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Abstract 

Zero-inflated mixture (ZIM) regression for zero-inflated population in 
presence of many zero value responses has been developed by Paneru 
and Chen [22]. The ZIM regression addresses the issue of estimation 
problem in generalized linear models under complex probability 
sampling designs via a two-component mixture model where the         
non-zero component follows a parametric distribution. As a technical 
supplement to Paneru and Chen [22], this paper presents theoretical 
details and complete proof of asymptotic distribution of maximum 
pseudo-likelihood ratio test statistic. The proposed maximum pseudo-
likelihood procedure is applied to a real data set to give both point and 
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interval estimates of expected response at different “future” covariate 
values. It turns out that confidence intervals under the new pseudo-
likelihood procedure are shorter than those obtained from the popular 
maximum likelihood procedure. Nice concave curves of likelihood 
ratio statistics under both procedures also visualize that the pseudo-
likelihood procedure gives shorter confidence intervals. 

1. Introduction 

Zero-inflated regression model is referred to regression model in 
presence of many zero-value responses which cause the regression error 
distribution spiked at zero. The problem of zero-inflation in presence of 
many zero-value responses exists in many important application areas           
such as insurance, reliability, meteorology, auditing, ecology, queuing, and 
manufacturing. For examples, in modeling failure time, a large number of 
items produced may fail during installation (value of 0 for life time is 
recorded); in modeling waiting time, many customers may have zero waiting 
time in queue; in modeling defect counts, there is a relatively large number 
of zeros (non-defects) in an established manufacturing process. Different 
approaches and methods that exist in literature are focused on estimating 
population mean and developing regression models for zero-inflated 
population. 

Kvanli et al. [14] discussed interval estimates of population mean using 
parametric mixture model, where the non-zero component follows a known 
probability distribution. Chen and Qin [7] and Chen et al. [6] proposed       
non-parametric empirical likelihood confidence intervals of zero-inflated 
population mean. Chen et al. [5] proposed pseudo-likelihood approach to 
address the issue of complex probability sampling designs to estimate the 
mean of zero-inflated population. 

Lambert [15] introduced zero-inflated Poisson (ZIP) regression to model 
defect counts in manufacturing and addressed the issue of overdispersion due 
to excessive zero counts in Poisson distribution. ZIP regression model treats 
the data as a mixture of zeros and outcomes of a Poisson variate. Welsh et al. 
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[25] applied different regression models to zero-inflated count data with the 
application in abundance of rare species and illustrated a detail application 
with the abundance of Leadbeater’s Possum in montane ash forests in South-
eastern Australia. Since ordinary least square regression and generalized 
linear models perform poorly, Welsh et al. [25] suggested modeling response 
variable as a mixture of Bernoulli and Poisson distribution or Bernoulli and 
negative binomial distribution. To take care of possible serial correlation 
between repeated observations, Dobbie and Welsh [10] extended the two-
component approach used by Welsh et al. [25]. Extensions and applications 
of ZIP regression can also be found in Hall [13], Böhning [2], Lee et al. [16], 
Böhning et al. [3], Ridout et al. [23], and Yau and Lee [27]. Alternatives to 
ZIP regression can be found in Cui and Yang [9] and Yau et al. [26]. As         
a special case of Welsh et al. [25] (assuming positive abundance has log-
normally distributed error term), Fletcher et al. [12] described an approach 
that combines ordinary and logistic regression models for skewed data with 
many zeros. 

Zero-inflated regression models existed in literature, such as those 
mentioned above, do not address the situation when the available data for 
analysis are obtained through complex probability sampling designs. In a 
recent paper, Paneru and Chen [22] proposed and developed zero-inflated 
mixture regression model to investigate estimation problems (both point and 
confidence interval) in generalized linear models associated with complex 
sampling designs. As a technical supplement to Paneru and Chen [22],         
this paper presents the theoretical details and complete proof of asymptotic 
distribution of pseudo-likelihood ratio statistic in zero-inflated mixture 
regression. As an application, the new procedure that addresses the issue     
of complex sampling designs is applied to real data with different “future” 
covariates and the results are compared to the popular maximum likelihood 
method. 



Khyam Paneru and Hanfeng Chen 44 

2. Pseudo-likelihood Function in Zero-inflated 
Mixture (ZIM) Regression 

As defined by Paneru and Chen [22], ZIM regression model is a         
mixture of zero and non-zero responses where the non-zero response iy  has 

probability density function ( )σµ ,; iiyf  with respect to a common measure 

µ, where ( ) ( )β′ψ=|=µ −
iiii xxyE 1  with a specific link function ψ  and a 

structure parameter σ. The response iy  at covariate ix  follows the mixture 

model with pdf 

( ) ( ( ) ) ( ) ( ) ( ),010,;,,; 1 =α−+≠σβ′ψα=σβ′α −
iiiiii yIyIxyfxyg  (1) 

where α is the unknown proportion of non-zero values. Model (1) can be 
viewed as a generalized linear ZIM regression model with one-to-one link 
function ( ).iµψ  Generalized linear model (GLM) is an extension to the 

linear regression model, and it allows regression analysis in more complex 
situations when classical assumptions for linear regression model do not 
hold. In generalized linear model, mean of response variable is related to the 
linear combination of predictors by a one-to-one mapping called the link 
function. For detailed discussion for generalized linear models, see Madsen 
and Thyregod [18], McCullagh and Nelder [19], and Nelder and Wedderburn 
[21]. 

Pseudo log-likelihood function for ZIM regression follows the ideas 
from Chen et al. [5]. Let the surveyed population P  consists of N sampling 

units with the values Nyy ...,,1  which are independently generated from 

super population ( )σβ′α ,,; ii xyg  defined by the model (1). Thus, the log-

likelihood function for surveyed population P  is given by 

( ) ( )∑
=

σβ′α=σβα
N

i
ii xyg

1
.,,;log,,  
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Let s be a random subset of n sampling units with values ....,,1 nyy  

Throughout the paper, assume that ,nm <  where m is the number of zero 

responses, and arrange the response iy  associated with ix  as 

0≠iy  for mni −≤≤1  

0=  for .1 nmn ≤+−  

The estimate of ( ),,, σβα  called pseudo log-likelihood function or simply 

called as pseudo-likelihood function, is defined by 

( ) ( )∑
∈

σβ′α=σβα
si

iii xygw ,,,;log,,ˆ  

where the sampling weights ( )niwi ...,,1, =  are chosen such that ( ) .ˆ =E  

Here, E is the expectation under unequal probability sampling designs.  
When the inclusion probability for the ith unit is ,iπ  the sampling weight iw  

can be chosen to be ,1 iiw π=  for ....,,1 ni =  More detailed discussion 

about inclusion probabilities and sampling weights under complex sampling 
designs can be found in Chen et al. [5] and Chen and Sitter [4]. 

3. Pseudo-likelihood Ratio Statistic in ZIM Regression Models 

Suppose 0x  is a “future” covariate value and one wishes to estimate the 

response mean at :0x  

( ) ( ) ( ).0
1

00 β′αψ=β′αµ==|=τ − xxxXYE  

For convenience, let us use ( )σβτ=λ ,,  to re-parametrize the model instead 

of ( )σβα ,,  and put ( ) ( ).,,ˆˆ σβα=λ  Let ( ) 22ˆ λ∂−∂=λΩn  and ( ) =λ∆n  

( ),ˆVar λ∂∂  where ( )λ∆n  explains the variations due to the probability 

sampling design and the model (1) at true value 0λ  of λ. Rewrite ( )λΩn  and 

( )λ∆n  in the partition matrix form as 
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( )
( ) ( )222221

1211

+×+






=λΩ

kk
n ww

ww
   and   ( )

( ) ( )
,

222221

1211

+×+








δδ
δδ

=λ∆
kk

n  

where 22δ  and 22w  are ( ) ( )11 +×+ kk  submatrices. 

Consider null hypothesis .: 00 τ=τH  Let 0λ  be the true value of λ, 

0λ̂  be the maximum pseudo-likelihood estimate of λ under the null model, 

and λ̂  be the maximum pseudo-likelihood estimate of λ under the full model. 
Define 

{ ( ) ( )},ˆˆˆ2 000 λ−λ−=D  

{ ( ) ( )},ˆˆˆ2 01 λ−λ−=D  

( ) ,
0

00 21
1

22

121
nnnn w

Q ∆














−Ω∆=λ −

−  

( ) ( )( ){ } ,tr 12 −λ=λ nn Qa  (2) 

where ( )⋅tr  is the trace operator. Pseudo-likelihood ratio statistics for τ  at 

0τ=τ  is defined by 

( ) ( ),01
2

0 DDaD n −=τ  

i.e., 

( ) { ( ) ( )}.ˆˆˆˆ2 0
2

0 λ−λ=τ naD  

The point estimate for the parameter τ  of interest is defined to be the 

maximum pseudo-likelihood estimate τ̂  that maximizes .ˆ  The confidence 
intervals for the parameter of interest τ  can be constructed via the pseudo-
likelihood ratio statistic. The limiting distribution of pseudo-likelihood ratio 
statistic under the hypothesis 00 : τ=τH  is required to determine a critical 

value for constructing the confidence interval. It will be shown below that 

( )0τD  has a 2
1χ  distribution when the true value of τ  is .0τ  Consequently, 
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( )%1100 γ−  confidence interval for τ  is then given by { ( ) },: γγ ≤ττ= CDI  

where the critical value γC  is determined approximately by 2
1χ  distribution 

with a preset level .1 γ−  

4. Asymptotic Distribution of Pseudo-likelihood Ratio Statistic 

We proceed with some regularity conditions. 

RC1. The probability density function f for non-zero observations 
satisfies the regularity conditions specified in Serfling [24, p. 144]. 

RC2. The maximum pseudo-likelihood estimate λ̂  is consistent, that is, 

( ) 1ˆlim =ε≤λ−λ
∞→

P
n

 for all .0>ε  

RC3. Let is  be the first order partial derivative of ( )σβ′τ ,,;log ii xyg  

with respect to ( )σβτ=λ ,,  given by 

( ).,,;log σβ′τ
λ∂
∂= iii xygs  

So, 

( )∑
∈

σβ′τ
λ∂
∂=

λ∂
∂

si
iii xygw ,,;log

ˆ
 

∑
∈

=
si

iisw  

and 

( ) 







λ∂
∂=λ∆
ˆ

Varn  

.Var










= ∑

∈si
iisw  
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Then, as ,∞→n  

( )INsw
si

iin ,021 →










∆ ∑

∈

−  

in distribution, where I is the identity matrix. 

RC4. Let iq  be the negative of second order partial derivative of 

( )σβ′τ ,,;log ii xyg  with respect to ( )σβτ=λ ,,  given by 

( )σβ′τ
λ∂
∂−= ,,;log2

2
iii xygq  

.
λ∂

∂
−= is  

So, 

( ) 2

2ˆ

λ∂
∂−=λΩn  

( )∑
∈

σβ′τ
λ∂
∂−=

si
iii xygw ,,;log2

2
 

∑
∈

=
si

iiqw .  

Then, for any positive definite matrix Ω, as ,∞→n  Ω→Ω−
nN 1  in 

probability, that is, 

( ) 1lim 1 =ε≤Ω−Ω−

∞→
n

n
NP  for all .0>ε  

RC5. As ,∞→n  each of the matrices ( )0
2 λnnQa  and 1

2222
2 −δ wan  

converges in probability to a positive definite matrix. 

RC6. Consistency and asymptotic normality of the maximum likelihood 
estimates in generalized linear regression models hold true as specified in 
Fahrmeir and Kaufmann [11]. 
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Note. RC1- RC5 are similar to those in Chen et al. [5]. RC6 is needed for 
generalized linear models. Under identity link function, similar to linear 
regression model, RC6 can be replaced by the asymptotic property of 
regression estimates provided in Lehmann [17]. 

Theorem 1. Assume regularity conditions RC1-RC6. Then when the true 

value of τ  is ,0τ  as ,∞→n  ( ) 2
10 χ→τD  in distribution. 

We will need a few lemmas to prove Theorem 1. 

Lemma 1 (Rank of a partition matrix). Let matrix 

.





=

DC
BA

M  

 (i) If A is nonsingular, then ( ) ( ) ( ).1BCADRankARankMRank −−+=  

(ii) If D is nonsingular, then ( ) ( ) ( ).1CBDARankDRankMRank −−+=  

Proof. See Abadir and Magnus [1] for detail. ~ 

Lemma 2 (Inverse of a partition matrix). Let matrix 

.





=

DC
BA

M  

 (i) If A and BCADE 1−−=  are nonsingular, then 

.
111

111111
1












−

−+
=

−−−

−−−−−−
−

ECAE

BEACABEAA
M  

(ii) If D and CBDAF 1−−=  are nonsingular, then 

.
111111

111
1












+−

−
=

−−−−−−

−−−
−

BDCFDDCFD

BDFF
M  

Proof. See Abadir and Magnus [1] for details. ~ 

Lemma 3 ( ).nnQa2ofLimit  Limit of nnQa2  is idempotent with rank 1. 
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Proof. As defined in equation (2), we have 

( ) ( )( ){ } 12 tr −λ=λ nn Qa  

and 

.
0

00 21
1

22

121
nnnn w

Q ∆














−Ω∆= −

−  

Trace of nnQa2  is given by 

( ) { ( )( ) }nnnn QQQa 12 trtrtr −=  

( ){ } ( )nn QQ trtr 1−=  

.1=  

Using Lemma 2, the inverse of nΩ  is given by 

1

2221

12111
−

− 





=Ω

ww
ww

n  















+−

−
=

−−−−−−

−−−

1
2212

1
21

1
22

1
22

1
21

1
22

1
2212

11

wwFwwwFww

wwFF
 

provided 22w  and 21
1

221211 wwwwF −−=  are nonsingular. So, 

.
0

00

1
2212

1
21

1
22

1
21

1
22

1
2212

11

1
22

1














−

−
=










−Ω

−−−−−

−−−

−
−

wwFwwFww

wwFF

w
n  

Using Lemma 1, 















−Ω −

−
1

22

1
0

00
Rank

wn  












−

−
=

−−−−−

−−−

1
2212

1
21

1
22

1
21

1
22

1
2212

11
Rank

wwFwwFww

wwFF
 



Asymptotic Distribution of Pseudo-likelihood Ratio Statistic … 51 

( ) ( )1
2212

11
21

1
22

1
2212

1
21

1
22

1 RankRank −−−−−−−− −+= wwFFFwwwwFwwF  

( ) ( )1
2212

1
21

1
22

1
2212

1
21

1
22

1 RankRank −−−−−−− −+= wwFwwwwFwwF  

01 +=  

.1=  
 

Under the full model, ( ) .2Rank +=∆ kn  So, 

( ) ( ).2,1minRank +≤ kQn  

From regularity condition RC5, each of the matrices nnQa2  and 1
2222

2 −δ wan  

converges to a positive definite matrix. So, the limit of nnQa2  exists with 

( ) 1tr 2 =nnQa  and ( ) .1Rank 2 =nnQa  This proves that limit of nnQa2  is 

idempotent with rank 1. 

Proof of Theorem 1. As defined by equation (2), pseudo-likelihood  

ratio statistic ( ) ( ).01
2

0 DDaD n −=τ  Similarly, ,0D  ,1D  nQ  and 2
na  are 

defined by equation (2). We have 2

2ˆ

λ∂
∂−=Ωn  and ∑

∈
=

λ∂
∂

si
iisw .

ˆ
 Expanding 

( )∑
∈

λ
si

iisw 0  about ,ˆ
0 λ=λ  we get 

( ) ( ) { ( )}( ) { ( )}∑ ∑
∈ ∈

λ−λ+λ−λλΩ−+λ=λ
si si

pniiii Noswsw ˆˆˆˆ
000  

( ) ( ) { ( )}λ−λ+λ−λλΩ+= ˆˆˆ0 00 Nopn  

( ) ( ) { ( )}λ−λ+λ−λλΩ= ˆˆˆ
00 Nopn  

{ ( ) { ( )}}( ) { ( )}λ−λ+λ−λλ−λ+λΩ= ˆˆˆ
0000 NoNo ppn  

( ) ( ) { ( )}.ˆˆ
000 λ−λ+λ−λλΩ= Nopn  
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So, 

 ( ) ( ) { ( )} ( )∑
∈

λ=λ−λ+λ−λλΩ
si

iipn swNo ,ˆˆ
0000  (3) 

where the order of the reminder term is insured by the regularity condition 
RC4. Thus, 

( ) ( ) ( ){ ( )}∑
∈

+λ=λ−λλΩ
si

piin osw .11ˆ
000  

Hence, we get 

 ( ) ( ){ ( )}∑
∈

− +λλΩ=λ−λ
si

piin osw .11ˆ
00

1
0  (4) 

Now expanding ( )0ˆ λ  at ,ˆ
0 λ=λ  

( ) ( ) ( ) ( )λ−λ
λ∂
λ∂

+λ=λ
λ=λ

ˆˆˆˆˆ 0
ˆ0

0
0

0

 

( ) ( ) ( ) { ( )}λ−λ+λ−λ
λ∂

λ∂′λ−λ+
λ=λ

ˆˆˆˆ
2
1

00
ˆ

2
0

0
2

0
0

Nop  

( ) ( ) ( )∑
∈

λ−λλ+λ=
si

iisw ˆˆˆˆ 0  

( ) { ( )}( ) { ( )}.ˆˆˆˆ
2
1

000 λ−λ+λ−λλΩ−′λ−λ+ Nopn  

So, 

( ) ( )λ−λ ˆˆˆ 0  

( ) ( ) ( ) { ( )}λ−λ+λ−λλΩ′λ−λ−= ˆˆˆˆ
2
10 000 Nopn  

( ) ( ( ) { ( )}) ( ) { ( )}λ−λ+λ−λλ−λ+λΩ′λ−λ−= ˆˆˆˆ
2
1

00000 NoNo ppn  

( ) ( ) ( ) { ( )}.ˆˆˆ
2
1

0000 λ−λ+λ−λλΩ′λ−λ−= Nopn  (5) 
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Hence, 

{ ( ) ( )}λ−λ−= ˆˆˆ2 01D  

( ) ( ) ( ){ ( )}11ˆˆ
000 pn o+λ−λλΩ′λ−λ=  

( )111
p

si
iinnn

si
ii oswsw +











ΩΩΩ

′











= ∑∑

∈

−−

∈

 (by using equation (4)) 

( ),11
p

si
iin

si
ii oswsw +











Ω
′











= ∑∑

∈

−

∈

 (6) 

where is  and nΩ  are evaluated at .0λ=λ  Similarly, expanding ( )∑
∈

λ
si

iisw 0  

and ( )0ˆ λ  about ,ˆ
00 λ=λ  

 ( ).1
0

00
1

22
0 p

si
ii

si
ii osw

w
swD +



















′











= ∑∑

∈
−

∈

 (7) 

Note that under ,: 00 τ=τH  the first component of 00 λ̂−λ  is equal to 

zero. So there are three null submatrices in the partition of n
1−Ω  in equation 

(7). Using equations (6) and (7), pseudo-likelihood ratio statistic is given by 

( )01
2 DDaD n −=  

( )1
0

00
1

22

12
p

si
iin

si
iin osw

w
swa +


























−Ω

′











= ∑∑

∈
−

−

∈

 

( )1
0

00 2121
1

22

121212
p

si
iinnnn

si
iinn osw

w
swa +











∆∆















−Ω∆

′











∆= ∑∑

∈

−
−

−

∈

−  

( ) ( ).121221
p

si
iinnn

si
iin oswQasw +











∆

′











∆= ∑∑

∈

−

∈

−  (8) 
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From regularity condition RC3, as ,∞→n  

( )INsw
si

iin ,021 →










∆ ∑

∈

−  

in distribution, where I is the identity matrix. Using this limiting distribution 

and result of Lemma 3 (limit of nnQa2  is idempotent with rank 1) in equation 

(8), the limiting distribution of pseudo-likelihood ratio statistic can be 
obtained. So as ,∞→n  

 ( ) 2
10 χ→τD  (9) 

in distribution. This completes the proof for Theorem 1. 
 

Remark. The main idea of the above proof is same as in Chen et al. [5]. 

5. Estimation of 2
na  

From equation (2), we have ( ){ } 12 tr −= nn Qa  and 

.
0

00 21
1

22

121
nnnn w

Q ∆














−Ω∆= −

−  

So, 2
na  can be written as 

 
( ) ( )

,
trtr

1

22
1

22
1

2

δ−∆Ω
= −− w
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where 22w  and 22δ  are submatrices of nΩ  and ,n∆  respectively. Thus, 2
na  

can be estimated through the estimates of ( )0λΩn  and ( ).0λ∆n  Since λ̂  is 

the maximum pseudo-likelihood estimate of λ, a suitable estimate of ( )0λΩn  

is ( ) ( ).ˆˆ 0 λΩ=λΩ nn  Similarly, to estimate ( ),0λ∆n  express ( )0λ∆n  as 
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First term. The estimate of the first term in equation (11) can be 
obtained from Sen-Yates-Grundy estimate described in Cochran [8]. So, the 
estimate of this term is given by 
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∈ >

′−−
π

π−ππ
=

si ij
jjiijjii

ij

ijji swswswswV ,  

where ( )λ= ˆ
ii ss  and ijπ  is the joint inclusion probability under the sampling 

design. 
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Thus, the second term in equation (11) is given by 
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which is equal to N times of the Fisher information matrix of the model (1) at 
.0λ=λ  So, it can be estimated from the observed Fisher information matrix 

and the estimate is ( ) ( ).ˆˆ 0 λΩ=λΩ nn  Hence, the estimate of ( )0λ∆n  is 

given by .ˆˆ nn V Ω+=∆  Finally, the estimate of 2
na  is given by 
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6. Application 

ZIM regression can be applied in both continuous-type and count-type 
responses. As an application to the real data, log-normal model developed in 
Paneru and Chen [22] is applied to a commonly used data about inpatient 
charge of patients in a hospital. The data set consists of 483 observations 
with approximately 88% zero value responses. Further detail about this data 
can be found in Murray et al. [20] and Zhou and Cheng [28]. Inpatient charge 
(in hundreds of dollars) is considered as response variable and health      
status score (in a scale of 0-100) is considered as an explanatory variable. 
Observations are divided into two strata according to the gender of patients. 
Sampling weights for two strata (male and female) are 584.01=mw  and 

.416.01=fw  These sampling weights are calculated according to the 

observed proportions, where the observed proportions of males and females 
are 58.4% and 41.6%, respectively. 

Both point and interval estimates of the parameter of interest ,τ  the 
expected inpatient charge (in hundreds of dollars), for different “future” 
health status scores are presented in Table 1. For example, for a health status 

score of 20, the “future” covariate vector is denoted by ( ) .20,10
′=x  For 
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comparison purpose, both point and interval estimates of τ  are calculated 
using pseudo-likelihood function and ordinary likelihood function (a popular 
method in applications). The 95% confidence intervals show that confidence 
intervals under new procedure via pseudo-likelihood function are narrower 
than those based on the ordinary likelihood function. At a “future” covariate 

vector ( ) ,80,10
′=x  graphs of pseudo-likelihood ratio statistics and likelihood 

ratio statistics are presented in Figure 1. Both graphs have a nice concave 
upward shape with the vertex at the pseudo MLE .τ̂  

Table 1. Point estimate and 95% confidence interval for τ  (in hundreds of 
dollars) at “future” health status scores of 20, 40, 60 and 80 

“future” covariate 
vector 

Method 
Lower 
bound 

τ̂  
Upper 
bound 

( )′= 20,10x  Pseudo MLE 12.725 19.137 29.721 

 Ordinary MLE 10.027 17.719 34.690 

( )′= 40,10x  Pseudo MLE 14.417 20.450 29.630 

 Ordinary MLE 11.914 19.155 33.960 

( )′= 60,10x  Pseudo MLE 14.747 21.853 32.780 

 Ordinary MLE 12.225 20.708 38.775 

( )′= 80,10x  Pseudo MLE 13.920 23.353 39.382 

 Ordinary MLE 11.145 22.387 49.948 
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Figure 1. Graph of likelihood ratio statistic ( )τD  vs τ  at health status score 

of 80 such that ( ) .80,10
′=x  
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