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Abstract 

In transplant clinical studies, serum creatinine data are collected 
repeatedly on same individuals over time to monitor individual renal 
function changes and to determine treatment effects on renal function 
as well as on other efficacy and safety endpoints. Hence longitudinal 
analysis methods are appropriate to model such data. In this paper, we 
systematically present the strategies of using mixed-effect regression 
model to analyze serum creatinine data from a Novartis transplant 
clinical trial. These strategies include fixed-effect covariate selection 
approach; covariance model selection; and model based treatment 
effect tests. Furthermore, various types of residuals from mixed-effect 
regression model and influence diagnostics are discussed in detail    
for model diagnosis. Related background of longitudinal analysis and 
clinical trial is also presented. 

1. Introduction 

A measurement of the serum creatinine (SCr) concentration level is used 
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to evaluate kidney function. Despite numerous known limitations, including 
error-prone variability in assay techniques, interference by endogenous 
chromogens and by clinical or environmental conditions independent of  
renal function, etc. [13, 23], SCr remains a generally acceptable clinical 
assessment. The clinical utility of the SCr measurements centers on its 
relation to the glomerular filtration rate (GFR) which is the filtering capacity 
of the kidneys. Several formulas have been developed to estimate GFR from 
SCr measurements. Among them, the Cockcroft-Gault method [3] and the 
modification of diet in renal disease (MDRD) method [14] are most 
commonly used. 

In transplant clinical studies, post-transplant SCr data are collected 
repeatedly on the same individuals over time (longitudinally) to monitor 
individual renal function and to determine treatment effects on renal toxicity. 
Hence longitudinal analysis methods are appropriate to model the data, to 
identify predictors of renal function, and to test the corresponding hypotheses 
such as no difference among treatment groups. There are variants of models 
with a variety of names dealing with many of peculiarities of longitudinal 
data, for example, variance component models [5], random-effect models 
[10, 12], random coefficient models [4, 18] and mixed models [17]. These 
models in general can be used for analysis of longitudinal data or clustered 
data in which the data within subjects/clusters are dependent. This paper    
will investigate the proper use of longitudinal analysis models to assess the 
relationship between SCr measurements and covariates. In particular, we will 
present the mixed-effect regression model which generally contains some 
fixed effects as well as the random effects. 

There are several features of above mentioned models making them 
useful for longitudinal data analysis. First subjects with incomplete data 
across time are not excluded from the analysis so the analysis is more 
powerful when data are missing at random. Second, time is treated as 
continuous so that subjects do not have to be measured at the same time 
points. Third, covariates within the models can be time-varying or invariant 
(e.g., patient characteristics at baseline). Finally, these models can be used to 
estimate individual change for each subject, in addition to average change in 
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a population. This could be particularly useful in longitudinal studies where a 
proportion of subjects may exhibit change across time that deviates from the 
population average trend. 

The paper is organized as follows. In Section 2, we introduce the mixed-
effect regression model which will be used to analyze our data. Section 3 
gives some background information for the SCr data set from an actual 
clinical study. The detailed data analysis is presented in Section 4 followed 
by residual analysis in Section 5. Section 6 describes the hypotheses testing 
and Section 7 states the conclusion and some discussions. 

2. Mixed-effect Regression Model 

In this section, we describe the basic longitudinal model, i.e., mixed-
effect regression model which we will use to analyze post-transplant SCr 

data for transplant clinical studies. Let ( )Tinii iYYY ...,,1=  define the 

response (SCr measurements in our case) vector for subject i, mi ...,,1=  

over time. Then the mixed-effect regression model can be written as: 

;...,,1, miZXY iiiii =ε+γ+β=  (2.1) 

where 

( )TT
in

T
ii i

xxX ...,,1=  

is an pni ×  design matrix for the fixed effects (where  ( ) ,...,,1
T

ijpijij xxx =  

inj ...,,1=  is the covariate vector for the ith subject at the jth );time  β  is a 

1×p  vector of unknown fixed parameters; iZ  is a qni ×  design matrix    

for the random effects; ( )GNi ,0~γ  is a 1×q  vector of unknown random 

coefficients; and ( )ini N I,0~ 2σε  is a 1×in  residual vector independent of 

.iγ  Then the conditional variance-covariance matrix for response is of the 

form: 

.I2
ii n

T
iiy GZZ σ+=∑  (2.2) 
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So the observations iY  and the random coefficients iγ  have a joint 

multivariate normal distribution: 
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In general, the formulation for mixed model can be written as: 

,ε+γ+β= ZXy  (2.4) 

with an assumption that 
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Therefore, the variance of y is .RZGZV T +=  The structure of matrixes G 

and R is described in Subsection 4.2 although i
m
i RR 1=⊕=  is a block 

diagonal matrix with a block iR  for subject i, where ⊕  denotes the direct 

sum [27]. 

For estimating G and R, the maximum likelihood (ML) or residual/ 
restricted maximum likelihood (REML) method will be utilized [5, 12, 20]. 
A favorable theoretical property of ML and REML is that they accommodate 
data with missing at random [16, 26]. 

After G and R are estimated, β  and γ  can be obtained by solving the 

equations: 
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The ML method is used to select a parsimonious model by removing 
unnecessary terms one at a time; and the corresponding p-values are applied 
to testing fixed-effect parameters (Subsection 4.1). The REML method is 
then used instead of ML to select the covariance structure and to estimate 
covariance parameters (Subsection 4.2). The reason is that REML provides 
unbiased estimates of covariance parameters while ML estimates are biased. 
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For further theoretical background and applications regarding mixed effect 
model and longitudinal data analysis, see e.g., the reference books by 
Fitzmaurice et al. [8], Diggle et al. [6], Verbeke and Molenberghs [31], 
Pinheiro and Bates [25], etc. 

3. Clinical Study and Data Description 

Cyclosporine (Neoral®, CsA) allows for long-term survival for patients 
receiving solid organ transplants but cannot completely prevent rejection. 
Higher doses of cyclosporine used to improve efficacy can lead to increased 
side effects such as nephrotoxicity [1]. Everolimus (Certican®, RAD), a 
derivative of rapamycin, has a different mode of action than cyclosporine [7]. 
It does not appear to have the nephrotoxic side effects of cyclosporine [11]. 
In preclinical models of allotransplantation, the combination of everolimus 
and cyclosporine was more effective than either drug alone. However, the 
nephrotoxicity of the combination had been observed and hence required 
further assessments. 

In a randomized, multicenter, open-label efficacy and safety study          
of Everolimus plus reduced cyclosporine versus mycophenolic acid          
plus cyclosporine in kidney transplant recipients (RAD001A2309, 
ClinicalTrials.gov Identifier: NCT00251004), twenty-four month post-
transplant renal function data measured by SCr levels are obtained. Our 
purpose is to investigate the relationship between SCr measurements and 
three treatment groups described below: 

A: RAD 1.5mg + Simulect® + Reduced-dose neoral® + Steroids; 

B: RAD 3.0mg + Simulect® + Reduced-dose neoral® + Steroids; 

C: Myfortic® 1.44g + Simulect® + Standard-dose neoral® + Steroids. 
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The other covariates include: time; sex; age; height, weight, BMI (body 
mass index); diabetes (Yes/No); race; donor gender; donor age; and graft 
type (living donor vs. cadaveric donor) which are assumed to have possible 
effects on SCr levels. There are total of 792 patients (263 in Group A, 264   
in Group B and 265 in Group C) who were randomized, had both SCr 
measurements and possible effects data. There are 9851 observations in total 
used in the analysis. 

Figure 1 gives the average SCr level for each treatment group over each 
visit window. It indicates that SCr level decreases over time for each 
treatment group; and RAD 1.5mg group (treatment A) has consistently lower 
SCr level than other two groups. 

4. Modeling the Creatinine Data 

In this section, we fit the mixed regression model to the data. SAS 
(Statistical Analysis Software) 9.2 for windows is used for all analysis and 
referred to [15]. First we select the significant fixed effects including 
interactions which should be included in the model with the ML method. 
Then the REML method will be used to construct covariance structure and 
estimate parameters (see Subsection 4.2). 

4.1. Fixed-effect selection 

In order to identify the significant covariates (predictors) for the final 
model, we first fit a full model which includes all possible fixed-effects with 
a simpler variance-covariance structure. The fixed effects include time, 
treatments (A, B, C), weight, height, recipient and donor age (in years at 
baseline), recipient and donor sex, race, BMI, diabetes at baseline and   graft 
type. For time variable, we consider day and logday (logarithm of the actual 
day of visit) in the full model since Figure 1 does not show the linear 
relationship between time and SCr level. Both day and logday are centralized 
at their mean values. The random effects include intercept, day and logday 
(both are centralized) since the objective of this analysis is to estimate the 
treatment effect on SCr level over time. The covariance structure for random 
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effects is assumed to be variance components (VC): 
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and the residual error is .2
ini IR σ=  Then we go through backward steps to 

obtain the appropriate predictors by deleting one fixed effect (with the largest 
type III test p-value, i.e., the least significant term) at each step followed by 
forward steps. Finally, the interaction items are checked and selected by 
applying similar backward/forward steps. 

Backward elimination step. We begin from the full model with all 
possible fixed-effect terms in MODEL statement in PROC MIXED 
procedure. Then the term: donor gender (corresponding to the largest 
p-value: )9256.0=p  is eliminated and the model is refitted. Next, the term: 

weight (which has the largest p-value: )9071.0=p  is deleted, and so on. 

This backward step procedure continues until all remained effects in the 
current model have significant effects (i.e., type III p-value < Bonferroni-
type adjustment significance level: 0.05/the number of fixed effects in the 
model) except for treatment which is always kept in the model for our 
purpose. Finally, donor gender, weight, height, and diabetes are removed. 
The last model from backward elimination step has 9 predictors. Except for 
Treatment ( ),1669.0=p  the type III test p-values for other factors are less 

than adjusted significant level 0.00625 (= 0.05/8 for 8 tests in the model). 
Therefore, we claim that time, age, gender, race, BMI, donor age and graft 
type have significant effect on SCr measurements. 

Forward addition step. Due to the possibility of complicated 
correlations among covariates, the backward step may delete the significant 
predictors before reaching the last model. Hence the forward selection step is 
necessary for capturing up significant terms that would have dropped during 
the backward elimination step. 
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During the first run of forward step, we refit four models each with one 
previously dropped term added. The results of the first run of forward step 
are shown in Table 1. It can be concluded from Table 1 that no additional 
term should be added back because all p-values for added terms are greater 
than Bonferroni-type adjusted significant level 0.05/9 = 0.0056. 

Table 1. Type III test p-values for fixed effects (the first run of forward step) 

Effects Model 1 Model 2 Model 3 Model 4 

   Treatment 0.1508 0.1536 0.1848 0.1667 

   Day <.0001 <.0001 <.0001 <.0001 

   Logday <.0001 <.0001 <.0001 <.0001 

   Age <.0001 <.0001 <.0001 <.0001 

   Donor age <.0001 <.0001 <.0001 <.0001 

   Gender <.0001 <.0001 <.0001 <.0001 

   BMI <.0001 0.6120 <.0001 <.0001 

   Race 0.0004 0.0003 0.0001 0.0001 

   Graft type <.0001 <.0001 <.0001 <.0001 

   Added term 0.0852 0.0956 0.1145 0.9572 

 Name of added term Height Weight Diabetes Donor gender 

The forward addition step should continue until, among all models in one 
run, there are no models with all p-values less than the adjusted significant 
level. 

Remarks. (1) If in one run of the forward step there are more than one 
model satisfying all p-values less than adjusted significance level, the AIC 
criterion could be used to decide the “best” model. 

(2) It is possible that when adding a new term (var.b) to one model A and 
it is significant, an old term (var.a) which is originally significant becomes 
insignificant. Then a model B should be fitted with the new term (var.b) 



Zailong Wang 146 

instead of the old one (var.a) and AIC criterion should be used to choose the 
“better” model between A and B. 

(3) Subject matter importance is always considered first such as 
treatment effect in clinical trials. Subject matter effects should always stay in 
the model even if they are insignificant. 

Table 1 shows that when weight is added to the model, BMI becomes 
insignificant ( ).6120.0=p  Following Remark (2) above, the new model 

with weight but without BMI is refitted ( )7.27915AIC =  and compared 

with original model (with BMI but without weight, .)2.27918AIC =  Since 

new model has smaller AIC, the new model is selected for further analysis. 

Table 2. Type III test p-values for fixed effects (the first run of interaction 
selection) 

Effect Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 

 Treatment 0.1591 0.1526 0.1935 0.3781 0.0809 0.2210 0.1005 0.6074 

 Day <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

 Logday <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

 Age <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

 Donor age <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

 Gender <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

 BMI <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

 Race 0.0003 0.0003 0.0002 0.0004 0.0003 0.0004 0.0007 0.0003 

 Graft type <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

 Weight <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

Interaction term 0.7018 0.7878 0.2747 0.1496 0.1073 0.8419 0.0048 0.8173 

Name of added 
interaction term 

Treatment 
*Day 

Treatment 
*Logday 

Treatment
*Age 

Treatment
*Donor age

Treatment
*Gender 

Treatment
*Race 

Treatment
*Graft type 

Treatment 
*Weight 

 Interaction effect selection. In order to further investigate treatment 
effect, we consider possible treatment interaction with all other selected fixed 
effects in the last model from backward and forward steps. Analogous to 
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forward addition step, we add each interaction to the last model in the first 
run of interaction effect selection. The results are shown in Table 2. There is 
only one term: interaction between treatment and graft type with 0048.0=p  

which is less than adjusted significant level 0.0056. Hence we add this 
interaction term to the model for covariance model selection. 

4.2. Covariance model selection 

Although the objective of this analysis usually is to compare treatment 
regression curves over time, modeling an appropriate covariance structure is 
essential so that the inferences about means are valid. In the above process, 
we assume independent errors within a subject (patient). That means all 

observations within a subject are equally correlated .2
ini IR σ=  However, it 

is more reasonable to assume that two measures taken at adjacent times are 
more highly correlated than two measurements taken several time points 
apart. In this section, we explore the appropriate covariance structure for our 
SCr data. From this point on, we use REML method in order to obtain 
unbiased estimates of covariance parameters. 

For random effect covariance matrix G corresponding to intercept and 
time, except for the VC structure used above in (4.1), we also consider 
unstructured (UN) structure, that is, 
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σσσ
σσσ
σσσ
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LDDLDILD

DLDDID

ILDIDI
G  (4.2) 

where ILDID σσ ,  and DLDσ  are the covariances between intercept and day, 

intercept and logday and day and logday, respectively. 

For residual error covariance matrix R, the following structures are 

considered in addition to the homogeneous (HOMO) one, i.e., .2
ini IR σ=  

Suppose 3=in  for the simplicity of the formula. 
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First-order autoregressive ( )( ).1AR  It has homogenous variances. The 

correlation between any two adjacent measurements is equal to ρ  with 

1<ρ  for stationary although exact time periods are not equal between any 

adjacent observations. The correlation between any two elements separated 

by a third is ,2ρ  and so on. 
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First-order autoregressive moving average ( )( ).1,1ARMA  It has 

homogenous variances. The correlation between two adjacent elements is 

,θρ  between elements separated by a third is ,2θρ  and so on. ρ  and θ  are 

the autoregressive and moving average parameters, respectively, with 
1<ρ  and 1<θ  for stationary. 
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Toeplitz with two bands structure ( )( ).2TOEP  Homogenous variances. 

The correlation between adjacent elements is homogenous across pairs of 
adjacent elements. The correlation between elements which are not adjacent 
is 0. 
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Spatial power structure ( )( ).POWSP  Let ijd  be the Euclidean distance 

between ith and jth observational times (i.e., logday in our model), the 

covariance between ith and jth elements is .2 dijρσ  
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Table 3 shows the AIC and BIC (a smaller value suggests a better fit)    
fit statistics and their ranks for 10 covariance structure models described 
above. The last row in Table 3 presents the number of variance-covariance 
parameters. From Table 3, one could easily identify that model 6 (rank 10 for 
both AIC and BIC) is the “best” choice when considering both AIC and BIC 
statistics jointly. Models 4 and 10 have almost the same AIC/BIC and are the 
second to the best choice. 

Table 3. AIC and BIC fit statistics for covariance structure models 

   Fixed HOMO AR(1) ARMA(1, 1) TOEP(2) SP(POW) 

   Random VC UN VC UN VC UN VC UN VC UN 

   Model 1 2 3 4 5 6 7 8 9 10 

   AIC 
   (rank) 

27959.4 
(1) 

26569.6 
(6) 

27692.2
(4) 

26387.9
(9) 

27667.2
(5) 

26362.0
(10) 

27853.2
(2) 

26481.7
(7) 

27692.4 
(3) 

26388.0 
(8) 

   BIC 
   (rank) 

27978.1 
(1) 

26602.3 
(6) 

27715.6
(4) 

26425.3
(9) 

27695.3
(5) 

26404.0
(10) 

27876.6
(2) 

26519.1
(7) 

27715.8 
(3) 

26425.4 
(8) 

   Parm.# 4 7 5 8 6 9 5 8 5 8 

By checking outputs from Model 6, we find that fixed effect race is no 
longer significant ( ).1732.0=p  Same phenomenon occurs in Models 4 and 

10. Therefore, we remove Race from three models and fit the data again. 
Outputs show that updated Models 4 and 10 still have almost the same AIC 
values (26386.4 and 26386.6 for Models 4 and 10, respectively) but updated 
Model 6 has larger AIC value (27675.5). Since times in our data are not 
equally spaced and subjects have the different observation times, we finally 
choose Model 10 which does not require equally spaced times. Hence, in the 
final model, fixed effects include treatment, actual day, logday, age, gender, 
weight, donor age, graft type, and interaction term: treatment*graft type.   
The covariance structure is spatial power (SP(POW)) for residual error and 
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unstructured (UN) structure for random-effects (i.e., intercept, day, logday). 
The model is as follows: 

( ) ( )166.4Logday46.0181Day00205.0SCr −∗−−∗=  

( ) ageDonor013.0Male33.0Weight007.0Age01.0 ∗++∗+∗−  

( )

( )

( )








−

+

+

+

.ent for treatm;graftCadeveric008.01487.1

;ent for treatm;graftCadeveric331.00536.1

;ent for treatm;graftCadeveric217.09444.0

C

B

A

 (4.7) 

Tables 4.1 and 4.2 show the covariance parameter estimates and type III 
p-values for fixed effects from final model (4.7), respectively. All covariance 
parameters are significant ( )0001.0<p  except for the variance of day which 

is almost 0 ( ).000009175.0  

Table 4.1. Final model fitted results – covariance parameter estimates 

Parameter Estimate Std. err. z-value p-value 95% confidence 
interval 

  Intercept 2
Iσ  0.972 0.566 17.18 <.0001 (0.870, 1.093) 

  IDσ  0.0024 0.0002 13.89 <.0001 (0.0021, 0.0028) 

  Day 2
Dσ  9.175E-6 0.0000 . . . 

  ILDσ  –0.530 0.037 –14.43 <.0001 (–0.602, –0.458) 

  DLDσ  –0.0022 0.0001 –16.05 <.0001 (–0.0025, –0.0020) 

  Logday 2
LDσ  0.594 0.033 17.95 <.0001 (0.534, 0.664) 

  SP(POW) ρ  0.526 0.019 27.27 <.0001 (0.488, 0.563) 

  Residual 2σ  0.551 0.010 57.67 <.0001 (0.533, 0.570) 
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Table 4.2. Final model fitted results – type III test p-values for fixed effects 

Fixed 
effect 

Treatment Day Logday Age Donor age Gender Weight Graft 
type 

Treatment* 
Graft type 

p-value 0.0371 <0.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0.0010 0.0282 

5. Residual Analysis 

Residuals are commonly used to evaluate the validity of the assumptions 
of statistics models. There are three types of residuals for mixed-effect 
regression model that accommodate the extra source of variability [21]: 

• Marginal residual: ,ˆˆ β−=ξ Xy  that predicts the marginal errors, 

.ε+γ=β−=ξ ZXy  

• Conditional residual: ,ˆˆˆ γ−β−=ε ZXy  that predicts the conditional 

errors, .γ−β−=ε ZXy  

• Empirical best linear unbiased predictor (EBLUP): ,γ̂Z  that predicts 

the random effects, .γZ  

A review of residual analysis for linear mixed models could be found in 
[21] and the references cited therein. Here we discuss all these residuals for 
our final fitted model (4.7). 

5.1. Marginal residuals 

Marginal residuals ( )TT
m

T ξξ=ξ ˆ...,,ˆˆ
1  could be employed to check the 

linearity of y with respect to fixed effects as the usual residuals in standard 
linear model. A random behavior around 0 is expected when the linear 
relationship holds. For our final fitted model (4.7), marginal residuals are 
plotted in Figure 2 showing residuals versus logday, age, donor age and 
weight, respectively. These plots support the regression model for SCr since 
there is no nonlinear trend identified from these plots. 
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Marginal residuals may also be used to check the validity of the within-

subject covariance structure, i.e., .i
T
iii RGZZV +=  Let ,ˆˆ 21

iii VQ ξ= −  

Verbeke and Lesaffre [30] suggest using the interpretable component =iq  

2T
iin QQI i −  as a diagnostic for the within-subject covariance matrix, 

where A  denotes the Forbenius norm of matrix A. iq  is expected to be 

close to zero and a plot of such values versus the subject indices is useful in 
identifying outlier subjects for which the assumed covariance structure does 
not fit well. Figure 3(a) of the final model residuals for the structure of the 
covariance matrix versus subject shows several outlier subjects suggesting 
that the fitted covariance matrix is not adequate for these subjects. The 
source SCr data for the outlier subjects are presented in Figure 3(b). It is easy 
to see that data from these subjects deviate from overall mean data trend in 
Figure 1. 

Remarks. In practice, one should further refine the final model by 
checking and removing obvious outlier subjects or observations both 
clinically and statistically. Those clinically possible observations should not 
be considered as outliers even if they are identified from above residual 
analysis. 

5.2. Conditional residuals 

The final model conditional error is ( ),,0~ iij RNε  where =iR  

( ).POWSP  Hence the Pearson-type standardized conditional residuals are 

( )1,0~ˆˆ Njij σε  approximately. Plots of the elements of σε ˆˆ  versus 

subject ID (Figure 4(a)) or predicted SCr: γ+β= ˆˆˆ ZXy  (Figure 4(b)) and 

histogram and Q-Q plots of σε ˆˆ  (Figures 4(c) and 4(d)) may be utilized to 

check homoscedasticity and normality of the conditional error ε  [22, 32]. 
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Moreover, one may check studentized conditional residuals which are 

simply defined as: ( ) ( )1,0~ˆˆ NarV ijij εε  approximately [9]. Plots of 

studentized conditional residuals are shown in Figure 5. Similar to marginal 
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residuals, these figures for conditional residuals also indicate several outlier 
subjects and hence there exist deviations from normal assumptions for those 
outliers. 
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5.3. EBLUP 

Applying estimated covariance parameters to predict ,γ  we obtained 

empirical best linear unbiased predictor .γ̂  Then iiZ γ̂  reflects the difference 
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between the predicted responses for the ith subject and the population 
average; therefore it could be used to identify outlying subjects as suggested 
in [19, 30], etc. Plot (not shown) of iiZ γ̂  versus subject for model (4.7) 

indicates that outlying subjects could be identified. 

One can also check the normality of γ̂  by plotting the standardized iγ̂  

versus subject or by Q-Q plot of standardized iγ̂  based on standard normal 

distribution as we did above for conditional residuals. These plots (not 
shown) indicate that iγ̂  follows a normal distribution approximately. 

5.4. Influence diagnostics 

In order to check whether any subjects have large influence on the final 
model, a non-iterative influence analysis is performed to the model. Figure 6 
presented plots for restricted likelihood distance (RLD), Cook’s distance and 
covariance ratio (CR), and root mean squared error (RMSE) when delete one 
of subjects. The formulas for these parameters could be found in the SAS 
support website for residuals and influence diagnostics: 

http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/vie 
er.htm#statug_mixed_sect024.htm 

Together with the influence diagnostic table (not shown), we could 
identify the following outlier subjects from these plots: subject #436 
(maximum RLD = 3.126, Cook = 0.055, minimum CR = 0.777, minimum 
RMSE=0.734); #4 (RLD = 2.04, CR = 0.815, RMSE = 0.7356); #6 (CR = 
0.821, RMSE = 0.7359); #10 (maximum Cook = 0.091); #19 (Cook = 0.058); 
and #326 (Cook = 0.052). The overall effects of outlier subjects are minor 
based on total 792 subjects and relatively smaller values for these extreme 
observations from influence analysis. Of course, deleting these outlier 
subjects (as a set of values from all visits) will increase the estimated 
precision of the fixed effects estimates although just minor. 
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6. Model Based Testing 

The main purpose for this analysis is to characterize as well as to test 
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treatment effect on renal function measurement: SCr concentration level. 
From the analysis above, one can conclude that not only does treatment have 
a significant effect on SCr, so do the other covariates such as day, age and 
weight. Obviously, the general Z-test or T-test for treatment effect will not 
remove other covariate effects and so the test results are not reliable. The 
model based testing is then a better choice since it accounts for and 
eliminates the other covariate effects involved in the model. Of course, the 
model itself should be trustworthy first (see Section 5). 

With a mixed-effect regression model, one can test the null hypothesis 
,0=φ′L  where ( )MKL ′′=′  and ( ).γ′β′=φ′  The test statistic is 

( )

( )LCLrank

LLCLL
F

T

ˆ
ˆ

ˆˆ
ˆ

ˆ 1

′










γ
β′′









γ
β

=

−

 

with an F-distribution under the null hypothesis, where 

−

−−−

−−










+′′
′′

= 111

11

ˆˆˆ
ˆˆˆ

GZRZXRZ
ZRXXRXC  

is the approximate variance-covariance matrix of ( ).ˆ,ˆ γ−γβ−β  For fixed 

effect (the γ  portion of L is assumed to contain all 0s), the denominator 

degree of freedom for a test is calculated as the minimum contribution to the 
rank of ( )ZX  of random effects containing the fixed effect of interest. For 

random effect, because any linear combination of γ  is estimable, the 2χ  

statistic associated with the likelihood ratio test based on REML shall be 
applied. 

Table 5 shows testing results for treatment effects on SCr based on      
the model (4.7), where label ”“ BA =  refers to the null hypothesis that 
treatments A and B have the same effect on SCr, etc. We can see from      
Table 5 that treatments A and B have significantly different effects on SCr 
( ),0104.0=p  but treatment C has no significant difference from treatment 

A ( )1554.0=p  and treatment ( ).2493.0=pB  
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Table 5. Model based hypothesis testing for treatment difference 

Test BA =  CA =  CB =  CBA ==  

p-value 0.0104 0.1544 0.2493 0.0371 

Table 6 shows least square mean of SCr for each treatment group over 
time. The least square mean differences are ;17.0−=− BA  09.0−=− CA  

and .07.0=− CB  Together with Table 5, we conclude that treatment A has 
the best renal function (smaller SCr means better renal function); it is 
significantly better than treatment B and numerically better than treatment C, 
the control group. 

Table 6. Least square mean of SCr for each treatment over time [mg/dL] 

Day 3 15 30 60 90 120 180 240 360 480 600 720 

 RAD 1.5mg 2.86 2.15 1.86 1.60 1.48 1.41 1.34 1.33 1.39 1.51 1.65 1.81 

 RAD 3.0mg 3.03 2.31 2.02 1.77 1.64 1.57 1.51 1.50 1.56 1.67 1.82 1.98 

  Myfortic 2.95 2.24 1.95 1.69 1.57 1.50 1.43 1.42 1.48 1.60 1.74 1.91 

Notice that there is an interaction between treatment and graft type 
(living donor versus deceased donor), treatment effect on SCr shall be 
different for different type of donor. Table 7 shows least square mean 
difference of SCr by graft type. The table indicates that treatment A is 
significantly better than control group for living donor type ( )0188.0=p  

but no significant difference between A and C for deceased donor type 
( ).8275.0=p  Treatment A is significantly better than treatment B for 

deceased donor type and numerically better than treatment B for living donor 
type. 
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Table 7. Least square mean difference of SCr and test by graft type [mg/dL] 

Test A – B A – C B – C 

  Living donor –0.1092 (p = 0.2108) –0.2403 (p = 0.0188) –0.0951 (p = 0.2733) 

  Deceased donor –0.2232 (p = 0.0204) 0.0208 (p = 0.8275) 0.2439 (p = 0.0109) 

7. Conclusion and Discussion 

In transplant clinical studies, longitudinal data are frequently collected 
for monitoring patient safety and treatment effects. However, there is rarely 
statistical analysis applying longitudinal data analysis strategies in clinical 
trials [24]. Another explanation to this phenomenon could be the lack of a 
standard methodology for analysis, diagnosis, and interpretation. The paper 
is trying to provide a systematic approach of longitudinal data analysis 
during clinical trials. We present a brief review of longitudinal data analysis 
strategies and applied them to post-transplant serum creatinine data. The 
proposed strategies use the iteration of fixed effects selection and covariance 
analysis followed by residual analysis, testing, prediction and interpretation. 

Figure 7 shows the average predicted serum creatinine values across time 
for each treatment from the final model. Comparing with Figure 1, together 
with residual analysis outputs in Section 5, one could see that the fitted 
model is good for our data in spite of several outliers. When all outlier 
subjects identified in Section 5 are removed and data are refitted with the 
same model structure, there is a little change to outputs. The least square 
mean difference A – B changes from –0.17 to 16.0−  ( );0008.0=p  CA −  

from –0.09 to –0.06 ( );1721.0=p  and CB −  from 0.07 to 0.09 ( =p  

).0447.0  
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Hence we could make the following conclusions based on our fitted 
model and testing results: 

(1) Treatment group, day (since start of study medication), logday, age, 
weight (at baseline), donor age and graft type have significant effects on 
serum creatinine measurements. 
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(2) Graft type has an interaction effect with treatment: treatment A is 
significantly better than treatment B for deceased donor ( )02.0=p  and 

treatment C for living donor ( ).02.0=p  It is also numerically better than 

treatments B for living donor. 

(3) Overall, treatment A is significantly better than B (decreasing SCr by 
0.17 [mg/dL]) and numerically better than C (decreasing SCr by 0.09 
[mg/dL]). Treatment B is worse than C. 

(4) Outliers could be identified from the model but they have minor 
effect to estimates and no effect on the conclusion. 

The outputs confirm that the use of RAD 1.5mg with reduced-dose 
Neoral is associated with improved renal function for kidney transplant 
recipients but RAD 3.0mg is not. Therefore, RAD 1.5mg plus reduced (or 
minimized) cyclosporine regime is widely investigated in organ transplant 
population to improve renal function. The same analysis strategy was applied 
to other endpoints in study RAD A2309 [29, 28, 2] and confirmed that renal 
function (GFR) in RAD 1.5mg + reduced cyclosporine group is better than 
active control group. Hence, among all others, this exemplary longitudinal 
data analysis strategy could be applied to any clinical observations measured 
by time. 

Another topic that the author is working on is trying to incorporate a 
Bayesian approach into longitudinal data analysis. The basic idea is first to 
obtain information/model from similar previous studies. The model should 
then be modified based on current study data. 
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