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Abstract

In this paper, we introduce moduli Fibonacci numbers of xﬁ,,': and

AZ,\},: sequence spaces over p-metric spaces defined by sequences of

modulus functions and also discuss some of the general properties of
these spaces.

1. Introduction

Throughout w, x and A denote the classes of all, gai and analytic scalar
valued single sequences, respectively.
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We write w? for the set of all complex sequences (Xn), wWhere

m, n € N, the set of positive integers. Then w? is a linear space under the

coordinate-wise addition and scalar multiplication.

Some initial works on double sequence spaces are found in Bromwich
[2]. Later on, they were investigated by Hardy [3], Moricz [7], Moricz and
Rhoades [8], Basarir and Solancan [1], Tripathy [11], Turkmenoglu [12], and

many others.

We procure the following sets of double sequences:
2
J\'/r'u(t) = {(xmn) ew ! Supm,neN' Xmn |tmn < OO}:

Cp(t) = {(xpn) € w2 p— lim,,, _se0| Xy — 1™ =1 for some / € C},

2 .
6IOp(t) = {(xmn) ew :p-— 11mm)n_>oo| Xnn |fmn _ 1}’

£u(0) = {(xmm ewti D 2l < w}’

Cop (1) = €, () ) M (¢) and o () = Co,p ([ M (0);

where ¢ = (t,,) is the sequence of strictly positive reals ¢,, for all

m,n € N and p —lim, ,_,, denotes the limit in the Pringsheim’s sense.
In the case ¢, =1 for all m, n € N, the above classes of sequences
are denoted by M, (), C,(t), C,(t), L,(1), Cpy,() and Cyp,(¢) reduce
to the sets M, C,, C,, L, €, and Cy,, respectively. Now, we may

summarize the knowledge given in some document related to the double
sequence spaces. Gokhan and Colak [14, 15] have proved that M, (¢) and

¢, (¢), Cop (¢) are complete paranormed spaces of double sequences and gave

the a-, B-, y-duals of the spaces M, (¢) and Gy, (¢). Zeltser [16] in her Ph.D.



Fibonacci Numbers of Xz over p-metric Spaces ... 3

Thesis has essentially studied both the theory of topological double sequence
spaces and the theory of summability of double sequences. Mursaleen and
Edely [17] and Tripathy [11] have independently introduced the statistical
convergence and statistical Cauchy for double sequences and established the
relation between statistical convergent and strongly Cesaro summable double

sequences. Altay and Basar [20] have defined the spaces BS, BS(¢), CS,,,
CSyp, €8, and BV of double sequences consisting of all double series
whose sequence of partial sums is in the spaces M,, M,(#), C,, C,, C.
and L, respectively, and also examined some properties of those sequence
spaces and determined the o-duals of the spaces BS, BV, €8, and the
B(8)-duals of the spaces €8, and CS,. of double series. Basar and Sever

[21] have introduced the Banach space £L

y ©of double sequences

corresponding to the well-known space £, of single sequences and examined

some properties of the space Lq. Subramanian and Misra [22] have studied

the space ijw(p, g, u) of double sequences and gave some inclusion

relations.

The class of sequences which are strongly Cesaro summable with respect
to a modulus was introduced by Maddox [6] as an extension of the definition
of strongly Cesaro summable sequences. Cannor [23] further extended this
definition to a definition of strong 4-summability with respect to a modulus

where 4 = (an’k) is a nonnegative regular matrix and established some

connections between strong A-summability, strong A-summability with
respect to a modulus, and A-statistical convergence. In [24], the notion of
convergence of double sequences was presented by Pringsheim. Also, in

[25-27], the four dimensional matrix transformation

© ©
(Ax)k,[ = Zmzl anl At Xmn

was studied extensively by Robison and Hamilton.



4 C. Priya, N. Saivaraju and N. Subramanian

We shall use the following inequality in the sequel of the paper. For
a,b>0and 0 < p <1, we have

(a +b)P <a? +bP. (1.1)
The double series ZZ w1 Xmn 1s called convergent if and only if the double

. m,n
sequence (s,,,) is convergent, where s,,, = Zi o1 % (m, n € N).

A sequence x = (x,,,) is said to be double analytic if sup,,,| x,., |1/ mn

< . The vector space of all double analytic sequences will be denoted by

A% A sequence x = (x,,,) is called double gai sequence if

m+n)l| x 1/m+”—>0asm,n—>oo.
mn

The double gai sequences will be denoted by xz. Let ¢ = {all finite

sequences}.

Consider a double sequence x = (x;;). The (m, n)th section xmenl of

the sequence is defined by xlmen] — Z:"Jio x;3; forall m, n € N; where

J;; denotes the double sequence whose only nonzero term is a 6 in
l

+ )
the (i, j)th place for each i, j € N.

An FK-space (or a metric space) X is said to have AK property if (3,,,)

[m. n]

is a Schauder basis for X or equivalently, x - X.

An FDK-space is a double sequence space endowed with a complete
metrizable; locally convex topology under which the coordinate mappings

x = (x;) = (x,,,) (m, n € N) are also continuous.

By Kamthan and Gupta [13], consider the kernel p(¢) associated with an
Orlicz function M (¢) and let

q(s) = sup{t; p(t) < s}.
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The g possesses the same properties as the function p. Suppose now
X
N(x) = -[0 q(s)ds.
Then N is an Orlicz function. Then functions M and N are called mutually

complementary Orlicz functions.

Let M and ® are mutually complementary modulus functions. Then we
have:

(i) Forall u, y > 0,
uy < M(u)+ ®(y) (Young’s inequality) (one may refer to [13]).  (1.2)
(i1) For all u > 0,
un(u) = M(u) + dn(u)). (1.3)
(iii) Forall #u > 0, and 0 < A < 1,
M (M) < AM (u). (1.4)

Lindenstrauss and Tzafriri [5] used the idea of Orlicz function to
construct Orlicz sequence space

Ly = {x € W:Z::IM(%J < oo, for some p > 0}.

The space ¢, with the norm

. N a1
Ix] = 1nf{p 50 Zkle(T) < 1},

becomes a Banach space which is called an Orlicz sequence space. For M (t)
=t? (1 < p < ), the spaces ¢, coincide with the classical sequence space
Ly

A sequence f =(f,,,) of modulus function is called a Musielak-

modulus function. A sequence g = (g,,,) defined by

Zmn(W) =sup{|v|u—(f)@):u>20}, mn=12,..
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is called the complementary function of a Musielak-modulus function f. For a
given Musielak-modulus function f, the Musielak-modulus sequence space

ir is defined as follows:

tr={xe w? (| X |)1/m+n — 0 as m, n —> oo},

where [ is a convex modular defined by

L) =20 3 fun i D77 % = () € 1

We consider ¢ equipped with the Luxemburg metric

. . 1/m+n
TS

2. Definition and Preliminaries

Let n € N and X be a real vector space of dimension w, where n < m.
A real valued function d,(xi, ..., x,) = | (di(x}, 0), ..., d,(x,, 0)) ||p on X

satisfying the following conditions:
@) [[(dy(x1,0), ..., d,,(x,, 0))||p =0 if and only if d)(x, 0), ..., d,(x,, 0)
are linearly dependent,

(ii) || (di(xq, 0), ..., dj,(x,, 0)|| , is invariant under permutation,
(i) (112 O s s OV, = (it O) sy O]
(1) 1t (51 0) sy (i OV, =21 5 O sy s OV € R

) [[(d(x1 +x7,0). d3(x2, 0), ... d;, (x, 0)) |, = | (dy(x1, 0), d3(x2, 0),
oes (5, 0)) [, +[[ (di(xd, 0), d3(x2, 0), ... (x5 0))

p)

i) d,((x1, 1) (2, 92) (35 ¥)) = (A (315 X2, oo0s )+ dy (1,32,

s yn)p)l/p for 1< p < oo; (or)
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(vii) d((xp, y1)s (32, ¥2)s s (0, 1)) = supld x (31, X2, .0 X)), dy (V1. 02,
oo Y )}

for x, x5, ... x,€ X, ¥, V2, ..., ¥, €Y 1is called the p product metric of

the Cartesian product of n metric spaces is the p norm of the n-vector of the

norms of the n subspaces.

The pair (X,||.,.|) is called 2-metric space. Standard examples of
2-metric space are R? equipped with the following conditions:

(1) | d(x, 0), d(y, 0)| = |d(x1, 0), d(y2, 0) = d(x3, 0), d(y1, 0)[, where
d(x, 0) = (d(x, 0), d(x,, 0)), d(y, 0) = (d(y, 0), d(y2, 0)),

(2) | d(x, 0), d(y, 0)|| = the area of the triangle having vertices 0,
d(x, 0) and d(y, 0).

A trivial example of p product metric of n metric space is the p norm
space is X = R equipped with the following Euclidean metric in the product

space is the p norm:

" (dl(xla O)a ey dn(xn’ O)) ”E

= sup(| det(dmn(xmn, 0)) |)

di(x1, 0)  dip(xpp, 0) - dy(xgy,, 0)

B dy1(x21, 0)  dy(x22,0) -+ dyu(xyy, 0)

= Sup| . .
dnl(xnlﬂ 0) an(an’ 0) dnn(xnn’ 0)

where x; = (x;, ..., x;,) € R" foreachi =1, 2, ..., n.

If every Cauchy sequence in X converges to some L € X, then X is said

to be complete with respect to the p-metric. Any complete p-metric space is

said to be p-complete metric space.
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Definition 2.1. Let A be a sequence space. Then A is called
(i) Solid (or normal) of (o,,,X,,,) € A whenever (x,,,) € A for all

sequences (0., ) of scalars with | a,,, | < 1.

(i1)) Monotone if provided A contains the canonical preimages of all its
step spaces.

(iii) Perfect if A =2%%, see [13].

Definition 2.2. A sequence space E is said to be convergence free if
(¥mn) € E whenever (x,,,) € E and x,,, = 0 implies (y,,,) = 0.

Definition 2.3. A sequence space E is said to be a sequence algebra if
(Xn © Yun) € E whenever (x,,,) € E, (y,,,) € E.

Definition 2.4. A sequence space E is said to be symmetric if

(Xx(mn)) € E whenever (x,,,) € E, where m is a permutation on N x N.

Definition 2.5. A map /4 defined on a domain D c X, ie, h: D c X
— R is said to satisfy Lipschitz condition if | h(x)—h(y)| < K|x-y]|,
where K is known as the Lipschitz constant. The class of K-Lipschitz
functions defined on D is denoted by 4 € (D, K).

Definition 2.6. A convergence field of convergence is a set
F ={x =(x,,) € A? : there exists limx,,, € R}.
The convergence field F is a closed linear subspace of A? with respect to the
supremum metric F = Azﬂ 2.
Define a function /% : F — R is a Lipschitz function.

Definition 2.7. Let 4 = (a;";) denote a four dimensional summability

method that maps the complex double sequences x into the double sequence
Ax, where the k, (th term to Ax is as follows:

o0 00
(Ax)kf = Zm:l Zn:l al:fn(nxmn

such transformation is said to be nonnegative if ajy" is nonnegative.
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The notion of regularity for two dimensional matrix transformations are
the following four dimensional analog of regularity for double sequences in
which they both added an additional assumption of boundedness. This
assumption was made because a double sequence which is P-convergent is
not necessarily bounded.

Let . and p be two sequence spaces and A = (a;'y) be a four

dimensional infinite matrix of real numbers (a;'!f ’}), where m, n, k, { € N.

Then we say 4 defines a matrix mapping from A into p and we denote it by

writing 4 : A — p if for every sequence x =(x,,)<€ A, the sequence

Ax = {(Ax);,}, the A-transform of x, is in p, where

(Ax)y = A =Dl (k, £ € N). (2.1)

m=1 n=1

By (A :u), we denote the class of all matrices 4 such that 4 : A — p.
Thus, 4 € (A :p) if and only if the series converges for each k, ¢ € A.

A sequence x is said to be A-summable to o if Ax converges to o which is
called as the A-limit of x.

Lemma 2.8 [See 32]. Matrix A= (ayy) is regular if and only if the
following three conditions hold:

(1) There exists M > 0 such that for every k, { =1, 2, ..., the following

inequality holds: ZZZI Z::1| ap' | <M,
(2) limy p_y00 ap' =0 forevery k, 0 =1, 2, ...,
(3) limy p_yo 22212(::1“1’;}” = 1.

Let (g,,,) be a sequence of positive numbers and

k 4
Ok = D D (k, £ € N). (2.2)

m=0 n=0
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Then the matrix R? = (#/;")? of the Riesz mean is given by
kl

Dmn :
(rlgrfzn)q: Ou’ if0<m n<k, /L,
0, if (m, n) > k(.

(2.3)

The Fibonacci numbers are the sequence of numbers £ (k, £, m, n € N)
defined by the linear recurrence equations foo =1 and fi; =1, f,,, =
Jm—1n-1 + fm—2n—2; m, n > 2. Fibonacci numbers have many interesting

properties and applications in sciences and technology. Also, some basic

properties of Fibonacci numbers are given as follows:

m n
Zkzl Zle Jmn = Jmrans2 —Lm, n 21,

m n 2 )
Zk:l Z(:l fmn = fmnfm+1n+lv m, n 21,

o 0 1
Z Z converges.
k=1 (=1

mn
Sk

In this paper, we define the Fibonacci matrix F = (f7)" )2’n:1, which
differs from existing Fibonacci matrix by using Fibonacci numbers f,,,, and
introduce some new sequence spaces xz and A Now, we define the

Fibonacci matrix F = (f7;" );’; 4=1> DY

St :
—= i 0<k<m0<L/l<n,
(fir") = 3 fim+2)(n+2) — 1
0, if (m, n) > kt,

that is,
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1 0 O 0 O
Ll g g
777 7"

It is obvious that the four dimensional infinite matrix F is a triangular matrix.
Also, it follows from Lemma 2.8 that the method F is regular.

Let M be a Musielak-modulus function. Now, we introduce the following
sequence spaces based on the four dimensional infinite matrix £

[Azl\ffrs ” (d(xl)’ d(XZ)s R d(xn—l)) ”p]

Fy(x) = sup{zzzl Z:OZI

TR 17 @ 3), d32), e 5y 1) ], D] < 0}
1 o0 ©

Sup{f(m+z)(n+z) -1 21 2

Tt 177 ). d52) sy ), ] < )

(k, ¢ € N).

Let us consider [A%F, [ (d(x), d(x7), vey d(x,21)) || p] is a metric space

with the metric

d(x, y) = sup{M (F,(x) = Fy(¥)) :m, n =1,2,3, ..}, 2.4

[X]zt{’ ” (d(xl)ﬂ d(x2)’ e d(xn—l)) ”p]

. 0 0
= F,(x) = 11mm,n_m{zm:1 >
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T+ i DV (@), d ), e ) )] = o}

PR SRS S PR
- hmmm_}w{ﬁm+2)(ﬂ+2) -1 Zm:l anl

MO+ ) DV (@), ) ) ] )] = o}

(k, ¢ € N).

Let us consider [x3f, | (d(x)), d(x2), ey d(x,_1)) ||p] be the metric

space with the metric

d(x, y) = sup{M (F,(x) - F,(¥)) :m, n=1,2,3, ..}, (2.5)
3. Main Results
Theorem 3.1. The classes of sequences
i - [ (@(x), d(xp), o d(x1)) [,,] and

[Azl\flr’ ” (d(xl)’ d(x2)’ ety d(xn—l)) ”p]

of moduli Fibonacci F = (f{y"), are linear spaces.

Proof. It can be established using standard technique.

Theorem 3.2. The spaces [y3F . [ (d(x1), d(xp), ..., d(x,_1)) ||p] and
[A3F, | (d(x1), d(x3), .., d(x,_1)) ||p] of moduli Fibonacci F = (f{j"), are
solid and monotone.

Proof. We shall prove the result for

[X%/f’ ” (d(xl)’ d(xZ)’ ety d(xn—l)) ”[7]



Fibonacci Numbers of Xz over p-metric Spaces ... 13
2F
Let Xmn € [XM > ” (d(xl)’ d(X2), ) d(xn—l)) ”p] Then
. 1
T 7 (R U

| (d(x1), d(xz), ... d(x,-1) [ ,))] = O} (3.1

Let (a,,,) be a sequence of scalars with | a,,, |1/m+” <1 forall m, n e N.

Therefore, the equation from (3.1) and the following inequality:
1
L (m + )] 0ty V7 (@), dx). o ) |, D]
< {| o |1/m+n[M(fmn(( ' 1/m+n
= mn ke \Um + n)| Xmn |) >

” (d(xl)’ d(X2), oo d(xn—l) ”p))]}

< I (O + 1 5 DV (1), ), i) [, )

for all m, n e N. Therefore, [x3f .| (d(x), d(x2), ... d(x,_1)) ||p] is a

sequence space. If [x31 . || (d(x;), d(x3)s ..y d(x,_1)) || p] is solid, then

i (@), d(xg), ooy d(x,-1)) I,]

is monotone. Hence, the space [y3F, | (d(x), d(x3), wcey d(x,21)) || p] is

monotone.

Similarly, the result is true for [A35, | (d(x;), d(x3), ... d(x,_1)) | p].

Theorem 3.3. The space [x3}, [ (d(x1), d(x3), ... d(x,_1)) ||p] is a

sequence algebra.

Proof. Let (xmn )’ (ymn) XM > " (d(xl) d(XZ) d(xn—l)) "p] Then
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. 1 &) )
T DD I

IMU$Wm+@WmﬂWW%waﬂdwﬁw»ﬂ%4ﬂum=0}

. 1 * *
lim,, ;500 {W Zmzl anl

IMUQWm+MWmHWWﬂHM@ﬂd&ﬁwqﬂ%4”ﬁﬂ=%-

Then we have

. 1 * ”
11mm’n_wo{f(m+2)(n+2) -1 Zm:l anl

IMU%WW+nN%mmMWWﬂkumdwﬁWﬂﬂw4ﬂbm=0}

Thus,  (Xpnymn) € [ - | (@A), d(x2), oo d(xu1)[|,] 05 @ sequence
algebra.

Theorem 3.4. The space [y3F, [ (d(x), d(x3), ... d(x,_1)) ||p] is not
convergence free in general.

Proof. Here we give a counterexample. Let M(x)=x> for all

x € [0, ). Consider the sequences (x,,,) and (y,,,) are defined by

_ |
(m + n)l(mn

Then () € [1d7 » | (@), d(xg)s oy dxy-)) ], ], but

Xy e d vy, = (m+n)(mn)"™" for all m, n e N.

) # (131 > | (), d(x2), -oos d(xum)) [,)
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Hence, the space [x3F | (d(x1), d(x3), ..., d(x,_1)) ||p] is not convergence

free.

Theorem 3.5. The space [x3} [ (d(x1), d(x3), ... d(x,_1)) ||p] is not
symmetric.
Proof. Let M(x) = x forall x € [0, ). If

1m+n

(Xpn) = m ’
0, otherwise.

if myneN,

Hence (xmn) € [XﬁlF’ ” (d(xl)’ d(x2 )a ) d(xn—l)) ”p] Let K < NxN; ¢ :

K —> A4 and y:NxN-K - NxN -4 be bijections. Then the map
7 : N x N defined by

d(mn), for m, n € K,

y(mn), otherwise,

(nmn) = {
is a permutation on N x N, but
2F
xn(mn) & [XM > " (d(xl)’ d(XZ)’ () d(xn—l)) "p]
Hence, [x3F, | (d(x1), d(x3), ..., d(x,_1)) ||p] is not symmetric.

Theorem 3.6. The spaces [x%f

(d(x1), d(xp), or ()], ] < [AF
d(x), d(x9), ..., d(x, _ for moduli Fibonacci F = (fj}") and the
1 2 n-1) 1, kt
inclusion are proper.

Proof. It is easy to prove. Therefore, omit the proof.

Theorem 3.7. The function h : [AZX%, [ (d(x1), d(x3), ..., d(x,_1)) ||p]

— R is the Lipschitz function, where
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Adgs |1 dx), d(x2), o d (i) ]
= [ s [ (@), d(x2), s dlxg1)) ],

NGy | (@dx), dlx), s d(x)) [,
and hence they are uniformly continuous.
Proof. Let x, y € | A2 @), @), s dxuy)) ], % # 3. Then
the sets
Ag = M (m + | i — GO,
| (@(x), d(x3), .o d(umy) |, = A, )},
Ay = IS+ 1) g — B D™
| (@), d(x2), oo dx,y) [, )] > dx, )}
Thus, the sets
By = (M ((m + m| iy — B(x) DY,

[ (dx), d(x2), - dCuma) [,)] < dx, )}

e [X%,. [ @), dxa). oo dxp )] )
By = {M(f" ((m + m)| vy = B D,

| (@), d(xz), s () |, < dx, 2}

€ [X%, [ @), ). wes dCp) ] )

Here also B = B, (1B, € [A2 2 [ (d(x)), d(x7), ... d(x,_1)) || , so that

B # ¢. Now taking m, n € B,
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LA () B = AODY™ . | (@) d 3o d i) )]

< (LM O+ ] 3 = i DV [ (@) d (), ) )]
I (O 1) S = Y DV (A1), A2, s ) [ D]
I (o 1) Y = BO)DY™ | (d ), i), o d ) [, D
<3d(x, y).

Thus, 4 is a Lipschitz function.

Proposition 3.8. If x, y € [Ang, | (d(x), d(x3), ... d(x,_1)) ||p], then
(x-y)e [A2 N (@), d(xp)s ..., d(xy1)) [ ,] and h(xy) = h(x)h(y).

Proof. Let € > 0. Then

By = {[M(fE" ((m + n)] 0 = B PV,
| (@), d(x2), - d i) [, )] <
X% @), d(r). s A0 ] )

By = M (O + )| ¥ — H0) 7,
| (@), d(xy). - d () [, )] < )
e [Xh,. [ @), ). wes A0 )], )

Now,

M ((m + 1)) Sy — BB PV,

[ (d(x), d(xp). ... (1) [,
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= IS+ 1) By = X (9) + % () = RGO R() DY,
" (d(xl)a d(X2), ey d(xn—l) ”p))]}
M " (] i | 3 = RO D",
" (d(xl)a d(X2), ey d(xn—l) "p))]}
AL (O + ] ) || = B DY,

1(d(x)s d(x2), ... d(xp-1) [,

(K250 1 (@(x), () - d5 )]

< [N, [ (@), dlxp), o d(xy-)) ]

there exists an L € R such that |x,,, |1/’”+” <L and |h(y) |1/m+n <L

Therefore, using the above equation, we get
M (o M i = BB Y,
| (dCx), dxp)s ... d(x,-1) [, )]}
< Le+ Le=2Le

for all m, ne B, NB, €| A2§F, | (@d(x), d(x3), - d(x,21)) [, ] Hence,

(o) € IX5e | () d(x2) e dlxy ) ],] and Aay) = B
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