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Abstract 

In this paper, we introduce moduli Fibonacci numbers of F
M
2χ  and 

F
M
2Λ  sequence spaces over p-metric spaces defined by sequences of 

modulus functions and also discuss some of the general properties of 
these spaces. 

1. Introduction 

Throughout w, χ and Λ denote the classes of all, gai and analytic scalar 
valued single sequences, respectively. 
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We write 2w  for the set of all complex sequences ( ),mnx  where 

,, N∈nm  the set of positive integers. Then 2w  is a linear space under the 

coordinate-wise addition and scalar multiplication. 

Some initial works on double sequence spaces are found in Bromwich 
[2]. Later on, they were investigated by Hardy [3], Moricz [7], Moricz and 
Rhoades [8], Basarir and Solancan [1], Tripathy [11], Turkmenoglu [12], and 
many others. 

We procure the following sets of double sequences: 

( ) {( ) },sup:: ,
2 ∞<∈= ∈

mnt
mnNnmmnu xwxtM  

( ) {( ) },somefor1lim:: ,
2 C∈=−−∈= ∞→ llxpwxt mnt

mnnmmnpC  

( ) {( ) },1lim:: ,
2

0 =−∈= ∞→
mnt

mnnmmnp xpwxtC  

( ) ( ) ,::
1 1

2









∞<∈= ∑ ∑∞

=

∞

=m n
t

mnmnu mnxwxtL  

( ) ( ) ( )∩ ttt upbp MCC =:  and ( ) ( ) ( )∩ ;00 ttt upbp MCC =  

where ( )mntt =  is the sequence of strictly positive reals mnt  for all 

N∈nm,  and ∞→− nmp ,lim  denotes the limit in the Pringsheim’s sense.  

In the case 1=mnt  for all ,, N∈nm  the above classes of sequences         

are denoted by ( ),tuM  ( ),tpC  ( ),0 tpC  ( ),tuL  ( )tbpC  and ( )tbp0C  reduce      

to the sets ,uM  ,pC  ,0 pC  ,uL  bpC  and ,0bpC  respectively. Now, we may 

summarize the knowledge given in some document related to the double 
sequence spaces. Gökhan and Çolak [14, 15] have proved that ( )tuM  and 

( ),tpC  ( )tbpC  are complete paranormed spaces of double sequences and gave 

the α-, β-, γ-duals of the spaces ( )tuM  and ( ).tbpC  Zeltser [16] in her Ph.D. 
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Thesis has essentially studied both the theory of topological double sequence 
spaces and the theory of summability of double sequences. Mursaleen and 
Edely [17] and Tripathy [11] have independently introduced the statistical 
convergence and statistical Cauchy for double sequences and established the 
relation between statistical convergent and strongly Cesàro summable double 
sequences. Altay and Başar [20] have defined the spaces ,BS  ( ),tBS  ,pCS  

,bpCS  rCS  and BV  of double sequences consisting of all double series 

whose sequence of partial sums is in the spaces ,uM  ( ),tuM  ,pC  ,bpC  rC  

and ,uL  respectively, and also examined some properties of those sequence 

spaces and determined the α-duals of the spaces ,BS  ,BV  bpCS  and the 

( )ϑβ -duals of the spaces bpCS  and rCS  of double series. Başar and Sever 

[21] have introduced the Banach space qL  of double sequences 

corresponding to the well-known space q  of single sequences and examined 

some properties of the space .qL  Subramanian and Misra [22] have studied 

the space ( )uqpM ,,2χ  of double sequences and gave some inclusion 

relations. 

The class of sequences which are strongly Cesàro summable with respect 
to a modulus was introduced by Maddox [6] as an extension of the definition 
of strongly Cesàro summable sequences. Cannor [23] further extended this 
definition to a definition of strong A-summability with respect to a modulus 
where ( )knaA ,=  is a nonnegative regular matrix and established some 

connections between strong A-summability, strong A-summability with 
respect to a modulus, and A-statistical convergence. In [24], the notion of 
convergence of double sequences was presented by Pringsheim. Also, in 
[25-27], the four dimensional matrix transformation 

( ) ∑ ∑∞

=

∞

=
=

1 1, m n mn
mn
kk xaAx  

was studied extensively by Robison and Hamilton. 



C. Priya, N. Saivaraju and N. Subramanian 4 

We shall use the following inequality in the sequel of the paper. For 
0, ≥ba  and ,10 << p  we have 

( ) .ppp baba +≤+  (1.1) 

The double series ∑∞
=1, nm mnx  is called convergent if and only if the double 

sequence ( )mns  is convergent, where ( )∑ = ∈= nm
ji ijmn nmxs ,

1, ., N  

A sequence ( )mnxx =  is said to be double analytic if nm
mnmn x +1sup  

.∞<  The vector space of all double analytic sequences will be denoted by 

.2Λ  A sequence ( )mnxx =  is called double gai sequence if 

( )( ) 0! 1 →+ +nm
mnxnm  as ., ∞→nm  

The double gai sequences will be denoted by .2χ  Let { finiteall=φ  

}.sequences  

Consider a double sequence ( ).ijxx =  The ( )nm, th section [ ]nmx ,  of 

the sequence is defined by [ ] ∑ = ℑ= nm
ji ijij

nm xx ,
0,

,  for all ;, N∈nm  where 

ijℑ  denotes the double sequence whose only nonzero term is a ( )!
1

ji +  in 

the ( )ji, th place for each ., N∈ji  

An FK-space (or a metric space) X is said to have AK property if ( )mnℑ  

is a Schauder basis for X or equivalently, [ ] ., xx nm →  

An FDK-space is a double sequence space endowed with a complete 
metrizable; locally convex topology under which the coordinate mappings 

( ) ( ) ( )N∈→= nmxxx mnk ,  are also continuous. 

By Kamthan and Gupta [13], consider the kernel ( )tp  associated with an 

Orlicz function ( )tM  and let 

( ) ( ){ }.;sup stptsq ≤=  
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The q possesses the same properties as the function p. Suppose now 

( ) ( )∫=
x

dssqxN
0

.  

Then N is an Orlicz function. Then functions M and N are called mutually 
complementary Orlicz functions. 

Let M and Φ are mutually complementary modulus functions. Then we 
have: 

  (i) For all ,0, ≥yu  

( ) ( )yuMuy Φ+≤  (Young’s inequality) (one may refer to [13]). (1.2) 

 (ii) For all ,0≥u  

( ) ( ) ( )( ).uuMuu ηΦ+=η  (1.3) 

(iii) For all ,0≥u  and ,10 <λ<  

( ) ( ).uMuM λ≤λ  (1.4) 

Lindenstrauss and Tzafriri [5] used the idea of Orlicz function to 
construct Orlicz sequence space 

.0somefor,:
1 






 >ρ∞<








ρ
∈= ∑∞

=k
k

M
xMwx  

The space M  with the norm 

,1:0inf
1 






 ≤








ρ
>ρ= ∑∞

=k
kxMx  

becomes a Banach space which is called an Orlicz sequence space. For ( )tM  

( ),1 ∞<≤= pt p  the spaces M  coincide with the classical sequence space 
.p  

A sequence ( )mnff =  of modulus function is called a Musielak-
modulus function. A sequence ( )mngg =  defined by 

( ) ( ) ( ){ } ...,2,1,,0:sup =≥−= nmuufuvvg mnmn  
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is called the complementary function of a Musielak-modulus function f. For a 
given Musielak-modulus function f, the Musielak-modulus sequence space 

ft  is defined as follows: 

{ ( ) },,as0: 12 ∞→→∈= + nmxIwxt nm
mnff  

where fI  is a convex modular defined by 

( ) ( ) ( )∑ ∑∞

=

∞

=
+ ∈==

1 1
1 .,

m n fmn
nm

mnmnf txxxfxI  

We consider ft  equipped with the Luxemburg metric 

( ) .1infsup,
1 1

1













≤



















= ∑ ∑∞

=

∞

=

+

m n

nm
mn

mnmn mn
xfyxd  

2. Definition and Preliminaries 

Let N∈n  and X be a real vector space of dimension w, where .mn ≤                     
A real valued function ( ) ( ) ( )( ) pnnnp xdxdxxd 0,...,,0,...,, 111 =  on X 

satisfying the following conditions: 

  (i) ( ) ( )( ) 00,...,,0,11 =pnn xdxd  if and only if ( ) ( )0,...,,0,11 nn xdxd  

are linearly dependent, 

 (ii) ( ) ( )( ) pnn xdxd 0,...,,0,11  is invariant under permutation, 

(iii) ( ) ( )( ) ( ) ( )( ) ,0,...,,0,0,...,,0, 1111 pnnpnn xdxdxdxd =  

(iv) ( ) ( )( ) ( ) ( )( ) ,,0,...,,0,0,...,,0, 1111 R∈αα=α pnnpnn xdxdxdxd  

 (v) ( ) ( ) ( )( ) ( ( ) ( ),0,,0,0,...,,0,,0, 221122111 xdxdxdxdxxd pnn =′+  

( )) ( ) ( ) ( )( ) ,0,...,,0,,0,0,..., 2211 pnnpnn xdxdxdxd ′+  

(vi) ( ) ( ) ( )( ) ( ( ) ( ,,...,,,,,,, 21212211 yydxxxdyxyxyxd Y
p

nXnnp +=  

) ) pp
ny 1...,  for ;1 ∞<≤ p  (or) 
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(vii) ( ) ( ) ( )( ) { ( ) ( ,,,...,,,sup:,...,,,,, 21212211 yydxxxdyxyxyxd YnXnn =  

)},..., ny  

for ,...,,, 21 Xxxx n ∈  Yyyy n ∈...,,, 21  is called the p product metric of 

the Cartesian product of n metric spaces is the p norm of the n-vector of the 
norms of the n subspaces. 

The pair ( )..,,X  is called 2-metric space. Standard examples of        

2-metric space are 2R  equipped with the following conditions: 

(1) ( ) ( ) ( ) ( ) ( ) ( ) ,0,,0,0,,0,0,,0, 1221 ydxdydxdydxd −=  where 

( ) ( ) ( )( ) ( ) ( ) ( )( ),0,,0,0,,0,,0,0, 2121 ydydydxdxdxd ==  

(2) ( ) ( ) =0,,0, ydxd  the area of the triangle having vertices 0, 

( )0,xd  and ( ).0,yd  

A trivial example of p product metric of n metric space is the p norm 
space is R=X  equipped with the following Euclidean metric in the product 
space is the p norm: 

( ) ( )( ) Enn xdxd 0,...,,0,11  

( )( )( )0,detsup mnmn xd=  

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

,

0,0,0,

0,0,0,
0,0,0,

sup

2211

1222222121

1112121111



















=

nnnnnnnn

nn

nn

xdxdxd

xdxdxd
xdxdxd

 

where ( ) n
inii xxx R∈= ...,,1  for each ....,,2,1 ni =  

If every Cauchy sequence in X converges to some ,XL ∈  then X is said 

to be complete with respect to the p-metric. Any complete p-metric space is 
said to be p-complete metric space. 
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Definition 2.1. Let λ be a sequence space. Then λ is called 

  (i) Solid (or normal) of ( ) λ∈α mnmnx  whenever ( ) λ∈mnx  for all 

sequences ( )mnα  of scalars with .1≤αmn  

 (ii) Monotone if provided λ contains the canonical preimages of all its 
step spaces. 

(iii) Perfect if ,ααλ=λ  see [13]. 

Definition 2.2. A sequence space E is said to be convergence free if 
( ) Eymn ∈  whenever ( ) Exmn ∈  and 0=mnx  implies ( ) .0=mny  

Definition 2.3. A sequence space E is said to be a sequence algebra if 
( ) Eyx mnmn ∈  whenever ( ) ,Exmn ∈  ( ) .Eymn ∈  

Definition 2.4. A sequence space E is said to be symmetric if 
( ( ) ) Ex mn ∈π  whenever ( ) ,Exmn ∈  where π is a permutation on .NN ×  

Definition 2.5. A map h defined on a domain ,XD ⊂  i.e., XDh ⊂:  
R→  is said to satisfy Lipschitz condition if ( ) ( ) ,yxKyhxh −≤−  

where K is known as the Lipschitz constant. The class of K-Lipschitz 
functions defined on D is denoted by ( )., KDh ∈  

Definition 2.6. A convergence field of convergence is a set 

{ ( ) }.limexiststhere:2 R∈Λ∈== mnmn xxxF  

The convergence field F is a closed linear subspace of 2Λ  with respect to the 

supremum metric ∩ .22 cF Λ=  

Define a function R→Fh :  is a Lipschitz function. 

Definition 2.7. Let ( )mn
kaA ,=  denote a four dimensional summability 

method that maps the complex double sequences x into the double sequence 
Ax, where the k, th  term to Ax is as follows: 

( ) ∑ ∑∞

=

∞

=
=

1 1m n mn
mn
kk xaAx  

such transformation is said to be nonnegative if mn
ka  is nonnegative. 
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The notion of regularity for two dimensional matrix transformations are 
the following four dimensional analog of regularity for double sequences in 
which they both added an additional assumption of boundedness. This 
assumption was made because a double sequence which is P-convergent is 
not necessarily bounded. 

Let λ and µ be two sequence spaces and ( )mn
kaA ,=  be a four 

dimensional infinite matrix of real numbers ( ),,
mn
ka  where .,,, N∈knm  

Then we say A defines a matrix mapping from λ into µ and we denote it by 
writing µ→λ:A  if for every sequence ( ) ,λ∈= mnxx  the sequence 

{( ) },kAxAx =  the A-transform of x, is in µ, where 

( ) ( )∑ ∑
∞

=

∞

=

∈==
1 1

, .,
m n

mn
mn
kk kxaAAx N  (2.1) 

By ( ),: µλ  we denote the class of all matrices A such that .: µ→λA  

Thus, ( )µλ∈ :A  if and only if the series converges for each ., λ∈k        

A sequence x is said to be A-summable to α if Ax converges to α which is 
called as the A-limit of x. 

Lemma 2.8 [See 32]. Matrix ( )mn
kaA ,=  is regular if and only if the 

following three conditions hold: 

(1) There exists 0>M  such that for every ...,,2,1, =k  the following 

inequality holds: ∑ ∑∞
=

∞
= ≤1 1 ,m n

mn
k Ma  

(2) 0lim , =∞→
mn
kk a  for every ,...,2,1, =k  

(3) ∑ ∑∞
=

∞
=∞→ =1 1, .1lim m n

mn
kk a  

Let ( )mnq  be a sequence of positive numbers and 

( )∑ ∑
= =

∈=
k

m n
mnk kqQ

0 0
., N  (2.2) 
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Then the matrix ( )qmn
k

q rR =  of the Riesz mean is given by 

( )
( )





>

≤≤=
.,if,0

,,,0if,

knm

knmQ
q

r k
mnqmn

k  (2.3) 

The Fibonacci numbers are the sequence of numbers ( )N∈nmkf mn
k ,,,  

defined by the linear recurrence equations 100 =f  and ,111 =f  =mnf  

;2211 −−−− + nmnm ff  .2, ≥nm  Fibonacci numbers have many interesting 

properties and applications in sciences and technology. Also, some basic 
properties of Fibonacci numbers are given as follows: 

∑ ∑= = ++ ≥−=
m
k

n
nmmn nmff

1 1 22 ,1,;1  

∑ ∑= = ++ ≥=
m
k

n
nmmnmn nmfff

1 1 11
2 ,1,;  

∑ ∑∞

=

∞

=1 1
1

k mn
kf

 converges. 

In this paper, we define the Fibonacci matrix ( ) ,1,
∞

== nm
mn

kfF  which 

differs from existing Fibonacci matrix by using Fibonacci numbers mnf  and 

introduce some new sequence spaces 2χ  and .2Λ  Now, we define the 

Fibonacci matrix ( ) ,1,
∞

== nm
mn

kfF  by 

( ) ( ) ( )
( )





>

≤≤≤≤
−= ++

,,if,0

,0;0if,122
knm

nmkf
f

f nm
k

mn
k  

that is, 
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.

07
3

7
2

7
1

7
1

004
2

4
1

4
1

0002
1

2
1

00001

























 

It is obvious that the four dimensional infinite matrix F is a triangular matrix. 
Also, it follows from Lemma 2.8 that the method F is regular. 

Let M be a Musielak-modulus function. Now, we introduce the following 
sequence spaces based on the four dimensional infinite matrix F: 

[ ( ) ( ) ( )( ) ]pn
F

M xdxdxd 121
2 ...,,,, −Λ  

( )


== ∑ ∑∞

=

∞

=η 1 1
sup

m n
xF  

 [ ( ( ( ) ( ) ( ) ))]


∞<⋅ −

+
pn

nm
mn

mn
k xdxdxdxfM 121

1 ...,,,,  

( ) ( )



−
= ∑ ∑∞

=

∞

=++ 1 122 1
1sup

m nnmf  

 [ ( ( ( ) ( ) ( ) ))]


∞<⋅ −

+
pn

nm
mn

mn
k xdxdxdxfM 121

1 ...,,,,  

( )., N∈k  

Let us consider [ ( ) ( ) ( )( ) ]pn
F

M xdxdxd 121
2 ...,,,, −Λ  is a metric space 

with the metric 

( ) { ( ( ) ( )) },...,3,2,1,:sup, =−= ηη nmyFxFMyxd  (2.4) 

[ ( ) ( ) ( )( ) ]pn
F

M xdxdxd 121
2 ...,,,, −χ  

( )


== ∑ ∑∞

=

∞

=∞→µ 1 1,lim
m nnmxF  
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[ ( (( ) ) ( ( ) ( ) ( ) ))]


=+⋅ −

+ 0...,,,,! 121
1

pn
nm

mn
mn

k xdxdxdxnmfM  

( ) ( )



−
= ∑ ∑∞

=

∞

=++
∞→ 1 122

, 1
1lim

m nnm
nm f  

 [ ( (( ) ) ( ( ) ( ) ( ) ))]




=+⋅ −
+ 0...,,,,! 121

1
pn

nm
mn

mn
k xdxdxdxnmfM  

( )., N∈k  

Let us consider [ ( ) ( ) ( )( ) ]pn
F

M xdxdxd 121
2 ...,,,, −χ  be the metric 

space with the metric 

( ) { ( ( ) ( )) }....,3,2,1,:sup, =−= µµ nmyFxFMyxd  (2.5) 

3. Main Results 

Theorem 3.1. The classes of sequences 

[ ( ) ( ) ( )( ) ]pn
F

M xdxdxd 121
2 ...,,,, −χ   and 

[ ( ) ( ) ( )( ) ]pn
F

M xdxdxd 121
2 ...,,,, −Λ  

of moduli Fibonacci ( ),mn
kfF =  are linear spaces. 

Proof. It can be established using standard technique. 

Theorem 3.2. The spaces [ ( ) ( ) ( )( ) ]pn
F

M xdxdxd 121
2 ...,,,, −χ  and 

[ ( ) ( ) ( )( ) ]pn
F

M xdxdxd 121
2 ...,,,, −Λ  of moduli Fibonacci ( ),mn

kfF =  are 

solid and monotone. 

Proof. We shall prove the result for 

[ ( ) ( ) ( )( ) ]....,,,, 121
2

pn
F

M xdxdxd −χ  
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Let [ ( ) ( ) ( )( ) ]....,,,, 121
2

pn
F

Mmn xdxdxdx −χ∈  Then 

{ [ ( (( ) ) ,!lim 1
,

nm
mn

mn
knm xnmfM +

∞→ +  

( ( ) ( ) ( ) ))] }.0...,,, 121 =− pnxdxdxd  (3.1) 

Let ( )mnα  be a sequence of scalars with 11 ≤α +nm
mn  for all ., N∈nm  

Therefore, the equation from (3.1) and the following inequality: 

{[ ( (( ) ) ( ( ) ( ) ( ) ))]}pn
nm

mn
mn

k xdxdxdxnmfM 121
1 ...,,,,! −

+α+  

{ [ ( (( ) ) ,! 11 nm
mn

mn
k

nm
mn xnmfM ++ +α≤  

( ( ) ( ) ( ) ))]}pnxdxdxd 121 ...,,, −  

{[ ( (( ) ) ( ( ) ( ) ( ) ))]}pn
nm

mn
mn

k xdxdxdxnmfM 121
1 ...,,,,! −

++≤  

for all ., N∈nm  Therefore, [ ( ) ( ) ( )( ) ]pn
F

M xdxdxd 121
2 ...,,,, −χ  is a 

sequence space. If [ ( ) ( ) ( )( ) ]pn
F

M xdxdxd 121
2 ...,,,, −χ  is solid, then 

[ ( ) ( ) ( )( ) ]pn
F

M xdxdxd 121
2 ...,,,, −χ  

is monotone. Hence, the space [ ( ) ( ) ( )( ) ]pn
F

M xdxdxd 121
2 ...,,,, −χ  is 

monotone. 

Similarly, the result is true for [ ( ) ( ) ( )( ) ]....,,,, 121
2

pn
F

M xdxdxd −Λ  

Theorem 3.3. The space [ ( ) ( ) ( )( ) ]pn
F

M xdxdxd 121
2 ...,,,, −χ  is a 

sequence algebra. 

Proof. Let ( ) ( ) [ ( ) ( ) ( )( ) ]....,,,,, 121
2

pn
F

Mmnmn xdxdxdyx −χ∈  Then 
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( ) ( )



− ∑ ∑∞

=

∞

=++
∞→ 1 122

, 1
1lim

m nnm
nm f  

[ ( (( ) ) ( ( ) ( ) ( ) ))] ,0...,,,,! 121
1





=+⋅ −
+

pn
nm

mn
mn

k xdxdxdxnmfM  

( ) ( )



− ∑ ∑∞

=

∞

=++
∞→ 1 122

, 1
1lim

m nnm
nm f  

[ ( (( ) ) ( ( ) ( ) ( ) ))] .0...,,,,! 121
1





=+⋅ −
+

pn
nm

mn
mn

k xdxdxdynmfM  

Then we have 

( ) ( )



− ∑ ∑∞

=

∞

=++
∞→ 1 122

, 1
1lim

m nnm
nm f  

[ ( (( ) ) ( ( ) ( ) ( ) ))] .0...,,,,! 121
1





=+⋅ −
+

pn
nm

mnmn
mn

k xdxdxdyxnmfM  

Thus, ( ) [ ( ) ( ) ( )( ) ]pn
F

Mmnmn xdxdxdyx 121
2 ...,,,, −χ∈  is a sequence 

algebra. 

Theorem 3.4. The space [ ( ) ( ) ( )( ) ]pn
F

M xdxdxd 121
2 ...,,,, −χ  is not 

convergence free in general. 

Proof. Here we give a counterexample. Let ( ) 3xxM =  for all 

[ ).,0 ∞∈x  Consider the sequences ( )mnx  and ( )mny  are defined by 

( ) ( ) nmmn
mnnm

x ++
=

!
1  and ( ) ( ) nm

mn mnnmy ++= !  for all ., N∈nm  

Then ( ) [ ( ( ) ( ) ( )) ],...,,,, 121
2

pn
F

Mmn xdxdxdx −χ∈  but 

( ) [ ( ) ( ) ( )( ) ]....,,,, 121
2

pn
F

Mmn xdxdxdy −χ∉  



Fibonacci Numbers of 2χ  over p-metric Spaces … 15 

Hence, the space [ ( ) ( ) ( )( ) ]pn
F

M xdxdxd 121
2 ...,,,, −χ  is not convergence 

free. 

Theorem 3.5. The space [ ( ) ( ) ( )( ) ]pn
F

M xdxdxd 121
2 ...,,,, −χ  is not 

symmetric. 

Proof. Let ( ) xxM =  for all [ ).,0 ∞∈x  If 

( ) ( )






∈
+=

+

otherwise.,0

,,if,!
1 Nnmnmx

nm

mn  

Hence ( ) [ ( ) ( ) ( )( ) ]....,,,, 121
2

pn
F

Mmn xdxdxdx −χ∈  Let ;NN ×⊂K  :φ  

AK →  and AK −×→−×ψ NNNN:  be bijections. Then the map 

NN ×π :  defined by 

( )
( )
( )



ψ

∈φ
=π

otherwise,,
,,for,

mn
Knmmn

mn  

is a permutation on ,NN ×  but 

( ) [ ( ) ( ) ( )( ) ]....,,,, 121
2

pn
F

Mmn xdxdxdx −π χ∉  

Hence, [ ( ) ( ) ( )( ) ]pn
F

M xdxdxd 121
2 ...,,,, −χ  is not symmetric. 

Theorem 3.6. The spaces [ ( ) ( ) ( )( ) ] [ ,...,,,, 2
121

2 F
Mpn

F
M xdxdxd Λ⊂χ −  

( ) ( ) ( )( ) ]pnxdxdxd 121 ...,,, −  for moduli Fibonacci ( )mn
kfF =  and the 

inclusion are proper. 

Proof. It is easy to prove. Therefore, omit the proof. 

Theorem 3.7. The function [ ( ) ( ) ( )( ) ]pn
F xdxdxdh F
M

121
2 ...,,,,: 2 −χ

Λ  

R→  is the Lipschitz function, where 
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[ ( ) ( ) ( )( ) ]pnM xdxdxd 121
2 ...,,,, −Λ  

[ ( ) ( ) ( )( ) ]pn
F

M xdxdxd 121
2 ...,,,, −χ=  

[ ( ) ( ) ( )( ) ],...,,,, 121
2

pnM xdxdxd −Λ∩  

and hence they are uniformly continuous. 

Proof. Let [ ( ) ( ) ( )( ) ],...,,,,, 121
2

2 pn
F xdxdxdyx F
M

−χ
Λ∈  .yx ≠  Then 

the sets 

{[ ( (( ) ( ) ) ,! 1 nm
mn

mn
kx xhxnmfMA +−+=  

( ( ) ( ) ( ) ))] ( )},,...,,, 121 yxdxdxdxd pn ≥−  

{[ ( (( ) ( ) ) ,! 1 nm
mn

mn
ky xhynmfMA +−+=  

( ( ) ( ) ( ) ))] ( )}.,...,,, 121 yxdxdxdxd pn ≥−  

Thus, the sets 

{[ ( (( ) ( ) ) ,! 1 nm
mn

mn
kx xhxnmfMB +−+=  

( ( ) ( ) ( ) ))] ( )}yxdxdxdxd pn ,...,,, 121 <−  

[ ( ) ( ) ( )( ) ],...,,,, 121
2

2 pn
F xdxdxdF
M

−χ
Λ∈  

{[ ( (( ) ( ) ) ,! 1 nm
mn

mn
ky xhynmfMB +−+=  

( ( ) ( ) ( ) ))] ( )}yxdxdxdxd pn ,...,,, 121 <−  

[ ( ) ( ) ( )( ) ]....,,,, 121
2

2 pn
F xdxdxdF
M

−χ
Λ∈  

Here also [ ( ) ( ) ( )( ) ],...,,,, 121
2

2 pn
F

yx xdxdxdBBB F
M

−χ
Λ∈= ∩  so that 

.φ≠B  Now taking ,, Bnm ∈  
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{[ ( (( ) ( ) ( ) ) ( ( ) ( ) ( ) ))]}pn
nmmn

k xdxdxdyhxhnmfM 121
1 ...,,,,! −

+−+  

{[ ( (( ) ( ) ) ( ( ) ( ) ( ) ))]}pn
nm

mn
mn

k xdxdxdxxhnmfM 121
1 ...,,,,! −

+−+≤  

{[ ( (( ) ) ( ( ) ( ) ( ) ))]}pn
nm

mnmn
mn

k xdxdxdyxnmfM 121
1 ...,,,,! −

+−++  

{[ ( (( ) ( ) ) ( ( ) ( ) ( ) ))]}pn
nm

mn
mn

k xdxdxdyhynmfM 121
1 ...,,,,! −

+−++  

( ).,3 yxd≤  

Thus, h is a Lipschitz function. 

Proposition 3.8. If [ ( ) ( ) ( )( ) ],...,,,,, 121
2

2 pn
F xdxdxdyx F
M

−χ
Λ∈  then 

( ) [ ( ) ( ) ( )( ) ]pn
F xdxdxdyx F
M

121
2 ...,,,,2 −χ

Λ∈⋅  and ( ) ( ) ( ).yhxhxyh =  

Proof. Let .0>ε  Then 

{[ ( (( ) ( ) ) ,! 1 nm
mn

mn
kx xhxnmfMB +−+=  

( ( ) ( ) ( ) ))] }ε<− pnxdxdxd 121 ...,,,  

[ ( ) ( ) ( )( ) ],...,,,, 121
2

2 pn
F xdxdxdF
M

−χ
Λ∈  

{[ ( (( ) ( ) ) ,! 1 nm
mn

mn
ky xhynmfMB +−+=  

( ( ) ( ) ( ) ))] }ε<− pnxdxdxd 121 ...,,,  

[ ( ) ( ) ( )( ) ]....,,,, 121
2

2 pn
F xdxdxdF
M

−χ
Λ∈  

Now, 

{[ ( (( ) ( ) ( ) ) ,! 1 nm
mnmn

mn
k yhxhyxnmfM +−+  

( ( ) ( ) ( ) ))]}pnxdxdxd 121 ...,,, −  
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{[ ( (( ) ( ) ( ) ( ) ( ) ) ,! 1 nm
mnmnmnmn

mn
k yhxhyhxyhxyxnmfM +−+−+=  

( ( ) ( ) ( ) ))]}pnxdxdxd 121 ...,,, −  

{[ ( (( ) ( ) ) ,! 1 nm
mnmn

mn
k yhyxnmfM +−+  

( ( ) ( ) ( ) ))]}pnxdxdxd 121 ...,,, −  

{[ ( (( ) ( ) ( ) ) ,! 1 nm
mn

mn
k xhxyhnmfM +−++  

( ( ) ( ) ( ) ))]}....,,, 121 pnxdxdxd −  

As 

[ ( ) ( ) ( )( ) ]pn
F xdxdxdF
M

121
2 ...,,,,2 −χ

Λ  

[ ( ) ( ) ( )( ) ],...,,,, 121
2

pnM xdxdxd −Λ⊆  

there exists an R∈L  such that Lx nm
mn <+1  and ( ) .1 Lyh nm <+  

Therefore, using the above equation, we get 

{[ ( (( ) ( ) ( ) ) ,! 1 nm
mnmn

mn
k yhxhyxnmfM +−+  

( ( ) ( ) ( ) ))]}pnxdxdxd 121 ...,,, −  

ε=ε+ε≤ LLL 2  

for all [ ( ) ( ) ( )( ) ]....,,,,, 121
2

2 pn
F

yx xdxdxdBBnm F
M

−χ
Λ∈∈ ∩  Hence, 

( ) [ ( ) ( ) ( )( ) ]pn
F xdxdxdyx F
M

121
2 ...,,,,2 −χ

Λ∈⋅  and ( ) ( ) ( ).yhxhxyh =  
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