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Abstract 

This study proposes an alternative stochastic modeling framework to 
quantify the uncertainty propagation of spatiotemporal variables due to 
variations in initial and boundary conditions by incorporating the 
explicit numerical solutions of the 1-D wave equation with the 
expected value operator. Spatiotemporal semivariogram models are 
employed to deal with the correlation of the variables in time and 
space. The proposed model is validated by comparing it with the 
Monte Carlo simulation (MCS) model associated with the explicit 
numerical solution of the wave equation in the calculation of statistical 
properties of model outputs, i.e., the mean and coefficient of variance 
(CV). The results of numerical experiments show that the proposed 
model can produce excellent approximations of the mean and inferior 
approximations of the CV as compared to those of the MCS model. 
Furthermore, by means of the proposed models with varying CV 
values for the initial and boundary conditions, respectively, we can 
quantify the resulting effect from conditions based on the estimations 
of the wave displacement; therefore, it is possible to conclude that 
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their uncertainties are mainly attributed to the variation of the 
boundary condition. 

1. Introduction 

Uncertainty is attributed to the lack of reliable information concerning 
the phenomena, processes and data involved in problem definition and 
resolution (Tung and Mays [37]). In general, the degree of uncertainty can            
be described using statistical moments, such as standard deviation, variance 
and coefficient of variance (Tung and Yen [38]). The sources of uncertainty 
are classified as model uncertainty due to assumptions in model equation                   
or building, input uncertainty due to imprecise forecasting, parameter 
uncertainty due to imperfect assessment and natural operation uncertainty 
due to unforeseen causes (Maskey [22]). However, there are always some 
uncertainties related to physical problems, such as those involving: boundary 
and initial conditions, transport coefficients, sources and interaction terms, 
geometric irregularities (e.g., roughness) and so on (e.g., Kavvas and 
Govindaraju [18]; Xiu and Karniadakis [42]; Gottlieb and Xiu [14]; 
Scharffenberg and Kavvas [33]). These uncertainties can be grouped into 
three types: random coefficients (e.g., initial condition operators), random 
right-hand sides (e.g., initial and boundary conditions) and random geometry 
(boundary shapes) (Gunzburger [15]). Dettinger and Wilson [7] also 
indicated that uncertainties in numerical models primarily result from 
spatiotemporal model parameters, boundary/initial conditions and source/sink 
strength based on the behavior and description of the numerical models of 
groundwater flow. Hence, the numerical model for estimating spatiotemporal 
variates should be affected by the uncertainties in the initial and boundary 
conditions, which are composed of the spatiotemporal variables. That is to 
say, numerical models governed by the partial differential equations should 
account for the uncertainties in model parameters, initial and boundary 
conditions. 

Since the spatiotemporal variates belong to random variables, the 
corresponding governing partial differential equation (PDE) can become the 
stochastic partial differential equation (SPDE). Hence, the aforementioned 
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uncertainty in the numerical model can be quantified by solving the SPDE. A 
number of methods developed to solve the SPDE, involve the perturbation 
methods through Taylor series (e.g., Collard and Juillard [2]; Lin [21]), the 
expansion methods through Neumann series (e.g., Yamazaki et al. [44]; 
Zeitoun and Braester [45]) and the first- and second-order statistical moment 
method (e.g., Elishakoff et al. [10]; Muscolino et al. [24]; Wang and Hsu 
[39]). Moreover, some analytical methods for the stochastic structure are 
implemented by incorporating the stochastic input or parameters into the 
deterministic model (e.g., Muscolino et al. [24]; Falsone and Impollonia [11]; 
Impollonia and Ricciardi [17]). Unfortunately, these methods have a number 
of shortcomings: the limited applicability attributed to restrictive analytical 
constraints, non-guaranteed convergence of the Taylor as well as Neumann 
and probable high computation time (DiazDelao and Adhikari [8]). In 
addition, these methods probably result in obvious error when the variation is 
relatively large (Muscolino et al. [24]). The Polynomial Chaos (PC) method 
is also widely used to evaluate uncertainty in a dynamic system attributed to 
uncertainty in the system parameters (e.g., Xiu and Karniadakis [43]; Nagy 
and Braatz [25]; Gottlieb and Xiu [14]; Tang and Zhou [36]; Zhou and Tang 
[46]; Pulch [28, 29]; Agut et al. [1]). However, since the associated chaos 
expansion converges slowly in a complicated field, the Polynomial Chaos 
method has generally received little attention for a long time (Xiu and 
Karniadakis [43]). In summary, an advantage of the Polynomial Chaos 
method is the exponential convergence with respect to the polynomial order, 
whereas the disadvantage is the intrusiveness due to the coupled system of 
equations that has to be solved. 

In addition to the aforementioned methods, the Monte Carlo simulation 
method with the efficient numerical algorithm incorporated is also used to 
solve general stochastic problems (e.g., Papadrakakis and Papadopoulos [26]; 
Hurtado and Barbat [16]; Muscolino et al. [24]). It presents a number of 
advantages: the ability to model a complex system which is superior to an 
analytical model, decreased system size in regard to the required number of 
simulating samples and the calculation of statistical moments of outcome, as 
well as the associated probability distribution (Singh and Kim [34]). In the 
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framework of the Monte Carlo simulation method, the variables involved in 
the models and real-life systems should be represented by the probability 
distribution; thereby, the Monte Carlo simulation method can fully simulate 
systems many times by choosing a value for each variable based on the 
suitable probability distributions and on the outcome as a probability 
distribution of the overall value of the system calculated through the 
interactions of the model (Kwak and Ingall [19]). Although the Monte Carlo 
simulation model provides a useful technique for modeling and analyzing a 
real-life system, it generally requires lengthy computational time to obtain 
satisfactory statistical moments of model outcomes with poor computational 
efficiency, especially for a multi-dimensional dynamic system (e.g., Singh 
and Kim [34]; Su and Strunz [35]; Nagy and Braatz [25]).  

Since most phenomena and processes can be described by mathematic 
models which are mostly governed by the numerical solution of the 
governing partial differential equations, the corresponding behavior can be 
described by the numerical solution. In addition, the expected values of the 
powers of variables are called the statistical moments of variables, meaning 
that the statistical properties of variates can be expressed in terms of the 
expected values of variables of various powers. The method for using the 
expected values of variables to calculate the associated statistics is named the 
expected value operator. Therefore, to effectively analyze uncertainty 
propagation in a stochastic problem, this study incorporates the expected 
value operator with the numerical solutions of a candidate model (i.e., the 
wave equation) to model the approximations of statistical properties, i.e., the 
mean, standard deviation and coefficient of variance. Since most studies 
related to stochastic problems focus on the uncertainty in model parameters 
(e.g., Muscolino et al. [24]; Nagy and Braatz [25]; Gottlieb and Xiu [14]; 
Tang and Zhou [36]), several investigations indicate that the boundary 
problem is an important issue in regard to the numerical analysis (e.g., Zhu       
et al. [47]; Scharffenberg and Kavvas [33]; Pulch [29]); its uncertainty, 
therefore, should be considered in the numerical computation. The proposed 
model aims to evaluate the effect of uncertainties in the initial and boundary 
conditions on the outputs of numerical models. 
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2. Description of the Proposed Stochastic Modeling Framework 

2.1. Basic concept 

In general, numerical models are mathematical models that use some sort 
of numerical time-stepping procedure to derive the behavior of a model over 
time. The mathematical solution is represented by a numerical solution of the 
corresponding governing partial differential equation (PDE). Since the 
analytical solutions of PDEs are derived with difficulty, numerical analysis is 
frequently carried out to obtain an approximation solution. The numerical 
solution is arrived at by means of the numerical schemes, such as finite 
element and different methods. Specifically, the numerical solution of PDEs 
needs some discretization of the domain into a collection of points or 
elemental volumes in time and space, so that the numerical solution can be 
regarded as a function of the unknown spatiotemporal variable at a particular 
time step and position with respect to the known variables at previous time 
steps and locations. 

The expected value of a random variable is defined as the weighted 
average of all possible values that this random variable can take on, where 
each possible value is weighted by its respective probability. The expected 
value of a random variable X is denoted as [ ],XE  and is often called the 

expectation of X or the mean of X. Note that the expected values of the 
powers of the variables are called the statistical moments of the variable, 
namely, the statistical properties of variables can be obtained by means of the 
expected value operator as follows: 

Mean: [ ] ( )∑= xxfXE y  

Variance: [ ] [ ] [ ]( )22 XEXEXVar −=  

Standard deviation: [ ] [ ]XVarX =σ  

Coefficient of variance: [ ] [ ] [ ],XEXXCV σ=  (1) 

where X stands for the spatiotemporal variate; [ ]•E  and ( )•yf  denote the 
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expected value operator and the probability density function; and [ ]Xσ  and 

[ ]XVar  are the standard deviation and variance. 

Since the numerical solution serves as the function of variates at various 
time steps and positions, the proposed stochastic modeling utilizes the 
expected value operator with the numerical solution of the governing 
equation incorporated to calculate the statistical properties of model outputs, 
i.e., the mean, standard deviation and the coefficient of variance, when the 
statistical moments of initial and boundary conditions are known. Therefore, 
by means of the proposed model, the uncertainty analysis for the 
spatiotemporal variates, whose behavior is described by the governing 
equation, can be carried out by taking into account uncertainties in the 
boundary and initial conditions. 

2.2. Formulation of the expected values using the numerical solution 

In general, the numerical solution of the governing equation for a 
numerical model is derived using the explicit and implicit numerical 
schemes, such as the finite difference, element and volumes methods. 
Roberts and Selim [30] indicated that the explicit and implicit schemes have 
their own advantages and can facilitate the selection of an appropriate 
numerical scheme with the emphasis placed upon accuracy, computation 
time and programming effort. In this study, due to the simplification of the 
formulation of the expected value of the spatiotemporal variable, the 
numerical solution of the governing equation is derived using the explicit 
numerical scheme as follows: 
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where ,1
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iu +  j
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iu  denote the spatiotemporal variates at various 

time steps and positions; and ( )•f  denotes the explicit numerical solution, 

namely, the relationship of the variable, ,1
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+
+
j

iu  unknown at the time step 

( )1+j  and position ( )1+i  with the remaining variates known at previous 

times and positions. 
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Since the numerical solution of PDE indicates the relationship of the 
unknown variate and the known variables, the statistical properties (i.e., the 
expected values of various orders) of spatiotemporal variates can be 
calculated by the expected value operator incorporated with the explicit 
numerical solution. For example, the explicit numerical solution of equation 
(2) can be illustrated as: 
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where ,1θ  2θ  and 3θ  are coefficients. Using equation (1), [ ]1
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iuE  and 

[( ) ]21
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following equations: 
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The expected value of the spatiotemporal variable calculated by equation 
(4) accounts for the mean value. The standard deviation and coefficient of 
variance should be yielded by substituting equations (4) and (5) into equation 
(2).  

2.3. Quantification of the correlation of variables in time and space 

In equation (5), since the expected value of the product of two 

spatiotemporal variables: [ ],21
j

i
j

i uuE ++  [ ]1
11
−
++
j

i
j

i uuE  and [ ]1
12
−
++
j

i
j

i uuE  in 

response to the correlation between the two variables in time and space, 
should be figured out, this study utilizes the spatiotemporal semivariogram 
method, which analyzes the covariance matrix of variables in time and         
space, to calculate the expected value of the product of variables. The 
spatiotemporal semivariogram model is briefly introduced below. 
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Since the spatiotemporal semivariogram model can deal with spatially- 
and temporally-correlated variables (Gneiting et al. [13]), this study adopts 
the spatiotemporal semivariogram model to quantify the correlation of 
variable in time and space. The spatiotemporal semivariogram ( )tsst hh ,γ  is 

expressed as: 

( ) ( ) ( )[ ],,,2
1, txZhthxZVarhh tstsst −++=γ  (6) 

where sh  and th  represent the distance and time lag, respectively; ( )txZ ,  

denotes the spatiotemporal variable at the time t and the position x. A number 
of spatiotemporal semivariogram models have been published to describe the 
behavior of spatiotemporal semivariograms, such as the product of 
semivariograms (Rodriguez-Iturbe and Mejia [31]), the integrated product of 
semivariograms (Dimitrakopoulos and Luo [9]), and the product-sum model 
(De Cesare et al. [5, 6]). Of the above spatiotemporal semivariogram models, 
the product-sum model has three advantages: (1) it can provide a large class 
of flexible models that require less constraint symmetry between the spatial 
and temporal correlation components; (2) it does not need an arbitrary space-
time metric; and (3) it can be fitted to data using relatively straightforward 
techniques, similar to those developed for a spatial-based semivariograms 
(Gneiting et al. [13]). Accordingly, this study adopts the product-sum method 
to calculate the spatiotemporal semivariogram of ( )., txZ  The concept of the 

spatiotemporal semivariogram model is briefly introduced below. 

The product-sum spatiotemporal semivariogram ( )tsst hh ,γ  is defined in 

terms of separate spatial semivariogram ( )ss hγ  and temporal semivariogram 

( )tt hγ  as:  

( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( ),00, 13121 ttssstttsstsst hChCkkCkhrkCkhrhhr −+++=  (7) 

where sC  and tC  are the spatial and temporal covariances, respectively, and 

( )0sC  and ( )0tC  stand for sills, which are defined as the limit values for               

the semivariograms; they are generally used as parameters in theoretical 
semivariogram models. Table 1 shows the theoretical semivariogram models 
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commonly used. ,1k  2k  and 3k  are coefficients and can be computed by 

using the following equations (De Cesare et al. [5, 6]): 

( ) ( ) ( )
( ) ( ) ,00

0,000
1

ts
stts

CC
CCCk −+

=  

( ) ( )
( ) ,0

00,0
2

s
tst

C
CCk +

=  

( ) ( )
( ) ,0

00,0
3

t
sst

C
CCk −

=  (8) 

where ( )0,0stC  denotes the sill of the spatiotemporal semivariogram and, 

generally, is adopted as the maximum of ( )0sC  and ( ).0tC  In addition to the 

semivariogram, the covariance and correlation measure the similarity 
between two different variables; their relationship is shown as: 

( ) ( )
( ) ,0,0

,1,
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stst
st C

hhhh γ
−=ρ  (9) 

where ( )st hh ,ρ  denotes the correlation coefficient of spatiotemporal 

variables; and ( )0,0stC  is a covariance for th  and sh  being zero, whereby it 

is equal to the maximum of ( )0sC  and ( ).0tC  The correlation coefficient 

( )st hh ,ρ  can be expressed as: 
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( )[ ] [ ( )( ) ] ( )[ ]( ) ,,,, 22 txZEtxZEtxZVar −=  

( )[ ] [ ( )( ) ] ( )[ ]( ) .,,, 22
tststs hthxZEhthxZEhthxZVar ++−++=++  (10) 

Therefore, by extending equation (10), the expected value of the product of 
two spatiotemporal variates can be obtained by the following equation: 

( ) ( )[ ] ( )[ ] ( )[ ]tsts hthxZEtxZEtxZhthxZE ++=++ ,,,,  

( ) ( )[ ]( ) [ ]( ).,,, tsst hthxVartxZVarhh ++ρ+  (11) 
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Accordingly, the expected value of the product of two spatiotemporal 

variables [ ],21
j

i
j

i uuE ++  [ ]1
11
−
++
j

i
j

i uuE  and [ ]1
12
−
++
j

i
j

i uuE  can be obtained using 

equation (11) as: 

[ ] [ ] [ ] ( ) ( [ ]) ( [ ]) ,,0 212121
j

i
j

i
j

i
j

i
j

i
j

i uVaruVarxuEuEuuE ++++++ Δρ+=  

[ ] [ ] [ ] ( ) ( [ ]) ( [ ]) ,0, 1
11

1
11

1
11

−
++

−
++

−
++ Δρ+= j

i
j

i
j

i
j

i
j

i
j

i uVaruVartuEuEuuE  

[ ] [ ] [ ] ( ) ( [ ]) ( [ ]),, 1
12

1
12

1
12

−
++

−
++

−
++ ΔΔρ+= j

i
j

i
j

i
j

i
j

i
j

i uVaruVarxtuEuEuuE  (12) 

where tΔ  and xΔ  stand for the time step and distance increment. And 
( ) ( )0,,,0 tx ΔρΔρ  and ( )xt ΔΔρ ,  can be calculated using equation (12) as: 
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( ) ,0,0
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−=Δρ  
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xtxt ΔΔγ
−=ΔΔρ  (13) 

in which ( ) ( ) ( )xttx ststst ΔΔγΔγΔγ ,,0,,,0  and ( )0,0stC  can be calculated 

by equation (7). Eventually, the uncertainty of the spatiotemporal variates 
estimated by the governing equation due to the variation in the boundary           
and initial conditions can be evaluated. It should be also pointed out that           
the formula for calculating the expected value of equations (4) and (5) can            

serve as the numerical solutions for [ ]1
1
−
+
j

iuE  and [( ) ].21
1
+
+
j

iuE  As a result, 

programming the proposed model can be completed using common computer 
coding methods to find the explicit numerical solution of the governing 
equation. Note that in this study, the selection of the best-fit semivariogram 
model is conducted by the genetic algorithm based on the parameter 
sensitivity (GA_SA method) developed by Wu et al. [41]. In the GA_SA 
method, the parameters of all models are calibrated in association with a 
minimum value of the objective function in which the root mean square error 
(RMSE) is commonly used as: 
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where expγ  and theγ  stand for the semivariogram estimated by data and 

theoretical model, respectively. 

3. Stochastic Modeling of Wave Equation 

To demonstrate the applicability of the proposed framework for 
modeling uncertainty analysis by incorporating the explicit numerical 
solution of governing equations of numerical models with the expected value 
operator, this study follows Gottlieb and Xiu’s [14] investigation, which 
analyzed the effect of the parameter (wave velocity) in the one-dimensional 
(1-D) wave equation on the model output (i.e., wave displacement), to adopt 
the 1-D wave as a candidate model. However, the uncertainties in initial and 
boundary conditions, which are composed of the spatiotemporal variables, 
should influence the numerical simulation (e.g., Fujita et al. [12]; Pettersson 
et al. [27]). Unlike Gottlieb and Xiu’s investigation which was only based on 
the uncertainty of the model parameter, this study focuses on the effect of 
uncertainties in the initial and boundary conditions to the wave equation. In 
theory, the proposed model can take into account the variation and 
covariance of the wave displacements in time and space. In addition, 
referring to several studies (e.g., Muscolino et al. [24]; Impollonia and 
Ricciardi [17]; Nagy and Braatz [25]; Motamed et al. [23]), this study also 
applies the Monte Carlo simulation method associated with the numerical 
solution of the wave equation to calculate the statistics of wave 
displacements, which are regarded as the exact solutions, and compares them 
with results from the proposed approach. Details of the model development 
are expressed below. 

3.1. Introduction to wave equation 

Wave phenomena appear in a wide variety of physical settings in many 
fields such as: electrodynamics, quantum mechanics, fluid, plasma, 
atmospheric physics and seismology. One of the most fundamental equations 
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in applied mathematics and mathematical physics is the wave equation. The 
1-D wave equation primarily describes traveling-waves, and is expressed as: 
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∂  (15) 

where ( )txu ,  denotes the wave displacement at time t and position x, and 

the constant wc  is the wave speed. 

The numerical solution of the wave equation can be derived by using the 
explicit finite difference scheme, as shown below: 
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where tΔ  and xΔ  denote the time step and distance increment, respectively; 

rC  is the Courant number, and j and i are the time and location indicators, 

namely, tjt Δ×=  and ,xix Δ×=  respectively. Note that the wave 

equation requires two initial conditions (ICs), and specifies the initial value 
and the initial time-derivation of the unknown function as: 

 I.C.  ( ) ( ),0, 0 xutxu ==  

( ),
0

xgdt
du

t
=

=
 (17) 

where the functions ( )xu0  and ( )xg  are available. In the case of finding a 

solution in a finite 1-D domain: { },RL XxXxD ≤≤|=  the corresponding 

boundary conditions are required at both ends of the domain as: 

( ) ( )tXxutxuBC LL ,,0: ===  

( ) ( ),,, tXxutLxu RR ===  (18) 

where the functions ( )tuL  and ( )tuR  are given. Therefore, at ,0=t  equation 

(16) can be rewritten as: 
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Substituting equation (19) for equation (18), the wave displacement 1
ju  

can be solved as follows: 
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3.2. Derivation of expected value formula for wave equation 

According to the model development framework, the explicit numerical 
solution is regarded as a function of the spatial and temporal variates 
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i uuufu  and is used to derive the formula for 

calculating the expected value (mean, standard deviation and coefficient of 
variance) by equations (1), (4) and (5). Since there are different explicit 
numerical solutions for ( )txu ,  at 1=i  and ,2>j  the associated formula 

for the expected value of the wave displacement should be derived 
separately. 

3.2.1. Formula for mean 

At ,1=j  the mean of the wave displacement ( ) ( [ ])1
1, +iuEtxu  can be 

derived using equations (2) and (20) as follows: 
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For ,1>j  the mean of ( )tjtxixu Δ×=Δ×= ,  is obtained by using 

equations (4) and (16), 
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3.2.2. Formula for standard deviation and coefficient of variance  

Referring to equation (1), the standard deviation and coefficient of 

variance is composed of [( ) ]21
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Similarly, for [( ) ]21
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Referring to equations (24) and (25), there are five kinds of expected 
values of the product of the wave displacement at different time steps and 

positions: [ ],2
j

i
j

i uuE +  [ ],21
j

i
j

i uuE ++  [ ],1
j

i
j
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i
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j
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to be calculated by using equation (12). As [( )]1
1
+
+
j

iuE  and [( ) ]21
1
+
+
j

iuE  are 

estimated, the mean, standard deviation and coefficient of variance can be 
obtained using equation (1). Note that the derived formula for the statistics, 
arrived at by incorporating the expected value operator with the numerical 
solution of the 1-D wave equation, is named EVO_NS_WE model in this 
study. 

4. Results and Discussion 

In the Monte Carlo simulation model, stochastic inputs are generated and 
then entered into the deterministic models of the underlying physical process 
to obtain the generated stochastic outputs. Finally, the generated outputs are 
statistically analyzed to quantify the uncertainty in the outputs (Samani and 
Solimani [32]). Therefore, in this study, the generated spatiotemporal variates 
(i.e., wave displacement) for the initial and boundary conditions should be 
completed based on their statistical properties (i.e., expected values of 
various orders), which are given in advance. Then, they are imported into the 
explicit numerical solution of the wave equation (1) to yield the simulation 
sets of spatiotemporal wave displacement for the entire domain. Thus, the 
corresponding statistical properties can be calculated from the simulations of 
initial and boundary conditions. Eventually, the resulting statistics, i.e., the 
mean, standard deviation and coefficient of variance of the wave 
displacements from the proposed EVO_NS_WE model, are compared with 
those obtained by the Monte Carlo simulation method integrated with the 
explicit numerical solution of the wave equation (named MCS_NS_WE 
model), in the case of the mean and coefficient of variance of the initial and 
boundary conditions being given. 

4.1. Simulation of initial and boundary conditions 

In general, most numerical methods developed for hyperbolic equations 
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are explicit but subject to the well-known Courant-Friedrichs-Lewy (CFL) 
condition (Courant et al. [3]). That is to say, Courant number dxdtcC wr =  

(the stability condition) should be equal to or less than 1.0 in a hyperbolic 
equation. Therefore, in order to derive the explicit numerical solution which 
can converge in time, this study assigns the increments of time step (i.e., tΔ  
and )tΔ  as 10sec and 100cm, respectively, with a specified wave speed 

( ),s10cm=wc  so that the courant number rC  is exactly equal to 1.0 in the 

specific domain. 

Since this study focuses on the effect of uncertainties in the initial and 
boundary conditions on the computation of the wave displacement ( )txu ,  in 

the domain, the statistical properties, the means of spatiotemporal variables 
for the initial and boundary conditions, are given in Figure 1, and the 
coefficients of variance are assigned as 0.7 (initial conditions) and 0.65 
(boundary conditions). Also, their behavior can be described by the normal 
probability distribution. Moreover, in reality, the wave displacement at 
various positions and time steps should be highly correlated spatiotemporal 
variables so that their correlation coefficients are assumed as one in this 
study. Thus, this study employs the multivariate Monte Carlo simulation 
model for the non-normal correlated variates, as developed by Wu et al. [40], 
to generate wave displacements as the initial and boundary conditions. 

In the MCS_NS_WE model, the simulation number of initial and 
boundary conditions should be determined in advance. Therefore, in this 
study, an essential assessment for the number of generating initial and 
boundary conditions is carried out by varying the simulation number from 50 
to 3000 sets in order to compute the statistics of wave displacements at the 
desired time steps and grids. Figure 2 shows the mean value of the wave 
displacements for 20=t sec, 50sec and 80sec. It can be seen that the mean 
of the wave displacements gradually varies with the simulation number. For 
illustration, at 200=x cm and 20=t sec, the mean declines from 40cm to 
21cm with the simulation number varying from 50 sets to 3000 sets; 
however, the mean at 50=t sec smoothly rises from -0.5cm to 10cm and the 
ones at 50=t sec stay in a constant of 21cm when the simulation number is 
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over 1000 sets. Moreover, for 800=x cm, there is oppositive change in the 
mean at 20=t sec and 50sec. To sum up the above results, it can be said that 
the number of simulated initial and boundary conditions exceeding 1000 sets 
would be suitable for the calculation of average wave displacements using 
the MCS_MS_WE model. 

Figure 3 indicates the change in the variance of wave displacements with 
varying simulation number from 50 sets to 3000 sets. It is observed that the 
varying trend of the variance of the wave displacement resembles that of the 
mean, but the variance more rapidly changes with the simulation number 
than the mean does. In detail, the variance first rises from 50 sets to 200 sets, 
and then declines from 200 sets to 1000 sets. Finally, the variance remains a 
constant when the simulation number exceeds 1000 sets. For example, at 

100=x cm and 80=t sec, the variance increases from 140cm2 to 153cm2 as 
the simulation number varies from 50 sets to 1000 sets and decreases to 
120cm2 for simulation number over 1000 sets. Therefore, when the 
simulation number is equal to or more than 1000 sets, the stable results from 
the variance can be obtained for different time steps and locations. 

To sum up the results from the mean and variance with various 
simulation numbers of initial and boundary conditions, the 1000 sets of 
simulated initial and boundary conditions are adopted in the MCS_NS_WE 
model and the resulting statistics of wave displacements are regarded as the 
exact solutions for the demonstration of the proposed EVO_NS_WE model. 

4.2. Calculation of approximation of statistical properties 

In this subsection, the statistical properties of wave displacement are 
calculated by the proposed EVO_NS_WE models and MCS_NS_WE model 
based on the given mean and coefficient of variance (CV) for the initial and 
boundary conditions, respectively. Note that since the wave displacement 
belongs to the non-positive spatiotemporal variable, the corresponding 
change in time would be negative; therefore, the CV is adopted to compare 
the change of the wave displacement in time calculated by the proposed 
EVO_NS_WE model and the MCS_NS_WE model, respectively, due to the 
standard deviation being positive. 
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(1) MCS_NS_WE model 

1000 simulations of initial and boundary conditions are accomplished 
using the multivariate Monte Carlo simulation method and then imported 
into the numerical solution of the wave equation (16). The resulting 1000 
simulations of the wave displacement at each time step and position are 
obtained and the associated mean and CV are calculated, as shown in Figures 
4 and 5; thus, the mean and CV at different times and positions are known. 
Specifically, the mean (61cm) and CV (-21.51) at ( )sec 0,cm 500 == tx  

and ( )sec 90,cm 200 == tx  are at their maximum, respectively. 

(2) EVO_NS_WE model 

According to the proposed framework for modeling the uncertainty 
analysis, the mean value of the wave displacement could be calculated in 
advance by the EVO_NS_WE model. Figure 6 shows the approximations of 
the mean values; they are similar to the results from the MCS_NS_WE 
model where the resulting mean at 0=t sec is at its maximum (60cm). As in 
estimating the CV, the information on the spatiotemporal semivariogram for 
the expected value of the product of variables with respect to the different 
time steps and positions should be required. This study adopts the estimated 
mean values of wave displacements in the entire domain to determine the 
best-fit spatiotemporal semivariogram model and calibrates the associated 
parameters, as shown in Table 2. This table shows that the Gaussian model is 
the best-fit model in time and space, respectively, as well as the associated 
optimal parameters. Therefore, through equation (8), the coefficients ,1k  2k  

and 3k  are 0.0012, 0.0 and 0.798, respectively. Eventually, the expected 

value of product of the wave displacement could be obtained and utilized in 
the calculation of the approximation of CV, as shown in Figure 7. In view of 
Figure 5, the CV is at its maximum (approximately 25.5) for 800=x cm and 

90=t sec. 

4.3. Comparison of EVO_NS_WE and MCS_NS_WE models 

This subsection compares the proposed EVO_NS_WE model and MCS 
model in the computation of the mean, standard deviation and CV of                      
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the spatiotemporal variates at different time steps and positions. The 
comparisons are made by calculating and evaluating the performance indices. 

4.3.1. Performance indices 

To compare the mean and coefficient of variance of the wave 
displacement and flow depth computed by the proposed EVO_NS_WE 
model with those of the MCS_NS_WE model, two model performance 
indices are employed: the root mean square error (RMSE) and model 
reliability index (KS) (Leggett and Williams [20]). RMSE and KG are 
defined as: 

1. Root mean square error (RMSE): 
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where ( )tx,modelφ  and ( )tx,MCSφ  denote the statistics of spatiotemporal 

variates obtained by the proposed EVO_NS_WE model and MCS_NS_WE 
model; and gN  and tN  denote the number of grids and total time period in 

the domain used. Note that a small RMSE indicates that the estimated mean, 
standard deviation and coefficient of variance calculated by the proposed 
model are closer to those using the MCS_NS_WE model. Moreover, KS, 
approaching 1.0 implies that the variation in the temporal trend of the 
statistical properties calculated by the proposed model resembles those 
obtained by the MCS_NS_WE model. 
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4.3.2. Comparison of mean value 

To evaluate the differences in the mean and variance of the wave 
displacement estimated by the EVO_NS_WE and MCS_NS_WE models, a 
graphical comparison is made with respect to time where 900~100=x cm, 
excluding boundaries, 0=x cm and 1000=x cm, as shown in Figure 8. 
Furthermore, the model performance indices for different positions are 
calculated, as shown in Figure 9. As far as the mean is concerned, the mean 
values estimated by the proposed EVO_NS_WE model are significantly 
close to those obtained by the MCS_NS_WE model. The root mean square 
error for the mean value RMSE is equal to 0, and the corresponding model 
reliability index KS approaches 1.0. This implies that the estimated mean 
values of wave displacement by the proposed EVO_NS_WE model, with 
respect to time and space, match those by the MCS model very well. It can 
be said that the proposed EVO_NS_WE model agrees well with the 
MCS_NS_WE model in terms of the mean value. 

4.3.3. Comparison of coefficient of variance (CV) 

Figure 10 shows the visual comparison of the CV value of the wave 
displacement obtained by the proposed EVO_NS_WE model and the 
MCS_NS_WE model at particular positions. It is known that the fitness of 
the CV estimated by the proposed model compared to that obtained by the 
MCS_NS_WE model is slightly poorer than that of the mean. However, the 
varying trends of CV with time estimated by the proposed EVO_NS_WE 
model and MCS_NS_WE model are comparable. For example, except for 

100=x cm and 900=x cm, in which the CV increases with time, the CV 
resulting from the MCS model gradually rises before 70=t sec or 80sec. 
The CV then rapidly decreases at 70=t sec or 80sec, and then increases 
again. Similar results could be found for the CV estimations by the proposed 
model. 

Referring to Figure 11, most of the RMSE values are between 0.2 and 1 
(on average 0.6), except at 800=x cm, where the RMSE is approximately 
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1.2 due to a large CV value (20.1) associated with the maximum difference 
from the estimation given by the MCS_NS_WE model. Moreover, the model 
reliability index KS for the CV ranges from 1.0 to 1.5, and the average 
approximates 1.43. This indicates a slight difference between the proposed 
model and MCS_NS_WE model in the estimations of the CV at different 
positions. This difference is possibly attributed to the product of the 
spatiotemporal variables at various time steps and positions. Nevertheless, 
the proposed EVO_NS_WE model could continually capture the varying 
trend of the CV value with time. Consequently, the proposed EVO_NS_WE 
model could provide approximations of the CV with acceptable differences 
as compared with those using the MCS_NS_WE model. 

4.4. Assessment of uncertainty in the initial and boundary conditions 

In general, uncertainty can be described based on statistical properties, 
especially for the coefficient of variance (CV), which accounts for the 
dispersion from the expected value. Since the proposed EVO_NS_WE 
models can effectively provide the approximations of the mean, standard 
deviation and CV, the effects of the variation of the initial and boundary 
conditions on spatiotemporal variables (model output) can be evaluated via 
the proposed models. 

Figure 12 shows the average varying ratio of the CV for the wave 
displacement ( )txu ,  based on an estimated CV by the MCS_NS_WE 

model, excluding the initial time 0=t sec and boundaries 0=x cm and 
1000=x cm under the consideration of the variation of CV for initial 

conditions ( ) ( )( )0,:2ICand0,:1IC =|= tdttxdutxu  and boundary 

conditions ( ) ( )( ).,:2BCand,0:1BC tLlxutxu ==  It can be shown that 

the average varying ratio of the CV for the wave displacement 
( )Ttxu ~0, =  at different positions increases with the varying ratio of the 

CV of the initial and boundary conditions. For example, the wave 
displacement has a maximum average varying ratio of the CV (from 
approximately 0.5 to 0.9) since the varying ratio of the CV for IC1 increases 
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from 0.1 to 0.5, whereas the wave displacement approximates a constant 0.5 
in the case of IC2 being from 0.1 to 0.5. In addition, the resulting average 
ratios of the CV for the wave displacement from boundary conditions                    
BC1 and BC2 are located between those from IC1 and IC2. Specifically, as 
for cm,500100cm << x  the average varying ratios of CV for the wave 

displacement attributed to BC1 are greater than those due to BC2. 
Nevertheless, contrary results can be found for .cm9000cm500 << x  It can 
be also seen that for 100=x cm and 900=x cm, the average varying ratios 
of the CV for ( )Ttxu ~0, =  are significantly classified into two parts: one 

is IC1 and BC2 (about 0.4) and the other group is IC2 and BC1. 

5. Conclusions 

This study proposed an alternative framework of modeling uncertainty 
analysis to calculate the approximations of statistical properties of 
spatiotemporal variables for evaluating the effect of initial and boundary 
conditions on the output of numerical models. This is accomplished by 
incorporating the expected value operator into the explicit numerical 
solutions of the corresponding governing equations. To take into account the 
correlation of variables in time and space, spatiotemporal semivariogram 
models are employed in this study. The 1-D wave equation is adopted in the 
model development and demonstration. Results from the model validation 
show that the proposed models can directly and effectively provide 
approximations of the mean value of the wave displacement that well match 
the results from the Monte Carlo simulation model and approximations of the 
coefficient of variance with acceptable differences from those obtained using 
the Monte Carlo simulation model. Also, it is evident that the variation of the 
boundary condition leads to more uncertainties in the wave displacement 
than found in the initial boundary. 

Although the proposed model can effectively produce the mean and 
coefficient of variance of wave displacements by means of integrating the 
expected value operator with the explicit numerical solution of the wave 
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equations, it only takes into account the uncertainties in the initial and 
boundary conditions. However, several investigations indicated that the 
variation in the wave speed should affect the estimation of the wave 
displacements (e.g., Gottlieb and Xiu [14]; Tang and Zhou [36]; Motamed                  
et al. [23]). Therefore, future work should be undertaken concerning the 
uncertainties in the wave speed and initial as well as boundary conditions to 
derive the expectation value formula for calculating the statistics of wave 
displacements. Eventually, it is expected that the presented stochastic 
modeling framework could be applied in other 1-D and 2-D numerical 
models associated with linear and nonlinear governing equations to evaluate 
stochastic properties of the model outputs and to provide corresponding 
probabilistic information under consideration of uncertainties in initial and 
boundary conditions. 

Table 1. Commonly used theoretical semivariogram models and their 
parameters 
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Note that c and a denote the sill and influence range; and h denotes distance (Davis [4]). 

 

 

Table 2. Types of parameters of the best-fit spatiotemporal semivariogram 
models for proposed EVO_NS_WE model 

Parameter 
Semivariogram Best-fit model

0a  0c  
Spatial Gaussian 167.5 101.2 

Temporal Gaussian 52.6 1131.6 
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(1) Initial conditions ( )0,1IC == txu  and ( ) 0,2IC =|= tdttxdu  

 
(2) Boundary conditions ( )txu ,01BC ==  and ( )tLxu ,2BC ==  

Figure 1. Assumption of the mean value of wave displacement for initial and 
boundary conditions =L( distance). 
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Figure 2. Summary for varying average wave displacement with the 
simulation number of initial and boundary conditions for different locations. 
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Figure 3. Summary for variances of wave displacements with the simulation 
number of initial and boundary conditions for different locations. 
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Figure 4. Mean values of wave displacements estimated by MCS_NS_WE 
model. 
 

 
Figure 5. Coefficient of variance (CV) estimated by MCS_NS_WE mode. 
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Figure 6. Mean values of wave displacements estimated by EVO_NS_WE 
model. 

 

 

Figure 7. Coefficient of variance (CV) estimated by EVO_NS_WE mode. 
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Figure 8. Comparison of the mean values of wave displacement calculated 
by MCS_NS_WE and EVO_NS_WE models. 
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Figure 9. Performance indices for mean of wave displacement calculated by 
proposed EVO_NS_WE model. 
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Figure 10. Comparison of the coefficient of variance (CV) of wave 
displacement calculated by MCS_NS_WE and EVO_NS_WE. 
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Figure 11. Performance indices for coefficient of variance (CV) of wave 
displacement calculated by proposed EVO_NS_WE model. 
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Figure 12. Average relative ratio of CV for wave displacement based on 
varying ration of CV for conditions ( ( ) ( ) ;,2IC;0,1IC 0=|=== tdttxdutxu  

and ( ))tLxu ,2BC ==  using EVO_NS_WE model. 
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