Far East Journal of Mathematical Sciences (FJMS)
© 2014 Pushpa Publishing House, Allahabad, India
Published Online: November 2014
Available online at http://pphmj.com/journals/fjms.htm
Volume 93, Number 2, 2014, Pages 185-195

ORDER OF UNIVALENCY OF GENERAL INTEGRAL OPERATOR

Nasser Alkasbi and Maslina Darus*
School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
Bangi 43600, Selangor D. Ehsan
Malaysia
e-mail: nasserksb@yahoo.com
maslina@ukm.edu.my

Abstract

Let E_{β} be the integral operator defined by $$
E_{\beta}(z)=\left[\beta \int_{0}^{z} t^{\beta-1}\left(f_{1}^{\prime}(t)\right)^{\alpha_{1}} P_{1}^{\zeta_{1}}(t) \cdots\left(f_{n}^{\prime}(t)\right)^{\alpha_{n}} P_{n}^{\zeta_{n}}(t) d t\right]^{\frac{1}{\beta}},
$$ where each of the functions f_{i}, and P_{i} are, respectively, analytic functions and functions with positive real part defined in the open unit disk for all $i=1, \ldots, n$. The object of this paper is to obtain several univalence conditions for this integral operator. Our main results contain some interesting corollaries as special cases.

[^0]
1. Introduction and Definitions

In the past few years, integral operators have been a circle of interests to many young researchers in the area of univalent function theory. Too many developments in creating new operators can cause a lot of confusions as well. However, it is an interesting topic to be discussed and studied. We start by defining a general integral operator based on previous operators.

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z: z \in \mathbb{C}:|z|<1\}: \mathcal{S}=$ $\{f \in \mathcal{A}: f$ is univalent in $\mathbb{U}\}$. Also, let P be the class of all functions which are analytic in \mathbb{U} and satisfy $P(0)=1, \mathfrak{R}\{P(z)\}>0$. Frasin and Darus [3] defined the family $\mathcal{B}(\delta), 0 \leq \delta<1$ so that it consists of functions $f \in \mathcal{A}$ satisfying the condition

$$
\begin{equation*}
\left|\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1\right|<1-\delta(z \in \mathbb{U}) \tag{2}
\end{equation*}
$$

In this paper, we obtain new sufficient conditions for the univalence of the general integral operator $E_{\beta}(z)$ defined by

$$
\begin{equation*}
E_{\beta}(z)=\left[\beta \int_{0}^{z} t^{\beta-1} \prod_{i=0}^{n}\left(f_{i}^{\prime}(t)\right)^{\alpha_{i}} P_{i}^{\zeta_{i}}(t) d t\right]^{\frac{1}{\beta}} \tag{3}
\end{equation*}
$$

where $\beta \in \mathbb{C}^{*}, \alpha_{i}, \gamma_{i}, \zeta_{i} \in \mathbb{C}, f_{i} \in \mathcal{A}$ and $P_{i} \in \mathcal{P}$ for all $i=1,2,3, \ldots, n$.
Here and throughout in the sequel, every multi-valued function is taken with the principal branch.

Remark 1.1. Note that the integral operator E_{β} generalizes the following operators introduced and studied by several authors:
(i) For $\alpha_{i}=0$ for all $i=1, \ldots, n$, we obtain the integral operator

$$
\begin{equation*}
I_{\beta}^{\zeta}\left(P_{i}\right)(z)=\left[\beta \int_{0}^{z} t^{\beta-1} \prod_{i=0}^{n} P_{i}^{\zeta_{i}}(t) d t\right]^{\frac{1}{\beta}} \tag{4}
\end{equation*}
$$

introduced and studied by Frasin [4].
(ii) For $\beta=1, \zeta_{i}=\gamma_{i}=0$ for all $i=1, \ldots, n$, we obtain the integral operator

$$
\begin{equation*}
F_{\alpha_{1}, \ldots, \alpha_{n}}(z)=\int_{0}^{z}\left(f_{1}^{\prime}(t)\right)^{\alpha_{1}} \cdots\left(f_{1}^{\prime}(t)\right)^{\alpha_{n}} d t \tag{5}
\end{equation*}
$$

introduced and studied by Breaz et al. [1].
(iii) For $\beta=1, \quad n=1, \alpha_{i}=\alpha, \gamma_{i}=\zeta_{i}=0$, we obtain the integral operator

$$
\begin{equation*}
G(z)=\int_{0}^{z}\left(f^{\prime}(t)\right)^{\alpha} d t \tag{6}
\end{equation*}
$$

studied in [8].
In order to derive our main results, we have to recall here the following lemmas.

Lemma 1.2 [9]. Let $\eta \in \mathbb{C}$ with $\mathfrak{R}(\eta)>0$ if $h \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\frac{1-|z|^{2 \mathfrak{R}(\eta)}}{\mathfrak{R}(\eta)}\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| \leq 1 \tag{7}
\end{equation*}
$$

for all $z \in \mathbb{U}$, then the integral operator

$$
\begin{equation*}
F_{\beta}(z)=\left\{\beta \int_{0}^{z} t^{\beta-1}\left(f^{\prime}(t)\right) d t\right\}^{\frac{1}{\beta}} \tag{8}
\end{equation*}
$$

is in the class \mathcal{S}.

Lemma 1.3 [7]. Let $\beta \in \mathbb{C}$ with $\mathfrak{R}(\beta)>0, c \in \mathbb{C}$ with $|c|<1, c \neq-1$ if $h \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\left.\left.|c| z\right|^{2 \beta}+\left(1+|z|^{2 \beta}\right) \frac{z h^{\prime \prime}(z)}{\beta h^{\prime}(z)} \right\rvert\, \leq 1, \tag{9}
\end{equation*}
$$

for all $z \in \mathbb{U}$, then the integral operator $F_{\beta}(z)$ defined by (16) is in the class \mathcal{S}.

Lemma 1.4[5]. If $P(z) \in \mathcal{P}$, then

$$
\begin{equation*}
\left|\frac{z P^{\prime}(z)}{p(z)}\right| \leq \frac{2|z|}{1-|z|^{2}} . \tag{10}
\end{equation*}
$$

Lemma 1.5 [2]. If $f(z) \in \mathcal{B}(\delta)$, then

$$
\begin{equation*}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq \frac{(1-\delta)(2+|z|)}{1-|z|} . \tag{11}
\end{equation*}
$$

Also, we need the following general Schwarz lemma.
Lemma 1.6 [6]. Let the function f be regular in the disk $U_{R}=z:|z|$ $<R$, with $|M|<R$ for fixed M. If $f(z)$ has one zero with multiplicity order bigger than m for $z=0$, then

$$
\begin{equation*}
|f(z)| \leq \frac{M}{R^{m}}|z|^{m}\left(z \in \mathbb{U}_{R}\right) . \tag{12}
\end{equation*}
$$

The equality can hold only if

$$
\begin{equation*}
f(z)=e^{i \Theta}\left(\frac{M}{R^{m}}\right) z^{m}, \tag{13}
\end{equation*}
$$

where Θ is constant.

2. Univalence Conditions for the Operator E_{β}

We first prove the following theorem.

Theorem 2.1. Let $f(z) \in \mathcal{B}\left(\delta_{i}\right), 0 \leq \delta_{i}<1, \quad P_{i}(z) \in \mathcal{P}$ for all $i=1$, \ldots, n, and $\eta \in \mathbb{C}$ with $\mathfrak{R}(\eta)=a>0$. If

$$
\begin{equation*}
\sum_{i=1}^{n}\left[3\left|\alpha_{i}\right|\left(1-\delta_{i}\right)+2\left|\zeta_{i}\right|\right]<\min \left\{a ; \frac{1}{2}\right\} \tag{14}
\end{equation*}
$$

then the integral operator E_{β} defined by (3) is in the class \mathcal{S}.
Proof. Define the regular function $h(z)$ by

$$
\begin{equation*}
h(z)=\int_{0}^{z} \prod_{i=0}^{n}\left[\left(f_{i}^{\prime}(t)\right)^{\alpha_{i}} P_{i}^{\zeta_{i}}(t)\right] d t \tag{15}
\end{equation*}
$$

Then it is easy to see that

$$
\begin{equation*}
h^{\prime}(z)=\prod_{i=0}^{n}\left[\left(f_{i}^{\prime}(t)\right)^{\alpha_{i}} P_{i}^{\zeta_{i}}(t)\right] \tag{16}
\end{equation*}
$$

and $h(0)=1-h^{\prime}(0)=0$. Differentiating both sides of equation (16) logarithmically, we obtain

$$
\begin{equation*}
\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}=\sum_{i=1}^{n} \alpha_{i}\left(\frac{z f_{i}^{\prime \prime}(z)}{f_{i}^{\prime}(z)}\right)+\sum_{i=1}^{n} \zeta_{i}\left(\frac{z P_{i}^{\prime}(z)}{P_{i}(z)}\right) . \tag{17}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| \leq \sum_{i=1}^{n}\left|\alpha_{i}\right|\left|\frac{z f_{i}^{\prime \prime}(z)}{f_{i}^{\prime}(z)}\right|+\sum_{i=1}^{n}\left|\zeta_{i}\right|\left|\frac{z P_{i}^{\prime}(z)}{P_{i}(z)}\right| . \tag{18}
\end{equation*}
$$

Since $f(z) \in \mathcal{B}\left(\delta_{i}\right), P_{i}(z) \in \mathcal{P}$ for all $i=1, \ldots, n$, from (18), (10) and (11), we obtain

$$
\begin{align*}
\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| & \leq \sum_{i=1}^{n}\left|\alpha_{i}\right|\left(1-\delta_{i}\right)\left(\frac{(2+|z|)}{1-|z|}\right)+\sum_{i=1}^{n}\left|\zeta_{i}\right|\left(\frac{(2|z|)}{1-|z|^{2}}\right) \\
& \leq \sum_{i=1}^{n}\left|\alpha_{i}\right|\left(1-\delta_{i}\right)\left(\frac{3}{1-|z|}\right)+\sum_{i=1}^{n}\left|\zeta_{i}\right|\left(\frac{2}{1-|z|}\right) . \tag{19}
\end{align*}
$$

Multiply both sides of (19) by $\frac{1-|z|^{2 \mathfrak{R}(\eta)}}{\mathfrak{R}(\eta)}$, we get

$$
\begin{equation*}
\frac{1-|z|^{2 \mathfrak{R}(\eta)}}{\mathfrak{R}(\eta)}\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| \leq \frac{1-|z|^{2 \mathfrak{R}(\eta)}}{(1-|z|) \mathfrak{R}(\eta)} \times \sum_{i=1}^{n}\left[3\left|\alpha_{i}\right|\left(1-\delta_{i}\right)+2\left|\zeta_{i}\right|\right] \tag{20}
\end{equation*}
$$

for all $z \in \mathbb{U}$.
Let us denote $|z|=x, \quad x \in[0,1), \quad \mathfrak{R}(\eta)=a>0, \quad$ and $\quad \Phi(x)=$ $\left(1-x^{2 a}\right) /(1-x)$. It is easy to prove that

$$
\Phi(x) \leq \begin{cases}1, & 0<a<1 \tag{21}\\ 2 a, & \frac{1}{2}<a<\infty\end{cases}
$$

From (20), (21), and the hypothesis (14), we have

$$
\begin{align*}
\frac{1-|z|^{2 a}}{a}\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| & \leq \begin{cases}\frac{1}{a} \sum_{i=1}^{n}\left[3\left|\alpha_{i}\right|\left(1-\delta_{i}\right)+2\left|\zeta_{i}\right|\right], & 0<a<1 \\
2 \sum_{i=1}^{n}\left[3\left|\alpha_{i}\right|\left(1-\delta_{i}\right)+2\left|\zeta_{i}\right|\right], & \frac{1}{2}<a<\infty\end{cases} \\
& \leq 1 \tag{22}
\end{align*}
$$

for all $z \in \mathbb{U}$. Applying Lemma 1.2 for the function $h(z)$, we prove that $E_{\beta}(z) \in \mathcal{S}$.

Letting $n=1, \delta_{1}=\delta, \alpha_{1}=\alpha, \zeta_{1}=\zeta$ in Theorem 2.1, we obtain the following corollary.

Corollary 2.2. Let $f(z) \in \mathcal{B}(\delta), 0 \leq \delta<1, P(z) \in \mathcal{P}$, and $\eta, \alpha, \zeta \in \mathbb{C}$ with $\mathfrak{R}(\eta)=a>0$. If

$$
\begin{equation*}
3|\alpha|(1-\delta)+2|\zeta|<\min \left\{a ; \frac{1}{2}\right\} \tag{23}
\end{equation*}
$$

then the integral operator $E_{\beta}^{\alpha, \zeta}$ defined by

$$
\begin{equation*}
E_{\beta}(z)^{\alpha, \zeta}=\left[\beta \int_{0}^{z} t^{\beta-1}\left(f^{\prime}(t)\right)^{\alpha} P^{\zeta}(t) d t\right]^{\frac{1}{\beta}} \tag{24}
\end{equation*}
$$

is in the class \mathcal{S}.
If we set $\delta=0$ in Corollary 2.2, we have the following.
Corollary 2.3. Let $f(z) \in \mathcal{S}, P(z) \in \mathcal{P}$, and $\eta, \alpha, \zeta \in \mathbb{C}$ with $\mathfrak{R}(\eta)=$ $a>0$. If

$$
\begin{equation*}
3|\alpha|+2|\zeta|<\min \left\{a ; \frac{1}{2}\right\}, \tag{25}
\end{equation*}
$$

then the integral operator $E_{\beta}^{\alpha, \zeta}$ defined by (33) is in the class \mathcal{S}.
Next, we prove the following theorem.
Theorem 2.4. Let $\alpha_{i}, \zeta_{i} \in \mathbb{C}$ for all $i=1,2, \ldots, n$ and each $f_{i} \in \mathcal{A}$ satisfies $\mathfrak{R}\left(f_{i}(z)\right)>0$, and

$$
\begin{equation*}
\left|\frac{z f_{i}^{\prime \prime}(z)}{f_{i}^{\prime}(z)}\right| \leq \mathfrak{R}(\eta) \tag{26}
\end{equation*}
$$

for all $z \in \mathbb{U}$. If

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\left|\alpha_{i}\right|+\left|\zeta_{i}\right|\right) \leq 1 \tag{27}
\end{equation*}
$$

then, for any complex number σ, with $\mathfrak{R}(\sigma) \geq \mathfrak{R}(\eta)>0$, the integral operator E_{β} defined by (4) is in the class \mathcal{S}.

Proof. Suppose that $\mathfrak{R}\left(f_{i}(z)\right)>0$ for all $i=1, \ldots, n$. Thus, we have

$$
\begin{equation*}
f_{i}^{\prime}(z)=P_{i}(z), \tag{28}
\end{equation*}
$$

where $P_{i} \in \mathcal{P}$ for all $i=1, \ldots, n$. Differentiating both sides of (27) logarithmically, we obtain

$$
\begin{equation*}
\frac{z f_{i}^{\prime \prime}(z)}{f_{i}^{\prime}(z)}=\frac{z P_{i}^{\prime}(z)}{P_{i}(z)} \tag{29}
\end{equation*}
$$

Define the regular function $h(z)$ as in (15). Thus, from (17) we have

$$
\begin{equation*}
\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}=\sum_{i=1}^{n}\left(\alpha_{i}+\zeta_{i}\right)\left(\frac{z f_{i}^{\prime \prime}(z)}{f_{i}^{\prime}(z)}\right) \tag{30}
\end{equation*}
$$

and so

$$
\begin{equation*}
\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| \leq\left|\sum_{i=1}^{n}\left(\alpha_{i}+\zeta_{i}\right)\left(\frac{z f_{i}^{\prime \prime}(z)}{f_{i}^{\prime}(z)}\right)\right| \tag{31}
\end{equation*}
$$

Multiplying both sides of (31) by $\frac{1-|z|^{2 \Re(\eta)}}{\mathfrak{R}(\eta)}$, from Lemma 1.2 with $\delta=0$, we get

$$
\begin{aligned}
\frac{1-|z|^{2 \mathfrak{R}(\eta)}}{\mathfrak{R}(\eta)}\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| & \leq \frac{1-|z|^{2 \mathfrak{R}(\eta)}}{\mathfrak{R}(\eta)} \sum_{i=1}^{n}\left(\left|\alpha_{i}\right|+\left|\zeta_{i}\right|\right)\left|\frac{z f_{i}^{\prime \prime}(z)}{f_{i}^{\prime}(z)}\right| \\
& \leq \frac{1-|z|^{2 \mathfrak{R}(\eta)}}{\mathfrak{R}(\eta)} \sum_{i=1}^{n}\left(\left|\alpha_{i}\right|+\left|\zeta_{i}\right|\right) \mathfrak{R}(\eta) \\
& \leq \sum_{i=1}^{n}\left(\left|\alpha_{i}\right|+\left|\zeta_{i}\right|\right)
\end{aligned}
$$

Using the hypothesis (27) we readily get

$$
\begin{equation*}
\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| \leq 1 \tag{32}
\end{equation*}
$$

Finally, by applying Lemma 1.2 , we conclude that the integral operator E_{β} defined by (4) is in the class \mathcal{S}.

Letting $n=1, \delta_{1}=\delta, \alpha_{1}=\alpha, \zeta_{1}=\zeta$ in Theorem 2.1, we obtain the following corollary.

Corollary 2.5. Let $\alpha, \zeta \in \mathbb{C}$ for $f \in \mathcal{A}$ satisfies $\mathfrak{R}\left(f_{i}(z)\right)>0$, and

$$
\begin{equation*}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq \mathfrak{R}(\eta) \tag{33}
\end{equation*}
$$

for all $z \in \mathbb{U}$. If

$$
\begin{equation*}
\sum_{i=1}^{n}(|\alpha|+|\zeta|) \leq 1 \tag{34}
\end{equation*}
$$

then, for any complex number σ, with $\mathfrak{R}(\sigma) \geq \mathfrak{R}(\eta)>0$, the integral operator $E_{\beta}^{\alpha, \zeta}$ defined by (4) is in the class \mathcal{S}.

Using Lemma 1.3, we derive the following theorem.
Theorem 2.6. Let $\alpha_{i}, \zeta_{i}, \beta \in \mathbb{C}$ for all $i=1,2, \ldots, n, \mathfrak{R}(\beta)>0, c \in$ $\mathbb{C}(|z|<1)$ and each $f_{i} \in \mathcal{A}$ satisfies $\mathfrak{R}\left(f_{i}(z)\right)>0$, and

$$
\begin{equation*}
\left|\frac{z f_{i}^{\prime \prime}(z)}{f_{i}^{\prime}(z)}\right| \leq \mathfrak{R}(\eta) \tag{35}
\end{equation*}
$$

for all $z \in \mathbb{U}$. If

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\left|\alpha_{i}\right|+\left|\zeta_{i}\right|\right) \leq 1-|c| \tag{36}
\end{equation*}
$$

then, for any complex number σ, with $\mathfrak{R}(\sigma) \geq \mathfrak{R}(\eta)>0$, the integral operator E_{β} defined by (4) is in the class \mathcal{S}.

Proof. From (30), we have

$$
\begin{align*}
\left.\left.|c| z\right|^{2 \beta}+\left(1-|z|^{2 \beta}\right) \frac{z h^{\prime \prime}(z)}{\beta h^{\prime}(z)} \right\rvert\, & \left.=\left.|c| z\right|^{2 \beta}+\frac{1-|z|^{2 \beta}}{\beta} \sum_{i=1}^{n}\left(\alpha_{i}+\zeta_{i}\right)\left(\frac{z f_{i}^{\prime \prime \prime}(z)}{f_{i}^{\prime}(z)}\right) \right\rvert\, \\
& \leq|c|+\frac{1}{|\beta|} \sum_{i=1}^{n}\left(\left|\alpha_{i}\right|+\left|\zeta_{i}\right|\right)|\beta| . \tag{37}
\end{align*}
$$

Now by using the hypothesis (27) we obtain

$$
\left.\left.|c| z\right|^{2 \beta}+\left(1-|z|^{2 \beta}\right) \frac{z h^{\prime \prime}(z)}{\beta h^{\prime}(z)} \right\rvert\, \leq 1
$$

Finally, by applying Lemma 1.3, we conclude that $E_{\beta} \in \mathcal{S}$.
Letting $n=1, \delta_{1}=\delta, \alpha_{1}=\alpha, \zeta_{1}=\zeta$ in Theorem 2.1, we obtain the following corollary.

Corollary 2.7. Let $\alpha, \zeta, \beta \in \mathbb{C}$ for all $i=1,2, \ldots, n, \mathfrak{R}(\beta)>0, c \in$ $\mathbb{C}(|z|<1)$ and each $f_{i} \in \mathcal{A}$ satisfies $\mathfrak{R}\left(f_{i}(z)\right)>0$, and

$$
\begin{equation*}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq \mathfrak{R}(\eta) \tag{38}
\end{equation*}
$$

for all $z \in \mathbb{U}$. If

$$
\begin{equation*}
\sum_{i=1}^{n}(|\alpha|+|\zeta|) \leq 1-|c| \tag{39}
\end{equation*}
$$

then, for any complex number σ, with $\mathfrak{R}(\sigma) \geq \mathfrak{R}(\eta)>0$, the integral operator $E_{\beta}^{\alpha, \zeta}$ defined by (4) is in the class \mathcal{S}.

Remark. Other results related to univalence criteria can be read in [10].

Acknowledgement

The work here was fully supported by FRGSTOPDOWN/2013/STG06/ UKM/01/1.

References

[1] D. Breaz, S. Owa and N. Breaz, A new integral univalent operator, Acta Univ. Apul. 16 (2008), 11-16.
[2] E. Deniz and H. Orhan, An extension of the univalence criterion for a family of integral operators, Ann. Univ. Mariae Curie-Skłodowska Sect. A 64(2) (2010), 29-35.
[3] B. A. Frasin and M. Darus, On certain analytic univalent functions, Inter. J. Math. Math. Sci. 25(5) (2001), 305-310.
[4] B. A. Frasin, Integral operator of analytic functions with positive real part, Kyungpook Math. J. 51(1) (2011), 77-85.
[5] T. H. MacGregor, The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 14 (1963), 514-520.
[6] Z. Nehari, Conformal Mapping, Dover, New York, NY, USA, 1975.
[7] V. Pescar, Univalence of certain integral operators, Acta Univ. Apul. 12(1989) (2006), 43-48.
[8] N. N. Pascu, On a univalence criterion, II, Itinerant Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca, 1985), pp. 153-154, Preprint, 85-6, Univ. "Babeş-Bolyai", Cluj-Napoca, 1985.
[9] N. N. Pascu and V. Pescar, On the integral operators of Kim-Merkes and Pfaltzgraff, Mathematica (Cluj) 32(55)(2) (1990), 185-192.
[10] I. Faisal and M. Darus, A study of Ahlfors' univalence criteria for a space of analytic functions: criteria II, Math. Comput. Modell. 55(3-4) (2012), 1466-1470.

[^0]: Received: July 16, 2014; Accepted: September 20, 2014
 2010 Mathematics Subject Classification: 30C45.
 Keywords and phrases: analytic functions, univalent functions, integral operator, Schwarz lemma.
 *Corresponding author

