B \  Far East Journal of Applied Mathematics

© 2014 Pushpa Publishing House, Allahabad, India

y q'p \ Published Online: November 2014

ﬂ!w —4 Available online at http://pphmj.com/journals/fjam.htm
Volume 88, Number 3, 2014, Pages 221-228

SOME ANALYSIS AND NUMERICAL STUDY OF
RICKER MODEL

Ken S. Li and Han Zhu

Department of Mathematics
Southeastern Louisiana University
U.S. A

Abstract

In this paper, we investigate the Ricker model describing the density
of an isolated population. Our focus is on the long term behavior of the
population for various values of parameters and initial conditions. We
determine under what conditions, the population behaves chaotically.
Some conjectures are made based on numerical computation.

1. Introduction

Different population models have been an area of interest for probability
and researchers of stochastic process for a long time. The complex behavior
of the deterministic Ricker model is well known in the area of dynamical
systems. The Ricker model, a scalar difference equation with density-
dependent growth, is one of the most widely known models for modeling fish
populations. This model is introduced by Bill Ricker in 1954. Bill Ricker
discovered this model when he developed in his studies of stock and
recruitment in fisheries [1].

In Section 2, we present the background of Ricker model. In Section 3,
some theoretical results are obtained. In Section 4, we carry out some
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numerical experiments to find out under what conditions on the parameters
the population will exhibit certain behaviors such as extinct and chaotic. We
also make some conjectures based on the analysis results. Finally, we state
our findings in Section 5.

2. Background

The biological interpretation of the Ricker model is that of an isolated
single-species population that only produces offspring at a specific time each
year [2]. Now let us investigate the behavior of the Ricker model. We work
with a time increment (Af) of 1 year, and denote the stock of mature

individuals at the census date in year ¢ by X;. Juveniles mature the year after

their birth. Adult fish spawn once before dying and produce a maximum of b
viable recruits to the following year’s stock. Due to cannibalism on eggs by
adults, the juvenile survivorship in a year when there are X, adults is e X ,
where ¢ is a parameter related to the intensity of cannibalism [3].

Thus the population of the next period can be expressed as a function of

the population of the previous period as in the equation

Xt+1 = F(Xt),

where F(X,) = bX,e X 1=1,2,3, ...

In the Ecological Dynamics [4] by Gurney and Nisbet, they had found
that the Ricker model orbits had different distributions with different 5. They
also found that there is a b, between 6.5 and 9, and if b < b, the viable

equilibrium is stable, if b > b,., it is unstable. They also hypothesized that

the cycles displayed when the viable equilibrium is unstable are limit cycles.
3. Some Theoretical Results

For initial population densities larger than zero, the orbits of Ricker

population model are quite different at different times. Then we may ask for
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a fixed small value of ¢, what is the long term behavior of the population for

various values of b?

We fixed the value of parameter ¢ and X|.

Theorem 1. When b <1, lim X, = 0.

n—o0

We start with a value of b which is b < 1, the system has no biologically
sensible ‘viable’ equilibrium, and we can find that it tends towards X, = 0
in Figure 2.1, as time progresses.
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Figure 2.1. Numerical solutions for the Ricker model with b < 1.

Proof. For the equation X, = bX,,/ eXn , 1t is because that eXn > b,

so X, .1 < X,.

It is also easy to discern the mechanism underlying this behavior, the
maximum possible juvenile survival is unity and each adult produces an
average of only less than 1 egg. So each adult contributes only less than
1 individual to the next generation, and the population turns steadily to

extinction.

Theorem 2. When 1 < b < ¢, lim X, = b/ce.

n—»0

Proof. When we turn to the condition that 1 < b < ¢%. We may discuss

how we find the e2 first.
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—cX

For the equation X = bXe “°, the two sides of this equation are equal

if X =0 orif be X =1. We can also note that if b = 0, then the value of

the equilibrium is negative, so the only biologically sensible equilibrium is

be™X =1, which X* = Inb/c.
As we know, F(X,)- F(X,_1) = f'(X)(X,, - X,_1)
So, when f'(X™) <1, the population distribution will tend to stability
5],
f(x) = be™ = bexe™™ = be” (1 — cx).

Then we can get b < e?.

Under the condition of b < ¢2, we can get lim X, = b/ce.
n—0

To find the critical number, we should make the f'(x) = 0.
And, f'(x) = be < — bexe™ ™ = be” (1 - cx).

So, when f'(x) = 0, the only answer is x = 1/c.

Then we put this x into the original equation F(X,) = bX,e Y.
We can get f(x),,., = b/ce.
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Figure 2.2. Numerical solutions for the Ricker model with 1 < b < e’

4. Preliminary Numerical Investigation

Under the condition of b > ez, the population are not stable. It is

difficult to get the initial rules in different conditions. We have made some
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numerical researches and get some results with certain ¢. The orbits we get
are having frequently cycles in some conditions and sometimes are chaos in
some conditions. But the maximum of the equation in all the conditions is
b/ce. We have drawn some orbits when ¢ = 0.001, X, = 1000.

(a) When e’ <b< 12.5, the orbits have 2 cycles which can be seen in

Figure 2.3.
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Figure 2.3

(b) When 12.5 < b <14.24, the orbits have 4 cycles which is shown in
Figure 2.4.
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(c) When 14.24 < b £ 14.65, we can see that the orbits have 8 cycles
from Figure 2.5.
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Figure 2.5
(d) When 14.65 < b <14.74, the orbits have 16 cycles which can be

shown in Figure 2.6.
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Figure 2.6

(¢) When 14.74 < b < 16, the orbits are chaos which can be seen in
Figure 2.7.
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(f) When b =16, we can see from Figure 2.8 that the orbits have 6

cycles.
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Figure 2.8

(g) When 16 < b, the orbits are chaos which is shown in Figure 2.9.
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Figure 2.9
5. Conclusions

The orbits of Ricker model have significant disciplinary distributions

with different factors .

e If b < 1, then the distribution tends to extinct.
e If1<b < e, then the distribution tends to a certain number bce.

o Ifh> ez, then the distributions are not stable.
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s If 2 <bs< 12.5, then the orbits have 2 cycles.

= If 12.5 < b £ 14.24, then the orbits have 4 cycles.

= If14.24 < b < 14.65, then the orbits have 8 cycles.
= If 14.65 < b < 14.74, then the orbits have 16 cycles.
= If 14.74 < b < 16, then the orbits are chaos.

= If b =16, then the orbits have 6 cycles.

= If b > 16, then the orbits are chaos.
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