THE LOCATING-CHROMATIC NUMBER OF NON-HOMOGENEOUS AMALGAMATION OF STARS

Asmiati

Department of Mathematics
Faculty of Mathematics and Natural Sciences
Lampung University
Jl. Brojonegoro no. 1, Bandar Lampung, Indonesia
e-mail: asmiati308@yahoo.com

Abstract

Let G be a connected graph and c be a proper coloring of G. The color code $c_{\Pi}(v)$ of vertex v in G is the ordered k-tuple distance v to every color classes C_i for $i \in [1, k]$. If all distinct vertices of G have distinct color codes, then c is called a locating-coloring of G. The locating-chromatic number of graph G, denoted by $\chi_L(G)$ is the smallest k such that G has a locating-coloring with k colors. In this paper, we discuss the locating-chromatic number of non-homogeneous amalgamation of stars.

1. Introduction

Research topics about the locating-chromatic number of a graph have grown rapidly since its introduction in 2002 by Chartrand et al. [8]. This concept is combined from the graph partition dimension and graph coloring.

Specially for tree, Chartrand et al. [9] determined the locating-chromatic

Received: May 17, 2014; Accepted: September 1, 2014

2010 Mathematics Subject Classification: 05C12, 05C15.

Keywords and phrases: color code, locating-chromatic number, non-homogeneous amalgamation of stars.

numbers of some particular trees. Asmiati et al. [2, 3] obtained the locating-chromatic number of firecracker graphs and amalgamation of stars, respectively. Next, Welyyanti et al. [10] discussed the locating-chromatic number of complete *n*-arry tree.

In general graphs, Asmiati and Baskoro [1] characterized graph containing cycle with locating-chromatic number three. Behtoei and Omoomi [4-6] determined the locating-chromatic number of Kneser graphs, join of the graphs, and Cartesian product of graphs, respectively. Next, Baskoro and Purwasih [7] discussed the locating-chromatic number of corona product of graphs.

Let G = (V, E) be a connected graph and c be a proper k-coloring of G using the colors 1, 2, ..., k for some positive integer k. Let $\Pi = \{C_1, C_2, ..., C_k\}$ be a partition of V(G) which is induced by coloring c. The color code $c_{\Pi}(v)$ of vertex v in G is the ordered k-tuple $(d(v, C_1), ..., d(v, C_k))$, where $d(v, C_i) = \min\{d(v, x) | x \in C_i\}$ for $i \in [1, k]$. If all distinct vertices of G have distinct color codes, then c is called a *locating k-coloring* of G. The locating-chromatic number, denoted by $\chi_L(G)$ is the smallest k such that G has a locating k-coloring.

Let $G_i = K_{1,n_i}$ be a star graph for every $i \in [1, k]$ and $n_i \ge 1$. Non-homogeneous amalgamation of stars, denoted by $S_{k,(n_1,n_2,...,n_k)}$, $k \ge 2$ is a graph formed by identifying a leaf of G_i for every $i \in [1, k]$. We call the identified vertex as the *center* of $S_{k,(n_1,n_2,...,n_k)}$, denoted by x. The vertices of distance 1 from the center as the *intermediate vertices*, are denoted by l_i , for $i \in [1, k]$. We denote the jth leaf of the intermediate vertex l_i by l_{ij} for $j \in [1, n_j - 1]$. In particular, when $n_i = m$, $m \ge 1$ for all i, we denote the homogeneous amalgamation of k isomorphic stars $K_{1,m}$ by $S_{k,m}$.

The locating-chromatic number of homogeneous amalgamation of stars and its monotonicity property have been studied by Asmiati et al. [3].

Motivated by this, in this paper, we determine the locating-chromatic number of non-homogeneous amalgamation of stars. These results are generalization of results in [3].

The following basic theorem was proved by Chartrand et al. in [8]. The set of neighbours of a vertex v in G is denoted by N(v).

Theorem 1.1. Let c be a locating-coloring in a connected graph G. If u and v are distinct vertices of G such that d(u, w) = d(v, w) for all $w \in V(G) - \{u, v\}$, then $c(u) \neq c(v)$. In particular, if u and v are non-adjacent vertices of G such that N(u) = N(v), then $c(u) \neq c(v)$.

Corollary 1.1. If G is a connected graph containing a vertex adjacent to k leaves of G, then $\chi_L(G) \ge k + 1$.

2. Main Results

In this section, first we give some basic lemmas about the locating-chromatic number of non-homogeneous amalgamation of stars. Let $n_{\text{max}} = \max\{n_1, n_2, ..., n_k\}$.

Lemma 2.1. Let c be a proper n_{\max} -coloring of $S_{k,(n_1,n_2,...,n_k)}$, where $k \geq 2$, $n_i \geq 1$, and $i \in [1, k]$. The coloring c is a locating-coloring if and only if $c(l_i) = c(l_j)$, $i \neq j$ implies $\{c(l_{is})|s=1,2,...,n_i-1\}$ and $\{c(l_{js})|s=1,2,...,n_j-1\}$ are distinct.

Proof. Let $P = \{c(l_{is}) | s = 1, 2, ..., n_i - 1\}$ and $Q = \{c(l_{js}) | s = 1, 2, ..., n_j - 1\}$. Let c be a proper n_{\max} -coloring of $S_{k,(n_1,n_2,...,n_k)}$, where $k \ge 2$, $n_i \ge 1$, and $c(l_i) = c(l_j)$ for some $i \ne n$. Suppose that P = Q. Because $d(l_i, u) = d(l_j, u)$ for every $u \in V \setminus \{\{l_{is} | s = 1, 2, ..., n_i - 1\} \cup \{l_{js} | s = 1, 2, ..., n_j - 1\}\}$, then the color codes of l_i and l_j will be the same. So c is not a locating-coloring, a contradiction. Therefore, $P \ne Q$.

Let Π be a partition of V(G) into color classes with $|\Pi| \ge n_{\max}$. Consider $c(l_i) = c(l_j)$, $i \ne j$. Since $P \ne Q$, there are color x and color y such that $(x \in P, x \notin Q)$ or $(y \in P, y \notin Q)$. We will show that color codes for every $v \in V(S_{k,(n_1,n_2,...,n_k)})$ are unique.

- Clearly, $c_{\Pi}(l_i) \neq c_{\Pi}(l_j)$ because their color codes differ in the xth-ordinate and yth-ordinate.
 - If $c(l_{kt}) = c(l_{ls})$ for some $l_k \neq l_l$.

We divide into two cases:

Case 1. If $c(l_k) = c(l_l)$, then by the premise of this theorem, $P \neq Q$. So $c_{\Pi}(l_{kt}) \neq c_{\Pi}(l_{ls})$.

- Case 2. Let $c(l_k) = r_1$ and $c(l_l) = r_2$ with $r_1 \neq r_2$. Then $c_{\Pi}(l_{kt}) \neq c_{\Pi}(l_{ls})$ because their color codes are different at least in the r_1 th-ordinate and r_2 th-ordinate.
- If $c(x) = c(l_{is})$, then color code of $c_{\Pi}(x)$ contains at least two components of value 1, whereas $c_{\Pi}(l_{is})$ contains exactly one component of value 1. Thus, $c_{\Pi}(x) \neq c_{\Pi}(l_{is})$.

From all the above cases, we see that the color code for each vertex in $S_{k,(n_1,n_2,...,n_k)}$ is unique, thus c is a locating-coloring. \square

Next, we will determine locating-chromatic number of non-homogeneous amalgamation of stars $S_{k,(n_1,n_2,...,n_k)}$. Recall definition of $S_{k,(n_1,n_2,...,n_k)}$, $\bigcup_{i=1}^k K_{1,n_i} = \bigcup_{j=0}^{n_{\max}-1} G_j$, where $G_j = t_j K_{1,n_{\max}-j}$ for some t (value t may be 0). Therefore, G_j induce subgraph of homogeneous amalgamation of stars $S_{t,n_{\max}-j}$, $t \neq 0$.

Lemma 2.2. If c is a locating $(n_{\max} + a)$ -coloring of $S_{k,(n_1,n_2,...,n_k)}$

for
$$k \ge 2$$
, $n_i \ge 1$, and $I(a) = \sum_{i=1}^{n_{\text{max}}} (n_{\text{max}} + a - 1) \binom{n_{\text{max}} + a - 1}{n_{\text{max}} - i}$, $a \ge 0$, $a \in \mathbb{Z}$, then $k \le I(a)$.

Proof. Let c be a locating $(n_{\max} + a)$ -coloring of $S_{k,(n_1, n_2, ..., n_k)}$. By Lemma 2.1, maximum value t for subgraph of homogeneous amalgamation of stars $s_{t,n_{\max}-j}$ for some j, is $(n_{\max} + a - 1) \binom{n_{\max} + a - 1}{n_{\max} - j - 1}$. Because $j = 0, 1, 2, ..., n_{\max} - 1$ and i = j + 1, then the maximum number of k is $\sum_{i=1}^{n_{\max}} (n_{\max} + a - 1) \binom{n_{\max} + a - 1}{n_{\max} - i} = I(a)$. As a result, $k \le I(a)$.

Before we discuss about the locating-chromatic number of non-homogeneous amalgamation of stars $S_{k,(n_1,n_2,...,n_k)}$, we recall to construct the upper bound of the locating-chromatic number of homogeneous amalgamation of stars was determined by Asmiati et al. [3].

The first result. We got that $\chi_L(S_{k,m}) = m$ for $2 \le k \le m-1$, $m \ge 3$. To construct the upper bound of $\chi_L(S_{k,m})$ for $2 \le k \le m-1$, we can assign c(x) = 1 and $c(l_i) = i+1$ for i = 1, 2, ..., k. To make sure that the leaves will have distinct color code, we assign $\{l_{ij} \mid j = 1, 2, ..., m-1\}$ by $\{1, 2, ..., m\}\setminus\{i+1\}$ for any i. By Lemma 2.1, these colors are a locating-coloring.

The second result. Let $H(a) = (m+a-1) \binom{m+a-1}{m-1}$, $m \ge 2$. Then $\chi_L(S_{k,m}) = m+a$ for $H(a-1) < k \le H(a)$, $a \ge 1$. To determine the upper bound of $\chi_L(S_{k,m})$ for $H(a-1) < k \le H(a)$, $a \ge 1$. We assign c(x) = 1; $c(l_i)$ by 2, 3, ..., m+a in such a way that the number of

the intermediate vertices receiving the same color t does not exceed $\binom{m+a-1}{m-1}$. If $c(l_i)=c(l_n), i\neq n$, then $\{c(l_{ij})|j=1,2,...,m-1\}\neq \{c(l_{nj})|j=1,2,...,m-1\}$. So, by Lemma 2.1, c is a locating-coloring.

Now, we will discuss about the locating-chromatic number of non-homogeneous of amalgamation of stars.

Theorem 2.3. Let
$$I(a) = \sum_{i=1}^{n_{\max}} (n_{\max} + a - 1) \binom{n_{\max} + a - 1}{n_{\max} - i}, \quad a \ge 0,$$

 $a \in Z$. The locating-chromatic number of non-homogeneous amalgamation of stars $S_{k,(n_1,n_2,...,n_k)}$, where $k \ge 2$, $n_i \ge 1$, and $|A| \le n_{\max} + a - 1$ is

$$\chi_L(S_{k,(n_1,n_2,...,n_k)}) = \begin{cases} n_{\max} & \text{for } 2 \le k \le I(0); \\ n_{\max} + a & \text{for } I(a-1) < k \le I(a), \ a \ge 1; \end{cases}$$

whereas, if $|A| > n_{\max} + a - 1$, then $\chi_L(S_{k,(n_1, n_2, ..., n_k)}) = |A| + 1$.

Proof. First, we determine the trivial lower bound for $2 \le k \le I(0)$. Because each vertex l_i is adjacent to $(n_{\max} - 1)$ leaves for $i \in [1, k]$, then by Corollary 1.1, $\chi_L(S_{k,(n_1,n_2,...,n_k)}) \ge n_{\max}$.

Next, we determine the upper bound of $S_{k,(n_1,n_2,\dots,n_k)}$ for $2 \le k \le I(0)$. Let c be a n_{\max} -coloring of $S_{k,(n_1,n_2,\dots,n_k)}$. Because non-homogeneous amalgamation of stars $S_{k,(n_1,n_2,\dots,n_k)}$ contains subgraph of homogeneous amalgamation of stars $S_{t,n_{\max}-j}$ for some $t \ne 0$, then color vertices of $S_{t,n_{\max}-j}$ for every $j \in [0,n_{\max}-2]$ follow construction the upper bound of the first results in [3]. Next, for $j=n_{\max}-1$, color the intermediate vertices by 2, 3, ..., $n_{\max}-1$, respectively. Therefore, c is a locating-coloring. So, $\chi_L(S_{k,(n_1,n_2,\dots,n_k)}) \le n_{\max}$ for $2 \le k \le I(0)$.

We improve the upper bound for $I(a-1) \le k \le I(a)$, $a \ge 1$. Because k > I(a-1), then by Lemma 2.2, $\chi_L(S_{k,(n_1,n_2,\ldots,n_k)}) \ge n_{\max} + a$. On the other hand, if k > I(a), then by Lemma 2.2, $\chi_L(S_{k,(n_1,n_2,\ldots,n_k)}) \ge n_{\max} + a + 1$. As a result, $\chi_L(S_{k,(n_1,n_2,\ldots,n_k)}) \ge n_{\max} + a$, if $I(a-1) \le k \le I(a)$, $a \ge 1$.

Next, we shall show the upper bound of $S_{k,(n_1,n_2,...,n_k)}$ for $I(a-1) \le k \le I(a)$, $a \ge 1$. The vertices $S_{t,n_{\max}-j}$ for every $j \in [0,n_{\max}-2]$, we give color follow construction the upper bound of the second result in [3] using $(n_{\max}+a)$ colors. Otherwise, for $j=n_{\max}-1$, the vertices l_i are colored by 2, 3, ..., $n_{\max}+a-1$, respectively. Thus, $\chi_L(S_{k,(n_1,n_2,...,n_k)}) \le n_{\max}+a$ for $I(a-1) \le k \le I(a)$, $a \ge 1$.

Let $|A| > n_{\max} + a - 1$. By Corollary 1.1, we obtain $\chi_L(S_{k,(n_1,n_2,...,n_k)})$ $\geq |A| + 1$, since x is adjacent to |A| leaves. To determine the upper bound, the vertices in A are colored by 2, 3, ..., |A| + 1, respectively, and the colors for the other vertices alike two cases before it. So, $\chi_L(S_{k,(n_1,n_2,...,n_k)}) \leq |A| + 1$.

References

- [1] Asmiati and E. T. Baskoro, Characterizing all graphs containing cycle with locating-chromatic number three, AIP Conf. Proc. 1450, 2012, pp. 351-357.
- [2] Asmiati, E. T. Baskoro, H. Assiyatun, D. Suprijanto, R. Simanjuntak and S. Uttunggadewa, The locating-chromatic number of firecracker graphs, Far East J. Math. Sci. (FJMS) 63(1) (2012), 11-23.
- [3] Asmiati, H. Assiyatun and E. T. Baskoro, Locating-chromatic number of amalgamation of stars, ITB J. Sci. 43A (2011), 1-8.
- [4] A. Behtoei and B. Omoomi, On the locating chromatic number of Kneser graphs, Discrete Appl. Math. 159 (2011), 2214-2221.

- [5] A. Behtoei and B. Omoomi, The locating chromatic number of the join of graphs, Discrete Appl. Math., to appear.
- [6] A. Behtoei and B. Omoomi, On the locating chromatic number of Cartesian product of graphs, Ars Combin., to appear.
- [7] E. T. Baskoro and I. A. Purwasih, The locating-chromatic number of corona product of graph, Southeast Asian Journal of Sciences 1(1) (2011), 89-101.
- [8] G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater and P. Zang, The locating-chromatic number of a graph, Bull. Inst. Combin. Appl. 36 (2002), 89-101.
- [9] G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater and P. Zang, Graph of order n with locating-chromatic number n-1, Discrete Math. 269 (2003), 65-79.
- [10] D. Welyyanti, E. T. Baskoro, R. Simanjuntak and S. Uttunggadewa, On locating-chromatic number of complete *n*-arry tree, AKCE Int. J. Graphs Comb. 10 (2013), 61-67.