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Abstract 

Let βE  be the integral operator defined by 

( ) ( )( ) ( ) ( )( ) ( ) ,
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where each of the functions ,if  and iP  are, respectively, analytic 

functions and functions with positive real part defined in the open unit 
disk for all ....,,1 ni =  The object of this paper is to obtain several 

univalence conditions for this integral operator. Our main results 
contain some interesting corollaries as special cases. 
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1. Introduction and Definitions 

In the past few years, integral operators have been a circle of interests to 
many young researchers in the area of univalent function theory. Too many 
developments in creating new operators can cause a lot of confusions as well. 
However, it is an interesting topic to be discussed and studied. We start by 
defining a general integral operator based on previous operators. 

Let A  denote the class of functions of the form 

( ) ∑
∞

=

+=
2

,
n

n
nzazzf  (1) 

which are analytic in the open unit disk { } =<∈= S:1:: zzz CU  

{ }.in univalent  is : Uff A∈  Also, let P be the class of all functions which 

are analytic in U  and satisfy ( ) ,10 =P  ( ){ } .0>zPR  Frasin and Darus [3] 

defined the family ( ),δB  10 <δ≤  so that it consists of functions A∈f  

satisfying the condition 

( )
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In this paper, we obtain new sufficient conditions for the univalence of the 
general integral operator ( )zEβ  defined by 

( ) ( )( ) ( ) ,

1

0 0

1
β

=

ζα−β
β

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
′β= ∫ ∏

z n

i
ii dttPtftzE ii  (3) 

where ,∗∈β C  A∈∈ζγα iiii f,,, C  and P∈iP  for all ....,,3,2,1 ni =  

Here and throughout in the sequel, every multi-valued function is taken 
with the principal branch. 

Remark 1.1. Note that the integral operator βE  generalizes the following 

operators introduced and studied by several authors: 
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  (i) For 0=αi  for all ,...,,1 ni =  we obtain the integral operator 
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introduced and studied by Frasin [4]. 

 (ii) For ,1=β  0=γ=ζ ii  for all ,...,,1 ni =  we obtain the integral 

operator 

( ) ( )( ) ( )( )∫ αα
αα ′′=

z
dttftfzF n

n 0 11...,, 1
1

 (5) 

introduced and studied by Breaz et al. [1]. 

(iii) For ,1=β  ,1=n  ,α=αi  ,0=ζ=γ ii  we obtain the integral 

operator 

( ) ( )( )∫ α′=
z

dttfzG
0

 (6) 

studied in [8]. 

In order to derive our main results, we have to recall here the following 
lemmas. 

Lemma 1.2 [9]. Let C∈η  with ( ) 0>ηR  if A∈h  satisfies 

( )

( )
( )
( ) 11 2

≤′
′′

η
− η

zh
zhzz

R

R
 (7) 

for all ,U∈z  then the integral operator 
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is in the class .S  
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Lemma 1.3 [7]. Let C∈β  with ( ) ,0>βR  C∈c  with ,1<c  1−≠c  

if A∈h  satisfies 

( ) ( )
( ) ,11 22 ≤′β
′′

++ ββ
zh
zhzzzc  (9) 

for all ,U∈z  then the integral operator ( )zFβ  defined by (16) is in the 

class .S  

Lemma 1.4 [5]. If ( ) ,P∈zP  then 
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Lemma 1.5 [2]. If ( ) ( ),δ∈ Bzf  then 

( )
( )

( ) ( ) .1
21

z
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−
+δ−

≤′
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Also, we need the following general Schwarz lemma. 

Lemma 1.6 [6]. Let the function f be regular in the disk zzUR :=  

,R<  with RM <  for fixed M. If ( )zf  has one zero with multiplicity order 

bigger than m for ,0=z  then 

( ) ( ).R
m

m zz
R
Mzf U∈≤  (12) 

The equality can hold only if 

( ) ,m
m

i z
R
Mezf ⎟

⎠
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⎜
⎝
⎛= Θ  (13) 

where Θ is constant. 

2. Univalence Conditions for the Operator βE  

We first prove the following theorem. 
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Theorem 2.1. Let ( ) ( ),izf δ∈ B  ,10 <δ≤ i  ( ) P∈zPi  for all ,1=i  

,..., n  and C∈η  with ( ) .0>=η aR  If 
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then the integral operator βE  defined by (3) is in the class .S  

Proof. Define the regular function ( )zh  by 
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Then it is easy to see that 
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and ( ) ( ) .0010 =′−= hh  Differentiating both sides of equation (16) 

logarithmically, we obtain 
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Thus, we have 
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Since ( ) ( ),izf δ∈ B  ( ) P∈zPi  for all ,...,,1 ni =  from (18), (10) and (11), 

we obtain 
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Multiply both sides of (19) by 
( )

( ) ,1 2

η
− η

R

Rz  we get 
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for all .U∈z  

Let us denote ,xz =  [ ),1,0∈x  ( ) ,0>=η aR  and ( ) =Φ x  

( ) ( ).11 2 xx a −−  It is easy to prove that 
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From (20), (21), and the hypothesis (14), we have 
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1≤  (22) 

for all .U∈z  Applying Lemma 1.2 for the function ( ),zh  we prove that 

( ) .S∈β zE  

Letting ,1=n  ,1 δ=δ  ,1 α=α  ζ=ζ1  in Theorem 2.1, we obtain the 

following corollary. 

Corollary 2.2. Let ( ) ( ) ( ) ,,10, PB ∈<δ≤δ∈ zPzf  and C∈ζαη ,,  

with ( ) .0>=η aR  If 

( ) ,2
1;min213
⎭⎬
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then the integral operator ζα
β

,E  defined by 
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( ) ( )( ) ( ) βζα−βζα
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⎤
⎢⎣
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is in the class .S  

If we set 0=δ  in Corollary 2.2, we have the following. 

Corollary 2.3. Let ( ) ( ) ,, PS ∈∈ zPzf  and C∈ζαη ,,  with ( ) =ηR  

.0>a  If 

,2
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then the integral operator ζα
β

,E  defined by (33) is in the class .S  

Next, we prove the following theorem. 

Theorem 2.4. Let C∈ζα ii ,  for all ni ...,,2,1=  and each A∈if  

satisfies ( )( ) ,0>zfiR  and 

( )
( ) ( )η≤′
′′

Rzf
zfz
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for all .U∈z  If 

( )∑
=
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n

i
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1
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then, for any complex number σ, with ( ) ( ) ,0>η≥σ RR  the integral 

operator βE  defined by (4) is in the class .S  

Proof. Suppose that ( )( ) 0>zfiR  for all ....,,1 ni =  Thus, we have 

( ) ( ),zPzf ii =′  (28) 

where P∈iP  for all ....,,1 ni =  Differentiating both sides of (27) 

logarithmically, we obtain 
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Define the regular function ( )zh  as in (15). Thus, from (17) we have 
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Multiplying both sides of (31) by 
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Using the hypothesis (27) we readily get 
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Finally, by applying Lemma 1.2, we conclude that the integral operator βE  

defined by (4) is in the class .S  

Letting ,1=n  ,1 δ=δ  ,1 α=α  ζ=ζ1  in Theorem 2.1, we obtain the 

following corollary. 
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Corollary 2.5. Let C∈ζα,  for A∈f  satisfies ( )( ) ,0>zfiR  and 

( )
( ) ( )η≤′
′′

Rzf
zfz  (33) 

for all .U∈z  If 
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n

i 1
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then, for any complex number σ, with ( ) ( ) ,0>η≥σ RR  the integral 

operator ζα
β

,E  defined by (4) is in the class .S  

Using Lemma 1.3, we derive the following theorem. 

Theorem 2.6. Let C∈βζα ,, ii  for all ,...,,2,1 ni =  ( ) ,0>βR  ∈c  

( )1<zC  and each A∈if  satisfies ( )( ) ,0>zfiR  and 

( )
( ) ( )η≤′
′′

Rzf
zfz

i
i  (35) 

for all .U∈z  If 
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n

i
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then, for any complex number σ, with ( ) ( ) ,0>η≥σ RR  the integral 

operator βE  defined by (4) is in the class .S  

Proof. From (30), we have 
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Now by using the hypothesis (27) we obtain 

( ) ( )
( ) .11 22 ≤′β
′′

−+ ββ
zh
zhzzzc  

Finally, by applying Lemma 1.3, we conclude that .S∈βE  

Letting ,1=n  ,1 δ=δ  ,1 α=α  ζ=ζ1  in Theorem 2.1, we obtain the 

following corollary. 

Corollary 2.7. Let C∈βζα ,,  for all ,...,,2,1 ni =  ( ) ,0>βR  ∈c  

( )1<zC  and each A∈if  satisfies ( )( ) ,0>zfiR  and 

( )
( ) ( )η≤′
′′

Rzf
zfz  (38) 

for all .U∈z  If 

( )∑
=

−≤ζ+α
n

i
c

1
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then, for any complex number σ, with ( ) ( ) ,0>η≥σ RR  the integral 

operator ζα
β

,E  defined by (4) is in the class .S  

Remark. Other results related to univalence criteria can be read in [10]. 
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