Far East Journal of Mathematical Sciences (FJMS) © 2014 Pushpa Publishing House, Allahabad, India

Published Online: November 2014

Available online at http://pphmj.com/journals/fjms.htm

Volume 93, Number 2, 2014, Pages 185-195

ORDER OF UNIVALENCY OF GENERAL INTEGRAL OPERATOR

Nasser Alkasbi and Maslina Darus*

School of Mathematical Sciences Faculty of Science and Technology Universiti Kebangsaan Malaysia Bangi 43600, Selangor D. Ehsan Malaysia

e-mail: nasserksb@yahoo.com maslina@ukm.edu.my

Abstract

Let E_{β} be the integral operator defined by

$$E_{\beta}(z) = \left[\beta \int_0^z t^{\beta-1} (f_1'(t))^{\alpha_1} P_1^{\zeta_1}(t) \cdots (f_n'(t))^{\alpha_n} P_n^{\zeta_n}(t) dt\right]^{\frac{1}{\beta}},$$

where each of the functions f_i , and P_i are, respectively, analytic functions and functions with positive real part defined in the open unit disk for all i = 1, ..., n. The object of this paper is to obtain several univalence conditions for this integral operator. Our main results contain some interesting corollaries as special cases.

Received: July 16, 2014; Accepted: September 20, 2014

2010 Mathematics Subject Classification: 30C45.

Keywords and phrases: analytic functions, univalent functions, integral operator, Schwarz

*Corresponding author

1. Introduction and Definitions

In the past few years, integral operators have been a circle of interests to many young researchers in the area of univalent function theory. Too many developments in creating new operators can cause a lot of confusions as well. However, it is an interesting topic to be discussed and studied. We start by defining a general integral operator based on previous operators.

Let A denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \tag{1}$$

which are analytic in the open unit disk $\mathbb{U} = \{z : z \in \mathbb{C} : |z| < 1\} : \mathcal{S} = \{f \in \mathcal{A} : f \text{ is univalent in } \mathbb{U}\}$. Also, let P be the class of all functions which are analytic in \mathbb{U} and satisfy P(0) = 1, $\Re\{P(z)\} > 0$. Frasin and Darus [3] defined the family $\mathcal{B}(\delta)$, $0 \le \delta < 1$ so that it consists of functions $f \in \mathcal{A}$ satisfying the condition

$$\left| \frac{z^2 f'(z)}{f^2(z)} - 1 \right| < 1 - \delta(z \in \mathbb{U}). \tag{2}$$

In this paper, we obtain new sufficient conditions for the univalence of the general integral operator $E_{\beta}(z)$ defined by

$$E_{\beta}(z) = \left\lceil \beta \int_{0}^{z} t^{\beta - 1} \prod_{i=0}^{n} \left(f_i'(t) \right)^{\alpha_i} P_i^{\zeta_i}(t) dt \right\rceil^{\frac{1}{\beta}}, \tag{3}$$

where $\beta \in \mathbb{C}^*$, α_i , γ_i , $\zeta_i \in \mathbb{C}$, $f_i \in \mathcal{A}$ and $P_i \in \mathcal{P}$ for all i = 1, 2, 3, ..., n.

Here and throughout in the sequel, every multi-valued function is taken with the principal branch.

Remark 1.1. Note that the integral operator E_{β} generalizes the following operators introduced and studied by several authors:

(i) For $\alpha_i = 0$ for all i = 1, ..., n, we obtain the integral operator

$$I_{\beta}^{\zeta}(P_i)(z) = \left[\beta \int_0^z t^{\beta - 1} \prod_{i=0}^n P_i^{\zeta_i}(t) dt\right]^{\frac{1}{\beta}}$$
(4)

introduced and studied by Frasin [4].

(ii) For $\beta = 1$, $\zeta_i = \gamma_i = 0$ for all i = 1, ..., n, we obtain the integral operator

$$F_{\alpha_1, \dots, \alpha_n}(z) = \int_0^z (f_1'(t))^{\alpha_1} \cdots (f_1'(t))^{\alpha_n} dt$$
 (5)

introduced and studied by Breaz et al. [1].

(iii) For $\beta = 1$, n = 1, $\alpha_i = \alpha$, $\gamma_i = \zeta_i = 0$, we obtain the integral operator

$$G(z) = \int_0^z (f'(t))^{\alpha} dt \tag{6}$$

studied in [8].

In order to derive our main results, we have to recall here the following lemmas.

Lemma 1.2 [9]. Let $\eta \in \mathbb{C}$ with $\Re(\eta) > 0$ if $h \in \mathcal{A}$ satisfies

$$\frac{1-|z|^{2\Re(\eta)}}{\Re(\eta)}\left|\frac{zh''(z)}{h'(z)}\right| \le 1\tag{7}$$

for all $z \in \mathbb{U}$, then the integral operator

$$F_{\beta}(z) = \left\{ \beta \int_0^z t^{\beta - 1} (f'(t)) dt \right\}^{\frac{1}{\beta}}$$
 (8)

is in the class S.

Lemma 1.3 [7]. Let $\beta \in \mathbb{C}$ with $\Re(\beta) > 0$, $c \in \mathbb{C}$ with |c| < 1, $c \neq -1$ if $h \in \mathcal{A}$ satisfies

$$|c| z|^{2\beta} + (1 + |z|^{2\beta}) \frac{zh''(z)}{\beta h'(z)} | \le 1,$$
 (9)

for all $z \in \mathbb{U}$, then the integral operator $F_{\beta}(z)$ defined by (16) is in the class S.

Lemma 1.4 [5]. *If* $P(z) \in \mathcal{P}$, *then*

$$\left|\frac{zP'(z)}{p(z)}\right| \le \frac{2|z|}{1-|z|^2}.$$
 (10)

Lemma 1.5 [2]. If $f(z) \in \mathcal{B}(\delta)$, then

$$\left| \frac{zf''(z)}{f'(z)} \right| \le \frac{(1-\delta)(2+|z|)}{1-|z|}. \tag{11}$$

Also, we need the following general Schwarz lemma.

Lemma 1.6 [6]. Let the function f be regular in the disk $U_R = z : |z|$ < R, with |M| < R for fixed M. If f(z) has one zero with multiplicity order bigger than m for z = 0, then

$$|f(z)| \le \frac{M}{R^m} |z|^m \ (z \in \mathbb{U}_R). \tag{12}$$

The equality can hold only if

$$f(z) = e^{i\Theta} \left(\frac{M}{R^m}\right) z^m, \tag{13}$$

where Θ is constant.

2. Univalence Conditions for the Operator E_{β}

We first prove the following theorem.

Theorem 2.1. Let $f(z) \in \mathcal{B}(\delta_i)$, $0 \le \delta_i < 1$, $P_i(z) \in \mathcal{P}$ for all i = 1, ..., n, and $\eta \in \mathbb{C}$ with $\Re(\eta) = a > 0$. If

$$\sum_{i=1}^{n} [3|\alpha_i|(1-\delta_i) + 2|\zeta_i|] < \min\left\{a; \frac{1}{2}\right\},\tag{14}$$

then the integral operator E_{β} defined by (3) is in the class S.

Proof. Define the regular function h(z) by

$$h(z) = \int_0^z \prod_{i=0}^n \left[(f_i'(t))^{\alpha_i} P_i^{\zeta_i}(t) \right] dt.$$
 (15)

Then it is easy to see that

$$h'(z) = \prod_{i=0}^{n} \left[(f_i'(t))^{\alpha_i} P_i^{\zeta_i}(t) \right]$$
 (16)

and h(0) = 1 - h'(0) = 0. Differentiating both sides of equation (16) logarithmically, we obtain

$$\frac{zh''(z)}{h'(z)} = \sum_{i=1}^{n} \alpha_i \left(\frac{zf_i''(z)}{f_i'(z)} \right) + \sum_{i=1}^{n} \zeta_i \left(\frac{zP_i'(z)}{P_i(z)} \right). \tag{17}$$

Thus, we have

$$\left| \frac{zh''(z)}{h'(z)} \right| \le \sum_{i=1}^{n} \left| \alpha_i \right| \left| \frac{zf_i''(z)}{f_i'(z)} \right| + \sum_{i=1}^{n} \left| \zeta_i \right| \left| \frac{zP_i'(z)}{P_i(z)} \right|. \tag{18}$$

Since $f(z) \in \mathcal{B}(\delta_i)$, $P_i(z) \in \mathcal{P}$ for all i = 1, ..., n, from (18), (10) and (11), we obtain

$$\left| \frac{zh''(z)}{h'(z)} \right| \leq \sum_{i=1}^{n} |\alpha_{i}| (1 - \delta_{i}) \left(\frac{(2 + |z|)}{1 - |z|} \right) + \sum_{i=1}^{n} |\zeta_{i}| \left(\frac{(2|z|)}{1 - |z|^{2}} \right)$$

$$\leq \sum_{i=1}^{n} |\alpha_{i}| (1 - \delta_{i}) \left(\frac{3}{1 - |z|} \right) + \sum_{i=1}^{n} |\zeta_{i}| \left(\frac{2}{1 - |z|} \right). \tag{19}$$

Multiply both sides of (19) by $\frac{1-|z|^{2\Re(\eta)}}{\Re(\eta)}$, we get

$$\frac{1 - |z|^{2\Re(\eta)}}{\Re(\eta)} \left| \frac{zh''(z)}{h'(z)} \right| \le \frac{1 - |z|^{2\Re(\eta)}}{(1 - |z|)\Re(\eta)} \times \sum_{i=1}^{n} [3|\alpha_i|(1 - \delta_i) + 2|\zeta_i|] \quad (20)$$

for all $z \in \mathbb{U}$.

Let us denote |z| = x, $x \in [0, 1)$, $\Re(\eta) = a > 0$, and $\Phi(x) = (1 - x^{2a})/(1 - x)$. It is easy to prove that

$$\Phi(x) \le \begin{cases} 1, & 0 < a < 1, \\ 2a, & \frac{1}{2} < a < \infty. \end{cases}$$
(21)

From (20), (21), and the hypothesis (14), we have

$$\frac{1 - |z|^{2a}}{a} \left| \frac{zh''(z)}{h'(z)} \right| \leq \begin{cases} \frac{1}{a} \sum_{i=1}^{n} [3|\alpha_{i}|(1 - \delta_{i}) + 2|\zeta_{i}|], & 0 < a < 1 \\ 2 \sum_{i=1}^{n} [3|\alpha_{i}|(1 - \delta_{i}) + 2|\zeta_{i}|], & \frac{1}{2} < a < \infty \end{cases}$$

$$\leq 1 \tag{22}$$

for all $z \in \mathbb{U}$. Applying Lemma 1.2 for the function h(z), we prove that $E_{\beta}(z) \in \mathcal{S}$.

Letting n = 1, $\delta_1 = \delta$, $\alpha_1 = \alpha$, $\zeta_1 = \zeta$ in Theorem 2.1, we obtain the following corollary.

Corollary 2.2. Let $f(z) \in \mathcal{B}(\delta)$, $0 \le \delta < 1$, $P(z) \in \mathcal{P}$, and η , α , $\zeta \in \mathbb{C}$ with $\Re(\eta) = a > 0$. If

$$3|\alpha|(1-\delta)+2|\zeta|<\min\left\{a;\frac{1}{2}\right\},\tag{23}$$

then the integral operator $\mathit{E}^{\alpha,\,\zeta}_{\beta}$ defined by

$$E_{\beta}(z)^{\alpha,\zeta} = \left[\beta \int_{0}^{z} t^{\beta-1} (f'(t))^{\alpha} P^{\zeta}(t) dt\right]^{\frac{1}{\beta}}$$
(24)

is in the class S.

If we set $\delta = 0$ in Corollary 2.2, we have the following.

Corollary 2.3. Let $f(z) \in \mathcal{S}$, $P(z) \in \mathcal{P}$, and η , α , $\zeta \in \mathbb{C}$ with $\mathfrak{R}(\eta) = a > 0$. If

$$3|\alpha| + 2|\zeta| < \min\left\{a; \frac{1}{2}\right\},$$
 (25)

then the integral operator $E^{\alpha,\,\zeta}_{\beta}$ defined by (33) is in the class $\mathcal{S}.$

Next, we prove the following theorem.

Theorem 2.4. Let α_i , $\zeta_i \in \mathbb{C}$ for all i = 1, 2, ..., n and each $f_i \in \mathcal{A}$ satisfies $\Re(f_i(z)) > 0$, and

$$\left| \frac{z f_i''(z)}{f_i'(z)} \right| \le \Re(\eta) \tag{26}$$

for all $z \in \mathbb{U}$. If

$$\sum_{i=1}^{n} \left(\left| \alpha_i \right| + \left| \zeta_i \right| \right) \le 1 \tag{27}$$

then, for any complex number σ , with $\Re(\sigma) \ge \Re(\eta) > 0$, the integral operator E_{β} defined by (4) is in the class S.

Proof. Suppose that $\Re(f_i(z)) > 0$ for all i = 1, ..., n. Thus, we have

$$f_i'(z) = P_i(z), \tag{28}$$

where $P_i \in \mathcal{P}$ for all i = 1, ..., n. Differentiating both sides of (27) logarithmically, we obtain

$$\frac{zf_i''(z)}{f_i'(z)} = \frac{zP_i'(z)}{P_i(z)}. (29)$$

Define the regular function h(z) as in (15). Thus, from (17) we have

$$\frac{zh''(z)}{h'(z)} = \sum_{i=1}^{n} (\alpha_i + \zeta_i) \left(\frac{zf_i''(z)}{f_i'(z)} \right)$$
(30)

and so

$$\left| \frac{zh''(z)}{h'(z)} \right| \le \left| \sum_{i=1}^{n} (\alpha_i + \zeta_i) \left(\frac{zf_i''(z)}{f_i'(z)} \right) \right|. \tag{31}$$

Multiplying both sides of (31) by $\frac{1-|z|^{2\Re(\eta)}}{\Re(\eta)}$, from Lemma 1.2 with $\delta = 0$, we get

$$\frac{1-|z|^{2\Re(\eta)}}{\Re(\eta)} \left| \frac{zh''(z)}{h'(z)} \right| \leq \frac{1-|z|^{2\Re(\eta)}}{\Re(\eta)} \sum_{i=1}^{n} (|\alpha_i| + |\zeta_i|) \left| \frac{zf_i''(z)}{f_i'(z)} \right| \\
\leq \frac{1-|z|^{2\Re(\eta)}}{\Re(\eta)} \sum_{i=1}^{n} (|\alpha_i| + |\zeta_i|) \Re(\eta) \\
\leq \sum_{i=1}^{n} (|\alpha_i| + |\zeta_i|).$$

Using the hypothesis (27) we readily get

$$\left| \frac{zh''(z)}{h'(z)} \right| \le 1. \tag{32}$$

Finally, by applying Lemma 1.2, we conclude that the integral operator E_{β} defined by (4) is in the class S.

Letting n = 1, $\delta_1 = \delta$, $\alpha_1 = \alpha$, $\zeta_1 = \zeta$ in Theorem 2.1, we obtain the following corollary.

Corollary 2.5. Let $\alpha, \zeta \in \mathbb{C}$ for $f \in \mathcal{A}$ satisfies $\Re(f_i(z)) > 0$, and

$$\left|\frac{zf''(z)}{f'(z)}\right| \le \Re(\eta) \tag{33}$$

for all $z \in \mathbb{U}$. If

$$\sum_{i=1}^{n} (|\alpha| + |\zeta|) \le 1 \tag{34}$$

then, for any complex number σ , with $\Re(\sigma) \geq \Re(\eta) > 0$, the integral operator $E_{\beta}^{\alpha,\,\zeta}$ defined by (4) is in the class \mathcal{S} .

Using Lemma 1.3, we derive the following theorem.

Theorem 2.6. Let α_i , ζ_i , $\beta \in \mathbb{C}$ for all i = 1, 2, ..., n, $\Re(\beta) > 0$, $c \in \mathbb{C}(|z| < 1)$ and each $f_i \in \mathcal{A}$ satisfies $\Re(f_i(z)) > 0$, and

$$\left| \frac{z f_i''(z)}{f_i'(z)} \right| \le \Re(\eta) \tag{35}$$

for all $z \in \mathbb{U}$. If

$$\sum_{i=1}^{n} (|\alpha_i| + |\zeta_i|) \le 1 - |c| \tag{36}$$

then, for any complex number σ , with $\Re(\sigma) \ge \Re(\eta) > 0$, the integral operator E_{β} defined by (4) is in the class S.

Proof. From (30), we have

$$\left| c |z|^{2\beta} + (1 - |z|^{2\beta}) \frac{zh''(z)}{\beta h'(z)} \right| = \left| c |z|^{2\beta} + \frac{1 - |z|^{2\beta}}{\beta} \sum_{i=1}^{n} (\alpha_i + \zeta_i) \left(\frac{zf_i''(z)}{f_i'(z)} \right) \right|$$

$$\leq |c| + \frac{1}{|\beta|} \sum_{i=1}^{n} (|\alpha_i| + |\zeta_i|) |\beta|. \tag{37}$$

Now by using the hypothesis (27) we obtain

$$|c| z|^{2\beta} + (1 - |z|^{2\beta}) \frac{zh''(z)}{\beta h'(z)}| \le 1.$$

Finally, by applying Lemma 1.3, we conclude that $E_{\beta} \in \mathcal{S}$.

Letting n = 1, $\delta_1 = \delta$, $\alpha_1 = \alpha$, $\zeta_1 = \zeta$ in Theorem 2.1, we obtain the following corollary.

Corollary 2.7. Let $\alpha, \zeta, \beta \in \mathbb{C}$ for all $i = 1, 2, ..., n, \Re(\beta) > 0, c \in \mathbb{C}(|z| < 1)$ and each $f_i \in A$ satisfies $\Re(f_i(z)) > 0$, and

$$\left| \frac{zf''(z)}{f'(z)} \right| \le \Re(\eta) \tag{38}$$

for all $z \in \mathbb{U}$. If

$$\sum_{i=1}^{n} (|\alpha| + |\zeta|) \le 1 - |c| \tag{39}$$

then, for any complex number σ , with $\Re(\sigma) \geq \Re(\eta) > 0$, the integral operator $E_{\beta}^{\alpha,\,\zeta}$ defined by (4) is in the class \mathcal{S} .

Remark. Other results related to univalence criteria can be read in [10].

Acknowledgement

The work here was fully supported by FRGSTOPDOWN/2013/STG06/ UKM/01/1.

References

- [1] D. Breaz, S. Owa and N. Breaz, A new integral univalent operator, Acta Univ. Apul. 16 (2008), 11-16.
- [2] E. Deniz and H. Orhan, An extension of the univalence criterion for a family of integral operators, Ann. Univ. Mariae Curie-Skłodowska Sect. A 64(2) (2010), 29-35.

- [3] B. A. Frasin and M. Darus, On certain analytic univalent functions, Inter. J. Math. Math. Sci. 25(5) (2001), 305-310.
- [4] B. A. Frasin, Integral operator of analytic functions with positive real part, Kyungpook Math. J. 51(1) (2011), 77-85.
- [5] T. H. MacGregor, The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 14 (1963), 514-520.
- [6] Z. Nehari, Conformal Mapping, Dover, New York, NY, USA, 1975.
- [7] V. Pescar, Univalence of certain integral operators, Acta Univ. Apul. 12(1989) (2006), 43-48.
- [8] N. N. Pascu, On a univalence criterion, II, Itinerant Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca, 1985), pp. 153-154, Preprint, 85-6, Univ. "Babeş-Bolyai", Cluj-Napoca, 1985.
- [9] N. N. Pascu and V. Pescar, On the integral operators of Kim-Merkes and Pfaltzgraff, Mathematica (Cluj) 32(55)(2) (1990), 185-192.
- [10] I. Faisal and M. Darus, A study of Ahlfors' univalence criteria for a space of analytic functions: criteria II, Math. Comput. Modell. 55(3-4) (2012), 1466-1470.