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Abstract 

It is shown that the Fisher Exact Test for a 22 ×  table has valid 
significance levels under the sole assumption of random assignment of 
subjects to test treatment and control. 

Introduction 

The problem of deciding whether a proposed innovation constitutes an 
improvement over some standard procedure arises in many different 
contexts, such as industrial designed experiments, clinical research, 
agricultural experiments, etc. This paper focuses on the randomized 
experiment with two treatments: new and standard treatments, and when the 
response variable is dichotomous. 
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In the simplest case, randomization is a process by which each subject 
has the same chance of being assigned to either the test treatment or to 
control. An example would be the toss of a coin, in which heads (50%) 
indicates treatment group and tails (50%) indicates control group. 

There are three very important consequences produced by randomization 
when applied in a study, see for instance Friedman et al. [2]. 

  (i) Tends to produce study groups comparable with respect to known as 
well as unknown risk factors. 

 (ii) Removes investigator bias in the allocation of subjects, and 

(iii) Guarantees that statistical tests will have valid significance levels. 

Unfortunately, these remarkable properties of randomization are 
frequently absent in introductory statistical courses. 

The main objective of this paper is to show that valid significance levels 
of the Fisher Exact Test for a 22 ×  table, can be derived under the sole 
assumption of random assignment of subjects to test treatment and control. 

The Experiment: A New Drug 

Table 1. Respiratory outcomes of the clinical trial 

Respiratory Outcome Treatment 

Favorable Unfavorable

Row Totals 

New treatment 10 2 12 

Placebo 2 4 6 

Column totals 12 6 18 

An investigator in a hospital wishes to test the effectiveness of a new 
drug that is claimed to have a beneficial effect on some respiratory disorder. 
There are 18 patients in the hospital suffering from this disorder to about the 
same degree. Twelve patients are selected at random to receive the new drug, 
and the other 6 serve as controls: they are given a placebo, a harmless pill not 
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containing any active ingredients. After some time a visiting physician 
interviews the patients and record whether they have observed a favorable 
effect or not. Table 1 summarizes the information obtained from this 
randomized experiment with a dichotomous response variable. 

The test medication group contains 12 patients and the placebo group 
contains 6 patients. In the hypothesis testing context, the question of interest 
is whether the rates of favorable responses for the test drug and placebo are 
the same. We can address this question by investigating whether there is a 
statistical association between treatment and outcome. The null hypothesis is 
stated as follows: 

H: There is no association between treatment and outcome. (1) 

A basis for testing the hypothesis H with valid significance level, guaranteed 
by randomization, is provided by the following consideration. 

Suppose that the treatment has no effect, i.e., that a patient health is in no 
way affected by whether or not he receives the new drug. We shall refer to 
this assumption as the hypothesis H of no treatment effect. Since under the 
assumption of this hypothesis (for short, under H) the response of each 
patient is determined solely by his state of health, it is clear that the outcome 
of the patients does not depend on which of them receive the drug and which 
serve as controls. We may thus think of each patient outcome (favorable or 
unfavorable) as attached to him even before the assignments to treatment and 
control are made. The selection of 12 patients, among the 18 available 
patients, to receive the test drug then also selects 12 outcomes: those attached 
to the selected patients. Each possible such selection divides the outcomes 
into two groups: the number of favorable outcomes for the treated patients 
and of the controls. These divisions are displayed in Table 2 for all possible 
cases. Thus for example, the first box in Table 2 corresponds to the 
possibility that the 12 patients who eventually are awarded with favorable 
outcomes are those receiving the treatment (test drug). 

As is seen from Table 2, the patients and hence their outcomes can be 
divided into two groups in 7 different ways. As will be discussed in the next 
section, the cases listed in Table 2 and its corresponding probabilities, 
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induced by the randomization process, provides a basis for assessing the 
significance of the observed outcomes in Table 1.  

Table 2. All possible cases resulting from the new drug experiment 

 Table cell  

(1, 1) (1, 2) (2, 1) (2, 2) 

12 0 0 6 

11 1 1 5 

10 2 2 4 

9 3 3 3 

8 4 4 2 

7 5 5 1 

6 6 6 0 

The Fisher Exact Test for a 22 ×  Table  

For comparing a new treatment with the standard method, N patients are 
divided at random into a group of n who will receive the new treatment and a 
control group of ( )nNm −=  who will be treated by the standard method. 

For a dichotomous response variable, at the termination of the study, the 
number of patients treated with the new treatment with favorable outcomes 
(X) is obtained. The hypothesis H of no treatment effect is rejected, and the 
superiority of the new treatment is acknowledged, if this number of favorable 
outcomes (X) for the treated patients is sufficiently large. To complete the 
specification of the procedure, it is necessary to decide just when X is 
sufficiently large. The variable X is known as the test statistic. 

The Hypothesis H is then rejected and the treatment judged to be 
effective when X is sufficiently large, say, when 

.cX ≥  (2) 
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The test defined by (2) is known as the Fisher Exact Test, see for instance 
Fleiss et al. [1]. The constant c in (2), the critical value, is conventionally 
determined so that under H the probability of getting a value of X greater 
than or equal to c is equal to some specified small number α, the level of 
significance. Common choices of α are 0.01, 0.05. The constant c is thus 
determined by the equation 

{ } ,α=≥ cXPH  (3) 

where the subscript H indicates that the probability is computed under H, that 
is, under the assumption that the new treatment has no effect. 

Formulas (2) and (3) make precise just when the test statistic X will be 
considered too large for the hypothesis of no treatment effect to remain 
tenable. On the one hand, values of X greater than or equal to c are very 
unlikely when H is true; in fact the probability of observing such values just 
by chance is then α. On the other hand, such values are expected when the 
treatment has the desired effect. The occurrence of such values therefore 
leads to the abandonment of H in favor of the alternative that the treatment is 
effective. 

To determine c from equation (3) it is necessary to learn how to find the 
probability (under H) that X has any specified value. For the case ,18=N  

,12=n  6=−= nNm  discussed in our example in Table 1, these 
probabilities are provided by the following consideration. 

Note that the row totals in Table 1 (12, 6) are fixed by the treatment 
allocation process; that is subjects are randomly assigned to test and control. 
Also, the column totals (12, 6) can be regarded as fixed by the null 
hypothesis; there are 12 patients with favorable response and 6 patients with 
unfavorable response, regardless of treatment. Therefore, we may thus think 
the random assignment of 12 patients to the test treatment, as a sampling 
without replacement from a population of 18=N  elements which are 
divided in two groups: 12=D  favorable outcomes and 6=− DN  

unfavorable outcomes. We then let X denote the number of favorable 
outcomes in a random sample of 12=n  elements. Since the X favorable 
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outcomes must come from the subgroup of 12=D  favorable elements in the 
population, and the ( )Xn −  unfavorable outcomes must come from the 

subgroup of ( ) 6=− DN  unfavorable elements in the population, the test 

statistic X has the hypergeometric distribution, see for instance Hogg and 
Craig [3], and is given by the following formula: 
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In this way, one finds the probabilities (under H) of X taking on its various 
possible values, which are displayed in (5). 

x 6 7 8 9 10 11 12 

{ }xXPH =  0.0498 0.2560 0.4 0.2376 0.0533 0.0039 0.0001 

 (5) 

These probabilities constitute the distribution of X under H. Since H is 
sometimes called the null hypothesis (it states that the treatment effect is zero 
or null), the distribution of X under H is called the null distribution of X. 

From (5), it follows in particular, that  

{ } .0573.010 =≥XPH  (6) 

Thus, if we set ,0573.0=α  then the null hypothesis is rejected when 

,10=x  11 or 12. If we go back to our example in Table 1, we have obtained 

,10=X  then our conclusion is to reject the null hypothesis and the new 

treatment is judged to be effective. 

It is seen from (5) that the probability { }xXPH ≥  takes on only a few 

values, namely 0.0001, 0.0040, 0.0573, 0.2943, 0.6943, 0.9503, 1.0. It is 
therefore not possible to find a critical value c satisfying (3) for every value 
of α but only for the values just listed. 

Of course, the null distribution of X can be obtained quite generally by 
the same method used to calculate the distribution (4) for the case ,18=n  
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12=n  and == 12D  number of patients with favorable outcomes among 
the total number of N patients in the population. Therefore, in general (under 
H) X has a hypergeometric distribution, and write 
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For ;...,,2,1,0 nx =  where Dn ≤  and .DNn −≤  

Recall that a p-value is the probability of the observed data or more 
extreme data occurring under the null hypothesis. Therefore, to find the one-
sided p-value of the Fisher Exact Test, you sum the probabilities as small or 
smaller than those computed for the value of X observed, in the direction 
specified by the one-sided alternative. In this case, it would be those values 
of X in which the test treatment had the more favorable response, or 

.0573.00001.00039.00533.0 =++=p  

Therefore, the hypothesis is rejected when ,α≤p  which of course is 

equivalent to the original rejection criterion .cX ≥  

Fortunately, the one-sided p-value of the Fisher Exact Test may be 
calculated by several Statistical Computer Systems, such as Statistical 
Analysis System (SAS), Statistical Software for Exact Nonparametric 
Inference (StatXact). Several applications of the Fisher Exact Test are given 
in Stokes et al. [6]. 

Therefore, the main conclusion of this paper has been shown, which is: 
valid significance levels of the Fisher Exact Test for a 22 ×  table, can be 
derived under the sole assumption of random assignment of subjects to test 
treatment and control. 

It is important to note that the above derivation has the advantage of 
simplicity, and the required randomization is not difficult to carry out, 
thereby ensuring that the assumptions are satisfied. On the other hand, its 
narrow basis limits the scope of the resulting inference. Since no assumptions 
are made concerning the nature or provenance of the subjects, any inference 
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regarding the effectiveness of the treatment will refer only to the particular 
subjects in the study. 
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