup_{\alpha \in J} A_{\alpha}$ need not be a β -open set in (X, u_1, u_2) as shown in the following example.

Example 3.9. Let $X = \{1, 2, 3, 4\}$ and define a closure operator u_1 on X by $u_1\varnothing = \varnothing$, $u_1\{1\} = \{1\}$, $u_1\{2\} = u_1\{3\} = u_1\{4\} = u_1\{2, 3\} = u_1\{2, 4\} = u_1\{3, 4\} = u_1\{2, 3, 4\} = \{2, 3, 4\}$ and $u_1\{1, 2\} = u_1\{1, 3\} = u_1\{1, 4\} = u_1\{1, 2, 3\} = u_1\{1, 2, 4\} = u_1\{1, 3, 4\} = u_1X = X$. Define a closure operator u_2 on X by $u_2\varnothing = \varnothing$, $u_2\{2\} = \{2\}$, $u_2\{3\} = \{1, 3\}$, $u_2\{4\} = \{1, 4\}$, $u_2\{1\} = u_2\{1, 2\} = u_2\{1, 3\} = \{1, 2, 3\}$ and $u_2\{1, 4\} = u_2\{2, 3\} = u_2\{2, 4\} = u_2\{3, 4\} = u_2\{1, 2, 3\} = u_2\{1, 3, 4\} = u_2\{1, 3, 4\} = u_2\{2, 3, 4\} = u_2X = X$.

Since $u_2(\{1, 2\} \cup \{1, 3\}) = X$ is not a subset of $u_2\{1, 2\} \cup u_2\{1, 3\} = \{1, 2, 3\}$, u_2 is not generalized additive. By the definitions of u_1 and u_2 , $\{1, 2\}$ and $\{1, 3\}$ are β -open in (X, u_1, u_2) . But $\{1, 2\} \cup \{1, 3\} = \{1, 2, 3\}$ is not β -open in (X, u_1, u_2) .

Corollary 3.10. Let $\{A_{\alpha}\}_{\alpha \in J}$ be a collection of β -closed sets in a biclosure space (X, u_1, u_2) . If u_2 is generalized additive, then $\bigcap_{\alpha \in J} A_{\alpha}$ is a β -closed set in (X, u_1, u_2) .

If $\{A_{\alpha}\}_{\alpha \in J}$ is a collection of β -closed sets in a biclosure space (X, u_1, u_2) but u_2 is not generalized additive, then $\bigcap_{\alpha \in J} A_{\alpha}$ need not be a β -closed set in (X, u_1, u_2) as shown in the following example.

Example 3.11. By Example 3.9, u_2 is not generalized additive. By the definitions of u_1 and u_2 , $\{2, 4\}$ and $\{3, 4\}$ are β -closed in (X, u_1, u_2) . But $\{2, 4\} \cap \{3, 4\} = \{4\}$ is not β -closed in (X, u_1, u_2) .

Theorem 3.12. Let $\{(X_{\alpha}, u_{\alpha}^1, u_{\alpha}^2) : \alpha \in J\}$ be a family of biclosure spaces and let $\beta \in J$. If A_{β} is β -open in $(X_{\beta}, u_{\beta}^1, u_{\beta}^2)$, then $A_{\beta} \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in J}} X_{\alpha}$

is
$$\beta$$
-open in $\prod_{\alpha \in J} (X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2})$.

Proof. Let $\beta \in J$ and let A_{β} be β -open in $(X_{\beta}, u_{\beta}^1, u_{\beta}^2)$. Then there exists an open set G_{β} in (X_{β}, u_{β}^1) such that $G_{\beta} \subseteq A_{\beta}$ and $u_{\beta}^2 A_{\beta} \subseteq u_{\beta}^2 G_{\beta}$. Hence, $G_{\beta} \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in J}} X_{\alpha} \subseteq A_{\beta} \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in J}} X_{\alpha}$ and $u_{\beta}^2 A_{\beta} \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in J}} X_{\alpha} \subseteq u_{\beta}^2 G_{\beta} \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in J}} X_{\alpha}$.

Since

$$\begin{split} u_{\beta}^2 A_{\beta} \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in J}} X_{\alpha} &= u_{\beta}^2 A_{\beta} \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in J}} u_{\alpha}^2 X_{\alpha} \\ &= \prod_{\substack{\alpha \in J}} u_{\alpha}^2 \pi_{\alpha} \left(A_{\beta} \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in J}} X_{\alpha} \right) = u_2 \left(A_{\beta} \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in J}} X_{\alpha} \right) \end{split}$$

and

$$\begin{split} u_{\beta}^2 G_{\beta} \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in J}} X_{\alpha} &= u_{\beta}^2 G_{\beta} \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in J}} u_{\alpha}^2 X_{\alpha} \\ &= \prod_{\substack{\alpha \in J}} u_{\alpha}^2 \pi_{\alpha} \left(G_{\beta} \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in J}} X_{\alpha} \right) = u_2 \left(G_{\beta} \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in J}} X_{\alpha} \right), \end{split}$$

$$u_2\left(A_{\beta} \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in J}} X_{\alpha}\right) \subseteq u_2\left(G_{\beta} \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in J}} X_{\alpha}\right).$$

As π_{β} is continuous, $\pi_{\beta}^{-1}(G_{\beta}) = G_{\beta} \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in J}} X_{\alpha}$ is open in $\prod_{\alpha \in J} (X_{\alpha}, u_{\alpha}^{1})$.

Therefore,
$$A_{\beta} \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in J}} X_{\alpha}$$
 is β -open in $\prod_{\alpha \in J} (X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2})$.

Theorem 3.13. Let $\{(X_{\alpha}, u_{\alpha}^1, u_{\alpha}^2) : \alpha \in J\}$ be a family of closure spaces and let $\beta \in J$. If A_{β} is β -closed in $(X_{\beta}, u_{\beta}^1, u_{\beta}^2)$, then $A_{\beta} \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in J}} X_{\alpha}$

is β -closed in $\prod_{\alpha \in J} (X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2})$.

Proof. Let A_{β} be β -closed in $\prod_{\alpha \in J} (X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2}), \beta \in J$. Then $X_{\beta} - A_{\beta}$

is β-open in $(X_{\beta}, u_{\beta}^1, u_{\beta}^2)$. Since $(X_{\beta} - A_{\beta}) \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in J}} X_{\alpha}$ is a β-open set in

$$\prod_{\alpha \in J} (X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2}). \text{ But } (X_{\beta} - A_{\beta}) \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in J}} X_{\alpha} = \prod_{\alpha \in J} X_{\alpha} - \left(A_{\beta} \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in J}} X_{\alpha} \right).$$

It follows that
$$A_{\beta} \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in J}} X_{\alpha}$$
 is β -closed in $\prod_{\alpha \in J} (X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2})$.

Definition 3.14. Let (X, u_1, u_2) and (Y, v_1, v_2) be biclosure spaces. A map $f: (X, u_1, u_2) \to (Y, v_1, v_2)$ is called β -open (respectively, β -closed) if f(A) is β -open (respectively, β -closed) in (Y, v_1, v_2) for every open (respectively, closed) subset A of (X, u_1, u_2) .

Clearly, if f is open (respectively, closed), then f is β -open (respectively, β -closed). The converse need not be true in general as can be seen from the following example.

Example 3.15. Let $X = \{1, 2, 3\} = Y$ and define a closure operator u_1 on X by $u_1\varnothing = \varnothing$, $u_1\{2\} = \{2\}$ and $u_1\{1\} = u_1\{3\} = u_1\{1, 2\} = u_1\{1, 3\} = u_1\{2, 3\} = u_1X = X$. Define a closure operator u_2 on X by $u_2\varnothing = \varnothing$, $u_2\{1\} = \{1, 2\}$, $u_2\{2\} = \{2\}$, $u_2\{3\} = \{1, 3\}$ and $u_2\{1, 2\} = u_2\{1, 3\} = u_2\{2, 3\} = u_2X = X$. Define a closure operator v_1 on Y by $v_1\varnothing = \varnothing$, $v_1\{1\} = v_1\{2\} = v_1\{1, 2\} = \{1, 2\}$, $v_1\{3\} = v_1\{1, 3\} = v_1\{2, 3\} = v_1Y = Y$ and define a closure operator v_2 on Y by $v_2\varnothing = \varnothing$ and $v_2\{1\} = \{1, 3\}$, $v_2\{2\} = \{1, 2\}$ and $v_2\{3\} = v_2\{1, 2\} = v_2\{1, 3\} = v_2\{2, 3\} = v_2Y = Y$. Let $f: (X, u_1, u_2) \to (Y, v_1, v_2)$ be an identity map. It is easy to see that f is β -open but not open because $f(\{1, 3\})$ is not open in (Y, v_1, v_2) while $\{1, 3\}$ is open in (X, u_1, u_2) . Moreover, we can see that f is β -closed but not closed because $f(\{2\})$ is not closed in (Y, v_1, v_2) while $\{2\}$ is closed in (X, u_1, u_2) .

Theorem 3.16. Let (X, u_1, u_2) , (Y, v_1, v_2) and (Z, w_1, w_2) be biclosure spaces. Let $f: (X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ and $g: (Y, v_1, v_2) \rightarrow (Z, w_1, w_2)$ be maps. Then $g \circ f$ is β -open if f is open and g is β -open.

Proof. Let G be an open subset of (X, u_1, u_2) . Since f is open, f(G) is open in (Y, v_1, v_2) . As g is β -open, $g(f(G)) = g \circ f(G)$ is β -open in (Z, w_1, w_2) . Therefore, $g \circ f$ is β -open. \square

Theorem 3.17. Let (X, u_1, u_2) , (Y, v_1, v_2) and (Z, w_1, w_2) be biclosure spaces. Let $f: (X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ and $g: (Y, v_1, v_2) \rightarrow (Z, w_1, w_2)$ be maps. If $g \circ f$ is β -open and f is a continuous surjection, then g is β -open.

Proof. Let H be an open set in (Y, v_1, v_2) . Since f is continuous, $f^{-1}(H)$ is open in (X, u_1, u_2) . Since $g \circ f$ is β -open, $g \circ f(f^{-1}(H))$ is β -open in (Z, w_1, w_2) . But f is a surjection, hence $g \circ f(f^{-1}(H)) = g(f(f^{-1}(H))) = g(H)$. Thus, g(H) is β -open in (Z, w_1, w_2) . Therefore, g is β -open.

Definition 3.18. Let (X, u_1, u_2) and (Y, v_1, v_2) be biclosure spaces. A map $f: (X, u_1, u_2) \to (Y, v_1, v_2)$ is called β -continuous if $f^{-1}(H)$ is a β -open subset of (X, u_1, u_2) for every open subset H of (Y, v_1, v_2) .

Clearly, if f is continuous, then f is β -continuous. The converse need not be true as can be seen from the following example.

Example 3.19. Let $X = \{1, 2, 3\} = Y$ and define a closure operator u_1 on X by $u_1\varnothing = \varnothing$, $u_1\{1\} = \{1, 2\}$, $u_1\{2\} = u_1\{3\} = u_1\{2, 3\} = \{2, 3\}$, $u_1\{1, 2\} = u_1\{1, 3\} = u_1X = X$. Define a closure operator u_2 on X by $u_2\varnothing = \varnothing$, $u_2\{2\} = \{2\}$ and $u_2\{1\} = u_2\{3\} = u_2\{1, 2\} = u_2\{1, 3\} = u_2\{2, 3\} = u_2X = X$. Define a closure operator v_1 on X by $v_1\varnothing = \varnothing$, $v_1\{3\} = \{3\}$, $v_1\{1\} = \{1, 3\}$, $v_1\{2\} = \{2, 3\}$, $v_1\{1, 2\} = v_1\{1, 3\} = v_1\{2, 3\} = v_1Y = Y$ and define a closure operator v_2 on Y by $v_2\varnothing = \varnothing$, $v_2\{1\} = v_2\{1, 3\} = \{1, 3\}$, $v_2\{3\} = \{3\}$, $v_2\{2\} = v_2\{1, 2\} = u_1\{2, 3\} = v_2Y = Y$. Let $f: (X, u_1, u_2) \to (Y, v_1, v_2)$ be an identity map. It is easy to see that f is β -continuous but not continuous because $f^{-1}(\{1, 2\})$ is not open in (X, u_1, u_2) while $\{1, 2\}$ is open in (Y, v_1, v_2) .

Theorem 3.20. Let (X, u_1, u_2) and (Y, v_1, v_2) be biclosure spaces. A map $f: (X, u_1, u_2) \to (Y, v_1, v_2)$ is β -continuous if and only if $f^{-1}(F)$ is a β -closed subset of (X, u_1, u_2) for every closed subset F of (Y, v_1, v_2) .

Proof. Let F be a closed subset of (Y, v_1, v_2) . As f is β -continuous, $f^{-1}(Y-F)$ is β -open in (X, u_1, u_2) . But $X - f^{-1}(F) = f^{-1}(Y-F)$. Hence, $f^{-1}(F)$ is β -closed in (X, u_1, u_2) .

Conversely, let H be an open subset of (Y, v_1, v_2) . By the assumption, $f^{-1}(Y - H) = X - f^{-1}(H)$ is β -closed in (X, u_1, u_2) . Hence, $f^{-1}(H)$ is β -open in (X, u_1, u_2) . Thus, f is β -continuous. \square

Theorem 3.21. Let (X, u_1, u_2) , (Y, v_1, v_2) and (Z, w_1, w_2) be biclosure spaces. If $f: (X, u_1, u_2) \to (Y, v_1, v_2)$ is β -continuous and $g: (Y, v_1, v_2) \to (Z, w_1, w_2)$ is continuous, then $g \circ f$ is β -continuous.

Proof. Let G be an open subset of (Z, w_1, w_2) . Since g is continuous, $g^{-1}(G)$ is open in (Y, v_1, v_2) . As f is β -continuous, $f^{-1}(g^{-1}(G))$ is β -open in (X, u_1, u_2) . But $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$. Therefore, $g \circ f$ is β -continuous.

Corollary 3.22. Let (X, u_1, u_2) be a biclosure space, $\{(Y_\alpha, v_\alpha^1, v_\alpha^2) : \alpha \in J\}$ be a family of biclosure spaces and

$$f: (X, u_1, u_2) \to \prod_{\alpha \in I} (Y_{\alpha}, v_{\alpha}^1, v_{\alpha}^2)$$

be a map. If f is β -continuous and π_{α} is a projection map, then $\pi_{\alpha} \circ f$ is β -continuous for each $\alpha \in J$.

Definition 3.23. A biclosure space (X, u_1, u_2) is said to be a β -open space if every β -open set in (X, u_1, u_2) is open in (X, u_1, u_2) .

Example 3.24. Let $X = \{1, 2, 3\}$ and define a closure operator u_1 on X by $u_1\emptyset = \emptyset$, $u_1\{1\} = u_1\{3\} = u_1\{1, 3\} = \{1, 3\}$, $u_1\{2\} = u_1\{1, 2\} = u_1\{2, 3\} = \{1, 3\}$

 $u_1X = X$. Define a closure operator u_2 on X by $u_2\emptyset = \emptyset$, $u_2\{1\} = u_2\{2\}$ = $\{1, 2\}$, $u_2\{3\} = u_2\{1, 3\} = \{1, 3\}$ and $u_2\{1, 2\} = u_2\{2, 3\} = u_2X = X$. It is easy to see that (X, u_1, u_2) is a β -open space.

Theorem 3.25. Let (X, u_1, u_2) and (Z, w_1, w_2) be biclosure spaces and let (Y, v_1, v_2) be a β -open space. If $f: (X, u_1, u_2) \to (Y, v_1, v_2)$ and $g: (Y, v_1, v_2) \to (Z, w_1, w_2)$ are β -continuous, then $g \circ f$ is β -continuous.

Proof. Let H be an open subset of (Z, w_1, w_2) . Since g is β -continuous, $g^{-1}(H)$ is β -open in (Y, v_1, v_2) . But (Y, v_1, v_2) is a β -open space. It follows that $g^{-1}(H)$ is open in (Y, v_1, v_2) . As f is β -continuous, $f^{-1}(g^{-1}(H)) = (g \circ f)^{-1}(H)$ is β -open in (X, u_1, u_2) . Thus, $g \circ f$ is β -continuous.

Acknowledgement

The author would like to thank the Faculty of Science, Mahasarakham University for financial support.

References

- [1] C. Boonpok, ∂-closed sets in biclosure spaces, Acta Math. Univ. Ostrav. 17 (2009), 51-66.
- [2] C. Boonpok and J. Khampakdee, Between closed sets and generalized closed sets in closure spaces, Acta Math. Univ. Ostrav. 16 (2008), 3-14.
- [3] E. Čech, Topological spaces, Topological Papers of Eduard Čech, Academia, Prague, 1968, pp. 436-472.
- [4] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc. 3(13) (1969), 71-79.
- [5] J. Khampakdee and C. Boonpok, Semi-sets in biclosure spaces, Discuss. Math. Gen. Algebra Appl. 29 (2009), 181-210.
- [6] J. Šlapal, Closure operations for digital topology, Theoret. Comput. Sci. 305 (2003), 457-471.