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Abstract 

Assuming a two parameter gamma distribution to model the lifetime of 
a system we study the sampling distribution of three types of estimates 
of the model parameters, namely - (i) the maximum likelihood 
estimator (MLE); (ii) a bias corrected version of the MLE (BMLE); 
and (iii) a modified version of the MLE (MMLE). Existing literature 
provides some partial results about the bias and MSE of these 
estimators, but not much about their sampling distributions. In this 
investigation we go into details in observing the nature of the sampling 
distributions of the estimators through a comprehensive simulation 
study. 

1. Introduction 

A two parameter gamma distribution with the following pdf: 

 ( ) ( ( ) ) ,0,0,0,, 11 >θ>α>θαΓ=θα| −αθ−−α xxexf x  (1.1) 

is a well-known positively skewed distribution widely used in modeling 
lifetime data. We refer to (1.1) as the ( ),, θαG  model. 

Given a complete random sample of size n, say ,...,,, 21 nXXX  from 

( ),, θαG  the maximum likelihood estimates (MLE) of α and θ, henceforth 

denoted by α̂  and ,θ̂  respectively, are obtained as follows. Get α̂  by solving 

 ( ) ( ) ( ) ,lnˆˆln:ˆ Rh =αψ−α=α  (1.2) 

where ( ) ( ) xxx ∂Γ∂=ψ ln  is the digamma function and R is the ratio of the 

arithmetic mean (AM) and the geometric mean (GM) of the sampled 
observations, i.e., 
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Note that 1>R  with probability 1, i.e., 0ln >R  with probability 1. After 
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obtaining α̂  get θ̂  by the expression 

 .ˆˆ α=θ X  (1.4) 

Since α̂  (and hence θ̂  too) does not have any closed expression, 
studying the exact sampling distribution of the above two parameter 
estimates analytically is nearly impossible. However, it can be observed that 
the sampling distribution of α̂  depends analytically solely on ( )n,α  and it is 

free from .θ  This can be seen from the fact that if we transform each iX  to 

ii cXY =  for any ,0>c  then 
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Thus, the value of α̂  depends solely on R (from (1.2)) which remains 
unaffected by any scale transformation of the data, and thus without loss of 
generality one can use .1 θ=c  Using the same argument one can see that 

the probability distribution of ( )θθ̂  depends only on ( )., nα  

It is possible to estimate α  and θ  by the method of moments estimation, 
but such estimates do not utilize the full sample information (i.e., they are not 
functions of the sufficient statistics) and hence such estimates are not 
considered in this paper. 

Berman [1] proved that for 2≥n  the estimator α̂  is always positively 

biased. Using the reparameterization ,1 θ=λ  it was also shown that θ=λ ˆ1ˆ  

is positively biased for λ; i.e. θ̂  is negatively biased for θ. Shenton and 

Bowman [3] have given the following bias expressions for α̂  and ,λ̂  
respectively as: 

( ) ( )α−α=α|α ˆ,ˆ EnB  

( )( ){ ( ) ( ) ( )227192133 α−+α−−α= nnn  

( ) ( ( ) ) };316217 322 +α+−+ nnn  (1.6) 
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and 

( ) (( ) )1ˆ,ˆ −λλ=λα|λ EnB  

( ) ( ){ }[ ]{ ( ) ( )α−α+−α−α= nnnn 331313  

( ) ( ) }.91 2 +α−+ nn  (1.7) 

Shenton and Bowman [2] have also shown that 

(( ) ) ( ( ) ( ) ( )( )) ( ) ( ){ }α+−−−−−≈αα nsssnnnnE ss 3111253ˆ  (1.8) 

and 

 ( ) ( ) ( ).11ˆ 2−α+−=θθ OnE  (1.9) 

Asymptotically ( )∞→nas.,i.e  it is known that 

[ ( )] [ ( )],ˆlim0ˆlim θ−θ==α−α
∞→∞→

nEnE
nn

 (1.10) 

( ) ( ){ },1ˆlim −αψ′αα=α
∞→

nVar
n

 (1.11) 

( ) ( ) ( ){ },1ˆlim 2 −αψ′ααψ′θ=θ
∞→

nVar
n

 (1.12) 

( ) ( ),1ˆ,ˆlim αψ′α−=θα
∞→

Corr
n

 (1.13) 

where ( )⋅ψ  is the digamma function as mentioned earlier. In other words, for 

sufficiently large n, both α̂  and θ̂  are nearly unbiased, and 

( ) ( )( ){ } ( ),1ˆ 2−+−αψ′αα=α nOnVar  (1.14) 

( ) ( ) ( )( ){ } ( ).1ˆ 22 −+−αψ′ααψ′θ=θ nOnVar  (1.15) 

In this study our first goal is to understand the sampling distribution of 

α̂  and θ̂  in more details since the above bias and/or moment expressions 
(which can give rise to mean squared error (MSE)) do not provide an 

adequate understanding about the true behavior of α̂  and .θ̂  

It has been noted in our study that bias corrected versions of α̂  and θ̂  as 
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given below tend to perform better. These estimators of α and θ are given as 

( )( ) ( )( ),323ˆ~ nnn +−α=α  (1.16) 

.~~
α=θ X  (1.17) 

Yanagimoto [4] proposed a superior estimator of α as ∗α̂  which is 
obtained by solving the following equation: 

 ( ) ( ) Rnhh lnˆˆ =α−α ∗∗  (1.18) 

where the function ( )⋅h  is given in (1.2). It was shown by Yanagimoto [4] as 

well as Zaigraev and Podraza-Karakulska [5] that ∗α̂  has smaller bias and 
mean squared error (MSE) than those of .α̂  The rationale behind obtaining 
∗α̂  by solving (1.18) is that the expectation of ( )Rln  happens to be 

( ) ( )( ).α−α nhh  Therefore, it makes sense to solve (1.18) to obtain an 

estimator of α. After obtaining ∗α̂  as stated above, one can obtain an 
estimator of θ as 

 .ˆˆ ∗∗ α=θ X  (1.19) 

However, it is not known yet how ∗θ̂  compares against θ̂  (in (1.4)) and 

θ
~  (in (1.17)) which will be part of our investigation in this paper. 

After studying the estimates of α and θ, we will then focus our attention 
to estimate the reliability of an entire system by using the above three types 
of estimators. The reliability of the system at time 0>t  is defined as 

 ( ) ( ) ( )∫
∞

θα|=>=τ
t

dxxftXPt ,,  (1.20) 

where ( )θα| ,xf  is given in (1.1). We may drop “t” from ( ),tτ  and write 

only τ, when it is obvious from the context. 

The MLE of τ is τ̂  given as 

 ( )∫
∞

θα|=τ
t

dxxf ˆ,ˆˆ  (1.21) 

where α̂  and θ̂  are given in (1.2) and (1.3). Similarly, we have two other 
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estimators of τ as τ~  and ∗τ̂  obtained by replacing ( )θα ˆ,ˆ  in (1.21) by ( )θα
~,~  

and ( ),ˆ,ˆ ∗∗ θα  respectively. 

In this paper, we have undertaken a comprehensive simulation to study 
the nature of the sampling distributions of the various estimators (as 
described above) of α, θ and τ. Throughout this study, we have used ,1=θ  

and varied α as well as n. In Section 2, we first study the behavior of the 
estimators of α and θ; whereas in Section 3, we study the behavior of the 
estimators of τ. The paper ends with a concluding remark which summarizes 
our observations. 

2. Sampling Distributions of the Model Parameter Estimators 

In this section, we consider a system whose lifetime follows a ( )θα,G  

distribution. As stated in the previous section, α and θ can be estimated by 

their MLEs θα ˆ,ˆ  given in (1.2) and (1.4), respectively. These two parameters 

can also be estimated by θα
~,~  (given in (1.16), (1.17)); as well as by ∗∗ θα ˆ,ˆ  

(given in (1.18), (1.19)). 

We start this section by studying first the scaled estimators of α, i.e., 

( ),ˆ αα  ( )αα~  and ( ).ˆ αα∗  Each estimator is scaled because the 

corresponding bias and MSE provide a better understanding about the 
behavior of the estimator relative to the parameter value. Given ( ),, αn  we 

generate ,...,,, 21 nXXX  iid from ( )1, =θαG  using the software SAS. 

Based on the generated data, we compute the value of each estimator, and 

then this process is replicated 510=N  times. Then we draw the histogram 
of the simulated scaled estimator for 0.15,0.10,0.5,0.1,5.0=α  and ,5=n  

10, 20, 50 (i.e., a total 20 combinations of α and n). For example, Figure 2.1 
indicates the histograms of ( ).ˆ αα  Similarly, Figures 2.2 and 2.3 are for 

( )αα~  and ( ),ˆ αα∗  respectively. Note that in Table 2.1 we are computing: 

Mean ≈ average of ( ),~ αα  Variance ≈ average of ( )2meanˆ −αα  and MSE 
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≈ average of ( ) ,1ˆ 2−αα  respectively. The standard error of each table entry 

is less than 0.001. 

Observation 2.1. Note that all the histograms in Figures 2.1-2.3 are 
positively skewed. The general trends that emerge from these figures are 
given as follows: 

(a) The skewness of each scaled estimator of α goes from extreme to 
moderate as α increases, and n increases. 

(b) Even though ∗α̂  is known to be better than α̂  analytically, and 
evident from their respective histograms, the performance of α~  
came as surprise. For ,10≤α  and small n ( ),20<  or for 20≥n  

and all values of α, the distribution of ( )αα~  is consistently more 

concentrated near 1 compared to other two estimators, and as a result 
α~  seems to be the preferred estimator for α. As seen in Table 2.1, in 
terms of MSE, α~  is far better than the other two estimators which 
has never been reported in the literature before. 

(c) It is tempting to guess a suitable positively skewed distribution 
which can approximate the true distribution of each estimator of α 
(either scaled or unscaled). Therefore, it may seem natural to fit a 
new gamma distribution for each estimator of α. For example, 
assume that ( )αα̂  follows ( )., ∗∗ θαG  One can find ∗α  and ∗θ  such 

that mean=θα ∗∗  of ( )αα̂  and =θα ∗∗
2 variance of ( ).ˆ αα  For 

this purpose, Table 2.1 can be useful to approximate ∗α  and .∗θ  

Similarly, one can approximate the distributions of ( )αα~  and 

( )αα∗ˆ  by suitable gamma distributions. 
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Figure 2.1. Histograms of ( )αα̂  for various of α and n. (In the figure ‘a’ 

stands for α.) 

 
Figure 2.2. Histograms of ( )αα~  for various of α and n. (In the figure ‘a’ 

stands for α.) 
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Figure 2.3. Histograms of ( )αα∗ˆ  for various of α and n. (In the figure ‘a’ 

stands for α.) 

Table 2.1. Mean, variance and MSE of the three scaled estimators of α 

αα̂  αα~  αα∗ˆ  
n α 

Mean Var MSE Mean Var MSE Mean Var MSE 

 0.5 1.997 6.910 7.904 1.065 1.106 1.110 1.675 5.072 5.528 

 1 2.127 6.674 7.943 0.984 1.068 1.068 1.764 4.847 5.430 

5 5 1.876 1.992 2.758 0.777 0.319 0.368 1.584 1.656 1.997 

 10 1.527 0.722 1.000 0.624 0.115 0.257 1.329 0.670 0.779 

 15 1.287 0.343 0.425 0.524 0.055 0.282 1.141 0.337 0.357 

 0.5 1.305 0.459 0.552 1.047 0.225 0.227 1.208 0.380 0.424 

 1 1.353 0.590 0.715 1.014 0.289 0.289 1.241 0.482 0.540 

10 5 1.402 0.647 0.808 0.994 0.317 0.317 1.271 0.544 0.618 

 10 1.343 0.429 0.547 0.947 0.210 0.213 1.228 0.386 0.438 

 15 1.245 0.252 0.312 0.876 0.123 0.139 1.152 0.240 0.263 
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 0.5 1.126 0.112 0.128 1.024 0.081 0.082 1.086 0.103 0.110 

 1 1.145 0.137 0.158 1.006 0.099 0.099 1.099 0.125 0.134 

20 5 1.168 0.171 0.200 0.999 0.124 0.124 1.112 0.155 0.168 

 10 1.172 0.174 0.203 1.000 0.125 0.125 1.116 0.158 0.171 

 15 1.157 0.148 0.172 0.986 0.107 0.107 1.104 0.138 0.149 

 0.5 1.046 0.033 0.035 1.010 0.029 0.029 1.031 0.032 0.033 

 1 1.052 0.039 0.041 1.002 0.034 0.034 1.036 0.037 0.038 

50 5 1.061 0.047 0.051 1.000 0.042 0.042 1.041 0.045 0.047 

 10 1.062 0.048 0.052 1.000 0.043 0.043 1.042 0.046 0.048 

 15 1.064 0.049 0.053 1.001 0.043 0.043 1.043 0.047 0.049 

Next, we present the simulated histograms of ( ) ( )θθθθ
~,ˆ  and ( )θθ∗ˆ  in 

Figures 2.4-2.6 for various combinations of α and n. 

 
Figure 2.4. Histograms of ( )θθ̂  for various values of α and n. (In the figure 

‘a’ stands for α.) 
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Figure 2.5. Histograms of ( )θθ

~  for various values of α and n. (In the figure 

‘a’ stands for α.) 

 
Figure 2.6. Histograms of ( )θθ∗ˆ  for various values of α and n. (In the 

figure ‘a’ stands for α.) 
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The following Table 2.2 provides mean, variance and MSE values of 

simulated ( ) ( )θθθθ
~,ˆ  and ( )θθ∗ˆ  for various n and α. 

Table 2.2. Mean and variance of the three scaled estimators of θ 

θ̂  θ
~  ∗θ̂  

n α 
Mean Var MSE Mean Var MSE Mean Var MSE 

 0.5 0.826 0.594 0.624 1.236 0.927 1.110 0.968 0.800 0.801 

 1 0.816 0.445 0.479 1.508 1.099 1.068 0.970 0.610 0.611 

5 5 0.832 0.331 0.360 1.930 1.563 0.368 1.011 0.491 0.491 

 10 0.896 0.306 0.316 2.155 1.629 0.257 1.074 0.468 0.474 

 15 0.984 0.299 0.299 2.394 1.658 0.282 1.158 0.464 0.489 

 0.5 0.913 0.318 0.326 1.090 0.392 0.227 0.982 0.364 0.365 

 1 0.906 0.239 0.248 1.177 0.361 0.289 0.983 0.277 0.277 

10 5 0.900 0.186 0.196 1.260 0.352 0.317 0.993 0.224 0.224 

 10 0.915 0.179 0.186 1.294 0.351 0.213 1.008 0.220 0.220 

 15 0.945 0.163 0.166 1.341 0.324 0.139 1.034 0.204 0.205 

 0.5 0.958 0.164 0.166 1.044 0.183 0.082 0.993 0.175 0.175 

 1 0.952 0.122 0.124 1.077 0.149 0.099 0.991 0.131 0.131 

20 5 0.951 0.099 0.101 1.109 0.132 0.124 0.997 0.108 0.108 

 10 0.950 0.097 0.100 1.113 0.133 0.125 0.998 0.107 0.107 

 15 0.956 0.094 0.096 1.121 0.128 0.107 1.003 0.104 0.104 

 0.5 0.984 0.067 0.067 1.018 0.070 0.029 0.998 0.068 0.068 

 1 0.982 0.051 0.051 1.029 0.055 0.034 0.997 0.052 0.052 

50 5 0.980 0.041 0.041 1.040 0.046 0.042 0.999 0.042 0.042 

 10 0.980 0.039 0.040 1.041 0.044 0.043 0.999 0.041 0.041 

 15 0.979 0.039 0.040 1.040 0.044 0.043 0.998 0.041 0.041 
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Observation 2.2. Again, similar to α estimation, the estimators of θ are 
positively skewed. These sampling distributions tend to become less and less 

skewed as α and/or n increases. Interestingly, for θ estimation, θ̂  tends to 
have smaller bias and variance (and hence the MSE) compared to the other 

two estimators. As a result, θ̂  seems to be the best estimator among the three 
estimators. Further, if an estimator’s distribution is approximated by a 
suitable gamma distribution, say ( ),, ∗∗∗∗ θαG  then the parameters ∗∗α  and 

∗∗θ  can be found by matching the mean and variance from Table 2.2. 

3. Sampling Distribution of τ Estimators 

Since without loss of generality, we have taken 21,,1 ττ=θ  and 3τ  are 

roughly (not exactly) the second quartile (i.e. median), the third quartile and 
the first quartile for large α. 

Here we study the sampling distributions of the three estimators of τ, 

namely - ττ ~,ˆ  and ∗τ̂  given in (1.21) and the expressions after (1.21). Here 

we are going to estimate τ at three specific values of t given as 

( ) ( ) ( )∫
∞

α
θα|=α>=ατ=τ ,,1 dxxfXP  

( ) ( ) ( )∫
∞

α+α
θα|=α+α>=α+ατ=τ ,,2 dxxfXP  

( ) ( ) ( )

( ) ( ) ( )⎪
⎩

⎪
⎨

⎧

≤αθα|=α−α>=α−ατ

>αθα|=α−α>=α−ατ
=τ

∫

∫
∞

α−α

∞

α−α

1if,,22

1if,,

2

3
dxxfXP

dxxfXP
 

and the corresponding τ values will be referred to as ,1τ  2τ  and ,3τ  

respectively. 

The following Table 3.1, Table 3.2 and Table 3.3 provide mean, variance 
and MSE value of 21, ττ  and 3τ  estimators for various n and α. 
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Table 3.1. Mean and variance of the three scaled estimators of 1τ  

1τ̂  1
~τ  ∗τ1ˆ  

n α 
Mean Var MSE Mean Var MSE Mean Var MSE 

 0.5 0.296 0.034 0.034 0.268 0.020 0.023 0.287 0.030 0.030 

 1 0.354 0.038 0.039 0.320 0.021 0.024 0.346 0.033 0.034 

5 5 0.433 0.040 0.040 0.410 0.020 0.021 0.429 0.035 0.035 

 10 0.451 0.035 0.036 0.433 0.017 0.018 0.448 0.032 0.032 

 15 0.459 0.031 0.031 0.443 0.015 0.015 0.457 0.029 0.029 

 0.5 0.304 0.015 0.015 0.292 0.012 0.013 0.299 0.014 0.014 

 1 0.358 0.017 0.017 0.344 0.013 0.014 0.354 0.016 0.016 

10 5 0.437 0.019 0.019 0.428 0.014 0.014 0.434 0.017 0.017 

 10 0.455 0.018 0.018 0.448 0.013 0.014 0.453 0.017 0.017 

 15 0.463 0.017 0.017 0.457 0.013 0.013 0.461 0.016 0.016 

 0.5 0.311 0.007 0.007 0.304 0.006 0.007 0.308 0.007 0.007 

 1 0.363 0.008 0.008 0.355 0.007 0.007 0.360 0.007 0.008 

20 5 0.438 0.009 0.009 0.434 0.007 0.007 0.437 0.008 0.008 

 10 0.456 0.009 0.009 0.453 0.008 0.008 0.455 0.008 0.008 

 15 0.464 0.009 0.009 0.462 0.007 0.007 0.464 0.008 0.008 

 0.5 0.315 0.003 0.003 0.312 0.003 0.003 0.314 0.003 0.003 

 1 0.366 0.003 0.003 0.363 0.003 0.003 0.365 0.003 0.003 

50 5 0.439 0.003 0.003 0.438 0.003 0.003 0.439 0.003 0.003 

 10 0.457 0.003 0.003 0.456 0.003 0.003 0.457 0.003 0.003 

 15 0.465 0.003 0.003 0.464 0.003 0.003 0.465 0.003 0.003 
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Table 3.2. Mean and variance of the three scaled estimators of 2τ  

2τ̂  2
~τ  ∗τ2ˆ  

n α 
Mean Var MSE Mean Var MSE Mean Var MSE 

 0.5 0.601 0.041 0.041 0.512 0.027 0.033 0.571 0.038 0.038 

 1 0.621 0.040 0.040 0.520 0.027 0.034 0.595 0.037 0.037 

5 5 0.662 0.035 0.071 0.574 0.022 0.100 0.643 0.032 0.076 

 10 0.663 0.031 0.064 0.582 0.017 0.087 0.648 0.028 0.068 

 15 0.653 0.024 0.061 0.579 0.013 0.083 0.643 0.023 0.063 

 0.5 0.597 0.017 0.017 0.556 0.014 0.015 0.581 0.017 0.017 

 1 0.615 0.018 0.018 0.569 0.015 0.016 0.601 0.017 0.017 

10 5 0.662 0.017 0.053 0.623 0.014 0.067 0.651 0.016 0.057 

 10 0.671 0.016 0.047 0.635 0.013 0.058 0.661 0.015 0.050 

 15 0.667 0.014 0.045 0.634 0.011 0.055 0.660 0.013 0.047 

 0.5 0.593 0.008 0.008 0.573 0.007 0.007 0.585 0.008 0.008 

 1 0.611 0.008 0.008 0.588 0.007 0.008 0.603 0.008 0.008 

20 5 0.657 0.008 0.046 0.638 0.007 0.053 0.651 0.008 0.049 

 10 0.669 0.008 0.039 0.651 0.007 0.045 0.663 0.008 0.041 

 15 0.673 0.007 0.036 0.657 0.006 0.041 0.669 0.007 0.038 

 0.5 0.590 0.003 0.003 0.583 0.003 0.003 0.587 0.003 0.003 

 1 0.608 0.003 0.003 0.599 0.003 0.003 0.605 0.003 0.003 

50 5 0.654 0.003 0.043 0.646 0.003 0.046 0.651 0.003 0.044 

 10 0.666 0.003 0.036 0.659 0.003 0.038 0.663 0.003 0.036 

 15 0.674 0.003 0.032 0.667 0.003 0.034 0.672 0.003 0.032 
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Table 3.3. Mean and variance of the three scaled estimators of 3τ  

3τ̂  3
~τ  ∗τ3ˆ  

n α 
Mean Var MSE Mean Var MSE Mean Var MSE 

 0.5 0.038 0.106 0.011 0.011 0.113 0.008 0.008 0.108 0.010 

 1 0.037 0.121 0.013 0.013 0.139 0.009 0.009 0.127 0.012 

5 5 0.076 0.141 0.015 0.015 0.189 0.011 0.012 0.152 0.014 

 10 0.068 0.152 0.015 0.015 0.210 0.011 0.014 0.163 0.014 

 15 0.065 0.163 0.014 0.014 0.226 0.010 0.015 0.174 0.014 

 0.5 0.017 0.110 0.006 0.006 0.115 0.005 0.005 0.112 0.006 

 1 0.017 0.126 0.007 0.007 0.136 0.006 0.006 0.129 0.007 

10 5 0.057 0.143 0.008 0.008 0.167 0.007 0.007 0.150 0.008 

 10 0.050 0.148 0.008 0.008 0.175 0.007 0.008 0.155 0.008 

 15 0.047 0.153 0.008 0.008 0.183 0.007 0.008 0.160 0.008 

 0.5 0.008 0.115 0.003 0.003 0.117 0.003 0.003 0.116 0.003 

 1 0.008 0.130 0.004 0.004 0.135 0.003 0.003 0.131 0.004 

20 5 0.049 0.147 0.004 0.004 0.159 0.004 0.004 0.151 0.004 

 10 0.041 0.150 0.004 0.004 0.164 0.004 0.004 0.154 0.004 

 15 0.039 0.152 0.004 0.004 0.166 0.004 0.004 0.156 0.004 

 0.5 0.003 0.118 0.001 0.001 0.119 0.001 0.001 0.118 0.001 

 1 0.003 0.133 0.002 0.002 0.135 0.001 0.001 0.134 0.001 

50 5 0.044 0.150 0.002 0.002 0.155 0.002 0.002 0.152 0.002 

 10 0.036 0.153 0.002 0.002 0.159 0.002 0.002 0.155 0.002 

 15 0.034 0.154 0.002 0.002 0.160 0.002 0.002 0.156 0.002 

Observation 2.3. For 1τ  estimation, 1
~τ  seems to be the best estimator 

among the three. For 2τ  estimation, though there is no uniformly best 

estimator, 2τ̂  seems to have the best overall performance. For 3τ  estimation, 

3
~τ  seems to have the best performance. 

Concluding Remark. This work deals with three estimators of a gamma 
model parameters as well as the reliability function. Based on a 
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comprehensive simulation study it has been observed that the BMLE is the 
best estimator of the shape parameter, whereas the MLE is the best estimator 
of the scale parameter. For reliability estimation, if we plug in the BMLEs 
(of shape and scale) then we get the overall best estimator. Hopefully this 
study will help the applied researchers in modelling their data by a gamma 
distribution. 
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