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Abstract 

This article is a review on multivariate time series relationship and its 
applications in electroencephalogram (EEG) data. We discussed the 
coherence function, an analogous function to the linear correlation 
function. We also studied partial coherence (PC) and partial directed 
coherence (PDC) functions. The PC function measures the relationship 
between two components of a multivariate time series when isolating 
effects of another series. Generally, PDC can be interpreted as the 
decomposition of partial coherence into multivariate autoregressive 
models, i.e., as a representation of Granger causality in the frequency 
domain. Finally, we applied those functions into EEG data from a 
subject in the resting state. Those functions are very interesting when 
we are interested not only on the correlation between time series, but 
also on the causality between them. 

1. First Concepts 

Let { }tX  be a discrete and stationary time series with autocovariance 
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function ( ).uXXγ  If ( )∑∞
−∞= ∞<γu XX u ,  then we have the spectral 

density function, or spectrum of { }tX  defined by 

 ( ) ( )∑
∞

−∞=

ω− π<ω<π−γ
π

=ω
u

ui
XXXX euf .,2

1  (1) 

Now, consider ( ) ( )ωT
XXI  the periodogram of { }....,, 10 −TXX  Taking ( )Ts  

an integer such that ( ) TTsπ2  is close to ω, ( ) ( ) ( )[ ]( ),2, TjTsII T
XX

T
XX +π  

mj ±±±= ...,,2,1,0  are nearly independent. Then we have the smoothed 

periodogram defined by 

 ( )( ) ( )∑
=

− ⎟
⎠
⎞⎜

⎝
⎛ π+ω=ω

m

j

T
XX

T
XX T

jImf
1

1 2  (2) 

if ...,4,2,0 π±π±=ω  and T is even and 
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with ...,3, π±π±=ω  and T is odd. 

Suppose now a vector ( )′tt YX ,  weakly stationary. 

The cross covariance function ( )kXYγ  is defined by 

 ( ) ( ) ....,2,1,0,,cov ±±==γ + kYXk kttXY  (4) 

As well as the spectral density function, the cross spectrum (or cross 
spectral density function) is defined by the Fourier transform from the cross 
covariance function (4). So, supposing ( )∑ ∞<γk XY k ,  we define 

 ( ) ( )∑
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π

=ω
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XYXY ekf .,2

1  (5) 

As well as (3), we have ( )( )ωT
XYf  the smoothed cross periodogram with       

m-sized windows. 
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2. Coherence Function 

The coherence function is defined as 

 ( ) ( )
( ) ( ) .

2
2

ωω
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=ωκ
YYXX

XY
XY ff

f  (6) 

The coherence function measures the quadratic correlation between two 
components in a bivariate process on the frequency (ω) and its analogous to 
the squared Pearson’s linear correlation coefficient, but on the frequency 
domain. 

A good coherence estimator is given as follows. As in the spectrum and 
cross spectrum estimation, the regular periodogram is not adequate, once the 
estimated coherence would have constant value 1. Then, since the quantities 

( )( ) ( )( )ωω T
YY

T
XX ff ,  and ( )( )ωT

XYf  are well defined and not zero, the ratio 
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is a good estimator for ( )ωκ2
XY  on frequency ω. 

It is known that: 

 ( ( )n ) ( ).XY XYE κ ω ≈ κ ω  (8) 

3. Partial Coherence 

The partial coherence can be interpreted as a relationship (on frequency 
domain) between two components of a multivariate time series after 
removing the linear correlation of ( )tX  on ( ).tY  Consider a vector with 

length ( ) ,,, Z∈+ srsr  compound by two multivariate time series ( )tX  and 

( ) ,, Z∈ttY  with lengths r and s, respectively, 
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The residual time series of that approximation is 

 ( ) ( ) ( ) ( )∑ −−=
u

uuttt XabYε  (10) 

and a and b can be obtained by weighted least squares estimation (Brillinger 
[6]). So, if we consider the components a and b of ( ),tY  i.e., ( )tYa  and ( ),tYb  

we can estimate their partial cross spectrum after removing the effects of 
( )tX  by considering the residuals defined above. On this way, if we consider 

the components a and b of ( ) ( )tt aεε ,  and ( ),tbε  we can interpret their cross 

spectrum as the partial cross spectrum of ( )tYa  and ( ).tYb  This partial cross 

spectrum can be calculated by 

( ) ( ) ( ) ( ) ( ) ( ).,,
1

,,, ω=ωωω−ω=ω εε
−

babababa fff YXXXXYYYXYY fff  (11) 

The coherence between ( )taε  and ( )tbε  represents the partial coherence 

between ( )tYa  and ( )tYb  after removing the ( )tX  effects and can be 

calculated by the following equation: 
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Estimation of XYY ba ,R  

Consider a vector of length ( )sr +  represented by (9), .1...,,0 −= Tt  

We can calculate its discrete Fourier transform by 
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It is known (see Takahashi et al. [22]) that when ∞→T  and ,0≠ω  then 
(13) has asymptotic multivariate normal distribution: 
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We can now define the cross periodogram matrix, given by 

 ( ) ( ) ( ) ( )( ) ( ( )( )) ,2 1 τ− ωωπ=ω T
Y

T
X

T
XY T ddI  (15) 

and ( ) ( )ωT
XXI  and ( )( ),ωT

YYI  defined similarly. 

If we take ( )( )αTW  a family of weights 2π-periodic, ,∞<α<∞−  =T  

...,,2,1  arranged in a reasonable way. Also consider ,0>TB  ,0→TB  

∞→
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by using the smoothed cross periodogram matrix 
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and the estimated residual spectrum matrix is given by 
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The partial coherence estimator is 
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The coherence and partial coherence have only suggestions of a 
synchrony behaviour between the time series. Considering this, Saito and 
Harashima [20] defined the idea of directed coherence as a function that not 
only measures the synchrony but also the functional connection between time 
series. In other words, The directed coherence estimates also the structural 
relationship of time series, decomposing their variability in aspects 
feedforward and feedback. Finally, thanks to Saito and Harashima’s [20] 
discussion about directed coherence (DC), Baccalá and Sameshima [1] 
defined the partial directed coherence (PDC). The essential idea behind the 
PDC is decompose the partial coherence into autoregressive multivariate 
models. This concept can be interpreted by a Granger causality (see Granger 
[9]) in the frequency domain. Indeed, Takahashi et al. [22] show that there is 
a direct relation between existence Granger causality and PDC function. 

Consider the spectrum and cross spectrum matrix 
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( ),ωijf  Nji ...,,1, =  defined as (5). Then the matrix (19) can be 

decomposed like 

 ( ) ( ) ( ),ωω=ω HΣHHf  (20) 

where ( ).HH  represents a Hermitian Matrix ( ).H  and Σ  is the covariance 

matrix { }....,,1,, Njiij =γ  In order to define the matrix H, consider 

( ) ( )tXtX N...,,1  a conjoint stationary time series such that we have a good 

approximation by autoregressive models as it follows: 
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where ( ) ( )twtw N...,,1  are white noises. 
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The matrix ( )ωH  is given by 
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where ( )raij  are the linear interaction coefficients of ( )rtx j −  and ( ),txi  

....,,1, Nji =  

Now consider the partial coherence function defined in (12). We can 
represent it by using rA  and Σ  as it follows: 
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with Σ  representing the residual on the model (21) and ( )ωka  is the k column 

of ( ).ωA  

The partial directed coherence factor between two time series ( )tX i  and 

( )tX j  is given by 
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( )ωijA  is the i, jth element of ( ) ....,,1,, Nji =ωA  

It is immediate from that definition that (25) can be rewritten as 
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Because the denominator of (26) depends on ,Σ  The PDC confuses the 
Granger causality and the instantaneous Granger causality. To avoid this 
effect, the formal definition of the PDC is 

 ( )
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=ωπ

j
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j

ij
ij
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aa
 (28) 

which considers only the non-instantaneous Granger causality. Omitting Σ  
from (27), we focused our studies into the relation between the past values of 

( )tX j  and the present and future values of ( ).tXi  

Note that ( )ωijA  still can be written by 
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Because of this representation, we say that (28) is the frequency-domain 
Granger causality. According to Takahashi et al. [22], this is because of the 
hypothesis of Granger causality can be verified if and only if ( ) 0≡ωπij  for 

all frequencies in the sampled range, [ ].5.0,5.0−∈ω  

4. Applications: EEG Data Analysis 

From EEG data collected from an individual at resting state and eyes 
closed, with a sampling frequency of 250 Hz, we have the time series of EEG 
with the approximate length of 200,000 observations. Information from 32 
different channels was collected, but in this article we describe only a few of 
them. The studied time series represent the differences of voltage between 
the sampling point of the electrode and the midpoint between the electrodes 

zP  and zC  shown in Figure 1. 
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Figure 1. Position of electrodes for EEG. 

We know, however, due to the high sampling frequency and the large 
amount of data, we can find problems such as long memory and non-
stationarity in the study of EEG time series. Furthermore, in order to 
eliminate possible noise caused by measurement (involuntary thoughts of the 
patient, breathing, heartbeat, interference on the device, etc.), we chose to 
apply a bandpass-filter, with the filtering band between 1 and 100 Hz. 
Moreover, Bruscato [7] suggests the construction of spectrum estimators 
moving windows to avoid problems like global non-stationarity. For 
filtering, we use the ffilter function in the seewave package for the R 
software. 

Thus, we construct estimates of the partial coherence function using 
moving windows throughout the time series, i.e., we construct the following 
multivariate vector: 
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M is the window length, ( ){ }KkJJk ...,,1,,1 =κ−  is a set of embedded 

intervals, 
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k
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1
1 ,1,

=
− =  
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⎢⎣
⎡= M

TK  (biggest integer less than or equal to ).M
T  

 

Figure 2. Partial coherence with moving window between 4P3P ↔  and 
.1O3P ↔  
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Figure 3. Mean curves for partial coherence with moving windows between 

2O3P ↔  and .1O4P ↔  The black continuous line is the mean and the blue 
dashed line represents the standard deviation. 

 
Figure 4. Mean curves for partial coherence with moving windows between 

2O4P ↔  and .2O1O ↔  
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In Figures 2 to 4, we can see graphs of ( ) ( )ωT
XYYJ bA ,,R  for some of the 

EEG time series with .2000=M  High activities relationships between the 
occipital channels were indeed expected, as described in Blinowska et al. [4]. 
If we analyze the mean curves, however, we see that in almost all partial 
coherence graphs, we found peaks of energy in higher frequencies: above 
30 Hz, sometimes near 40 Hz, 55 Hz other near. 

In medicine, it is common to analyze EEG data using frequency bands. 
In general, we can categorize the frequency in 5 bands: Gamma (frequencies 
greater than 30 Hz), Beta (13-30 Hz), Alpha (8-12 Hz), Theta (4-8 Hz), Delta 
(less than 4 Hz). Situations with less activity partial coherence found when 
we compared the relations 1O4P ↔  and .2O4P ↔  

As well as the partial coherence functions, the partial directed coherence 
(PDC) functions are influenced by long memory and non-normality. Because 
of that, we also filtered the time series (same band) and build functions with 
windows with size 2000. Figures 5 and 7 show, for each pair of time series, 
the evolution of the squared of the partial directed coherence along the 
windows. The squares of the PDCs were plotted because we can interpret it 
as the percentage of information coming out of the time series of “origin” for 
the time series of “destiny.” For the first group of channels, we see more 
“information exchange” occurring between channels ,3C3F →  ,4C3F →  

C4,4F →  .4F3F →  In the group of occipital and parietal channels, we see 
more energy in PDCs 4P3P →  and .2O3P →  
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Figure 5. Partial coherence with moving windows between C3 and F4. 

 

Figure 6. Partial directed coherence with moving windows between F3 and 
F4. 

 

 

 

 



Kim Samejima M. Lopes 78 

 
Figure 7. Partial coherence with moving windows between P3 and O2. 

5. Results 

Ginter et al. [8] and Biswal et al. [3] describe the relationship between 
movement areas (frontal lobes, F3 and F4) and central lobes (channels C3 
and C4, for example) during movement tasks (or even in imaginary 
movements). We also can identify inter-hemisphere relations, as seen in F3 
to F4 (Figure 6), also in Beta frequencies. Biswal et al. [3] and Heuvel et al. 
[11] also identified and described that kind of relation (in the medical 
perspective) considering data from f MRI (functional Magnetic Resonance 
Imaging). 

From obtained results by measuring individuals in the same resting state, 
Kaplan and Shishkin [16] concluded by significant relationship between the 
electrode positions F3, F4, C3 and C4 as well as between electrodes at 
positions P3, P4, O1 and O2 evidencing two strong networks between those 
channels. Some different techniques can be used in order to evaluate that 
correlation. For example, Kaplan and Shishkin [16] compared the 
relationship between channels using nonparametric techniques (Wilcoxon 
paired test, .)12=n  
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We found similar relationships to those described by Kus et al. [17] 
between the parietal and occipital channels into Alpha frequency bands. Note 
that the feedback signal does not occur with the same intensity. These 
relationships between parietal and occipital channels (see Heuvel et al. [11]) 
are known in the literature as core networks and are those that control vision 
and sensory attention. The relations between regions back regions and 
medial-frontal regions, in other hand, are called default mode networks and 
control voluntary muscle movement, as described in Biswal et al. [3] and 
Ginter et al. [8]. 

There are still many relations between inter-hemisphere regions. In 
Figure 2, we find energy peaks on Beta and Gamma frequencies, considering 
the 4P3P ↔  signal. If we consider the 3P4P ↔  relationship, its peaks are 
concentrated around the Alpha and Beta frequencies. For occipital channels 
we identified higher concentration energy from O1 to O2 than from O1 to 
O2. Relations involving the occipital channels as a source of information 
generally show peaks at lower frequencies, typically in the Alpha 
frequencies. 

6. Final Thoughts 

The correlation and coherence functions were and are widely used to 
measure relationship between variables. However, there are many limitations 
when we are interested on interaction between variables. One of its 
limitations, for example, is evaluating in which direction flows the 
information. Sometimes, this makes it difficult to interpret the results, since 
there is no information about a possible causality between variables. Another 
limitation occurs when we consider that other variables may influence the 
relationship between the variables. This can lead to false conclusions about 
the relationship between the variables of interest (spurious correlations). 

Directed coherence (Saito and Harashima [20]) and partial directed 
coherence functions, in other hand, can tell us not only about the mutual 
synchrony between time series, but also can measure influences from the first 
time series to the second and vice versa. Although not having a proven causal 
relationship when we apply the DC and PDC functions, we have the strong 
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suggestions that this relationship does exist. We may, from there, build and 
testing of hypotheses to evaluate the relationship between the variables (see 
Takahashi et al. [22]). 

Still further, assuming that our multivariate process to be a VAR of finite 
order, computational aspects benefits the PDC if compared to DC function, 
since the matrix ( ).H  given in (22) need not be calculated for each frequency 

of interest. The fact of PDC is non-dependent on this matrix ( ).H  implies a 

greater stability of the calculated function (from the computational 
perspective), since the coefficient matrix inversion can present singularity 
problems, for example, when considering small samples. Another good 
quality of the PDC is the fact of eliminate the influences of another time 
series, isolating only the influences we are interested on. However, this is not 
valid if we have moving average multivariate process (i.e., a VARMA with 
null autoregressive coefficients), since its representation occurs with an 
infinite order VAR. 

Another way to estimate the relationship between multivariate time series 
can be made using wavelet analysis. Percival and Walden [18] discuss the 
methodology applied on measurement the relationship between time series. 
Torrence and Compo [25] present a practical guide to wavelet applications in 
studies of multivariate time series. Other wavelet applications in the study of 
interactions in time series can be viewed on Torrence and Webster [24] and 
Grinsted et al. [10]. 
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