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Abstract

Let G be a connected graph and c be a proper coloring of G. The color
code cpp(v) of vertex v in G is the ordered k-tuple distance v to every
color classes C; for i e[, k]. If all distinct vertices of G have
distinct color codes, then c is called a locating-coloring of G. The
locating-chromatic number of graph G, denoted by 7y (G) is the
smallest k such that G has a locating-coloring with k colors. In this

paper, we discuss the locating-chromatic number of non-homogeneous
amalgamation of stars.

1. Introduction

Research topics about the locating-chromatic number of a graph have
grown rapidly since its introduction in 2002 by Chartrand et al. [8]. This
concept is combined from the graph partition dimension and graph coloring.

Specially for tree, Chartrand et al. [9] determined the locating-chromatic
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numbers of some particular trees. Asmiati et al. [2, 3] obtained the locating-
chromatic number of firecracker graphs and amalgamation of stars,
respectively. Next, Welyyanti et al. [10] discussed the locating-chromatic
number of complete n-arry tree.

In general graphs, Asmiati and Baskoro [1] characterized graph
containing cycle with locating-chromatic number three. Behtoei and Omoomi
[4-6] determined the locating-chromatic number of Kneser graphs, join of the
graphs, and Cartesian product of graphs, respectively. Next, Baskoro and
Purwasih [7] discussed the locating-chromatic number of corona product of
graphs.

Let G =(V, E) be a connected graph and ¢ be a proper k-coloring
of G using the colors 1, 2, ..., k& for some positive integer k. Let Il =
{Cy, Cy, ..., Ci} be a partition of ¥(G) which is induced by coloring c. The
color code cp(v) of vertex v in G is the ordered k-tuple (d(v, Cy), ...,
d(v, Cy)), where d(v, C;)=min{d(v, x)|x € C;} for i e[l, k]. If all distinct
vertices of G have distinct color codes, then c is called a locating k-coloring
of G. The locating-chromatic number, denoted by y;(G) is the smallest k

such that G has a locating k-coloring.
Let G; = K ,, be a star graph for every i € [I, k] and n; > 1. Non-

homogeneous amalgamation of stars, denoted by Sy (5, u, k>2isa

yeees N )
graph formed by identifying a leaf of G; for every i € [l, k]. We call the

identified vertex as the center of Sy (5 ., .. denoted by x. The vertices

L)
of distance 1 from the center as the intermediate vertices, are denoted by /;,
for i € [1, k]. We denote the jth leaf of the intermediate vertex /; by l;; for

J €L, n; —1]. In particular, when n; = m, m >1 for all i, we denote the

homogeneous amalgamation of k isomorphic stars Kj_,, by Si_,,.

The locating-chromatic number of homogeneous amalgamation of
stars and its monotonicity property have been studied by Asmiati et al. [3].
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Motivated by this, in this paper, we determine the locating-chromatic number
of non-homogeneous amalgamation of stars. These results are generalization
of results in [3].

The following basic theorem was proved by Chartrand et al. in [8]. The
set of neighbours of a vertex v in G is denoted by N(v).

Theorem 1.1. Let ¢ be a locating-coloring in a connected graph G.
If u and v are distinct vertices of G such that d(u, w) = d(v, w) for all

w e V(G) —{u, v}, then c(u)# c(v). In particular, if u and v are non-

adjacent vertices of G such that N(u) = N(v), then c(u) # c(v).

Corollary 1.1. If G is a connected graph containing a vertex adjacent to
k leaves of G, then v (G) > k + 1.

2. Main Results

In this section, first we give some basic lemmas about the locating-

chromatic number of non-homogeneous amalgamation of stars. Let n,,, =

max{ny, ny, ..., Ny }.

Lemma 2.1. Let ¢ be a proper nyyy -coloring of Sy (u,, where

nz,...,nk)’
k>2, n;>1, and i €[l, k). The coloring c is a locating-coloring if and
only if c(l;)=c(l;), i#j implies {c(l)ls=1,2,...nm; =1} and {c(l)5)|s =

L2, ., n;— 1} are distinct.

Proof. Let P = {c(li)|s = 1,2, ..., n; =1} and O = {c(l;)|s =1, 2, ...,

n;— 1}. Let ¢ be a proper ny,,, -coloring of Sk, (ny,ny,. where k 2> 2,

)
n; 21, and c(/;) = c(l;) for some i # n. Suppose that P = Q. Because
d(l;, u)=d(l;, u) for every ueV\{iils=12,..,n -1FU{l;s]|s =1,
2, ..., nj = 1}}, then the color codes of /; and /; will be the same. So ¢ is not

a locating-coloring, a contradiction. Therefore, P = Q.
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Let IT be a partition of V(G) into color classes with |IT|> ny .
Consider c(;) = c(l;), i # j. Since P # O, there are color x and color y

such that (x e P, x ¢ Q) or (y € P, y ¢ Q). We will show that color codes

for every v € V(Sk (s, ny,...,n;)) ar€ unique.

e Clearly, cpp(/;) # crp(l;) because their color codes differ in the

xth-ordinate and yth-ordinate.

o If ¢(ly;) = c(l};) for some [, # 1.

We divide into two cases:

Case 1. If ¢(/;,) = ¢(];), then by the premise of this theorem, P # Q. So
et (i) # e (Usg)-

Case 2. Let c¢(ly)=n and c(l;)=r with n #r. Then cr(ly,) #

crp(/s) because their color codes are different at least in the 7 th-ordinate

and r, th-ordinate.

o If ¢(x)=c(ly), then color code of crj(x) contains at least two
components of value 1, whereas cp(/;;) contains exactly one component of

value 1. Thus, crp(x) # crp(ly).
From all the above cases, we see that the color code for each vertex in

Sk, (ny,ny,...,n;) 18 unique, thus ¢ is a locating-coloring. O

Next, we will determine locating-chromatic number of non-

homogeneous amalgamation of stars Sy (, n,,..,n,)- Recall definition of

k Nmax —1
Ska(nlsnz"“’nk)’ Ui=1 Kl’ni - Ujr;l?)x GJ where G] - thlanmax_j for
some ¢ (value # may be 0). Therefore, G; induce subgraph of homogeneous

amalgamation of stars S; ,, ;. # 0.
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Lemma 2.2. If c is a locating (npax + a)-coloring of Si (w,ny,....n;)

"'max Npax + @ — 1
for k=2, n; 21, and I(a)= Y (npax +a—1) o a=0,
i

i=1 max

aeZ, then k < I(a).

Proof. Let ¢ be a locating (np,y + a)-coloring of Sg (4 4,,...n,)- BY

Lemma 2.1, maximum value ¢ for subgraph of homogeneous amalgamation

Nmax +a —

1
of stars s; , _; for some j, is (e +a—1) (n i J. Because
max

j=0,1,2, .., 0y —1 and i = j +1, then the maximum number of £ is

"'max
Z (nmax +a- 1)(
i=1

Amax +a —1

max

J = I(a). Asaresult, k < I(a). O

Before we discuss about the locating-chromatic number of non-

homogeneous amalgamation of stars Sy (; n,., .. we recall to construct

S )
the upper bound of the locating-chromatic number of homogeneous
amalgamation of stars was determined by Asmiati et al. [3].

The first result. We got that y; (Sy ) =m for 2<k<m-1, m > 3.
To construct the upper bound of y;(Sy ,) for 2<k <m—1, we can

assign ¢(x) =1 and c¢(};) =i+1 for i =1, 2, ..., k. To make sure that the

leaves will have distinct color code, we assign {;;|j =1, 2, ..., m =1} by

{1, 2, ..., m}\{i + 1} for any i. By Lemma 2.1, these colors are a locating-

coloring.

m+a-—1

The second result. Let H(a) = (m + a — 1)( J, m > 2. Then

XL (Sk.m)=m+a for H(a—-1)<k < H(a), a>1. To determine the
upper bound of y;(Sk ,) for H(a—1)<k < H(a), a>1. We assign

c(x)=1;, c(;) by 2,3,..,m+a in such a way that the number of
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the intermediate vertices receiving the same color ¢ does not exceed

+a-1
(m ¢ . j If c(l;)=c(l,), i#n, then {c()|j=12,..,m-1}=
m —

{e(lyi)lj =1, 2, .., m—1}. So, by Lemma 2.1, c is a locating-coloring.

Now, we will discuss about the locating-chromatic number of non-

homogeneous of amalgamation of stars.

Mo Mo +d — 1
Theorem 2.3. Let I(a) = ) (npu +a—1) |, a=0,
i

i=1 max
a € Z. The locating-chromatic number of non-homogeneous amalgamation

of stars Sk (wny,...n;)> Where k =2, nj 21, and | A| < nyay +a —1is

Rinax Jor 2 < k < I1(0);

S g
xe k’(nl’nz""’nk)) {nmax +a forlla-1)<k<I(a),a>1,

whereas, if | A| > nypax +a =1, then %1 (Sk (n, ny,...n;)) = | 4]+ 1.

Proof. First, we determine the trivial lower bound for 2 < k < (0).

Because each vertex /; is adjacent to (n,,,x — 1) leaves for i € [l, k], then

by Corollary 1.1, XL(Sk,(nl,nz,...,nk)) 2 Nmax-

Next, we determine the upper bound of Si (4 . y for 2<

e N
k < 1(0). Let ¢ be a ny,, -coloring of Sk, (ny,ny,...,n;)- Because non-
homogeneous amalgamation of stars Sg (, n,,..n,) contains subgraph of
homogeneous amalgamation of stars S, , _; for some ¢ # 0, then color
vertices of S, , _; for every j € [0, ny, —2] follow construction the

upper bound of the first results in [3]. Next, for j = n,, —1, color the
intermediate vertices by 2, 3, ..., ny, — 1, respectively. Therefore, c is a

locating-coloring. So, %7 (S, (u,, ) < Rppax for 2 <k < 1(0).

Ny eees MY )
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We improve the upper bound for I(a —1) < k < I(a), a > 1. Because
k>1(a—1), then by Lemma 2.2, %7 (Sk, (n,ny,..n;)) Z Mmax + @ On

the other hand, if & > 7(a), then by Lemma 2.2, %7 (St (n,ny,...n;)) =

Nmax + @+ 1. As aresult, 7 (Sk, (n,ny,...np)) 2 Mmax + @ if I@ 1)<k

<I(a),a>1.

Next, we shall show the upper bound of S (. »,,. for I(a —1)

)
<k <I(a), a21. The vertices S; , ~_; forevery j € [0, npay —2], we
give color follow construction the upper bound of the second result in [3]
using (ng,x + @) colors. Otherwise, for j = ny,, —1, the vertices /; are

colored by 2, 3, ..., ey + a — 1, respectively. Thus, %1 (Sk, (n, ny,....n;)) <

Npax +a for I(a—=1)<k <I(a),a>1.

Let [ A]> npay +a—1. By Corollary 1.1, we obtain 7 (Sk,(n,ny,....n))

>|A|+1, since x is adjacent to | A| leaves. To determine the upper
bound, the vertices in 4 are colored by 2,3, .., |A|+1, respectively,
and the colors for the other vertices alike two cases before it. So,

XL(Sk,(nl,nz,...,nk))S|A|+1‘ O
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