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Abstract 

In this paper, we investigate the oscillation behavior and the global 
stability character of all positive solutions of the discrete baleen whale 
model 
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and answer the Research Projects which were proposed by V. L. Kocić 
and G. Ladas. 
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1. Introduction 

Our aim in this paper is to study the oscillation and the global asymptotic 
stability of a discrete baleen whale model, which has been proposed by Kocić 
and Ladas in [1] as the open Research Projects. 

Research Project 4.7.1. Study the oscillatory behavior of the following 
equation: 
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where k is a nonnegative integer, [ ] { }0,max ⋅=⋅ +  and 

 ( ) ( ).1,0,,0,, ∈µ∞∈zqk  (2) 

Research Project 4.7.2. Obtain conditions for the global asymptotic 

stability of the equilibrium k  of equation (1) relative to the interval ( ),,0 ∗N  
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1
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It is easy to see that if (2) holds and the initial conditions satisfy (3), 

 [ )∞∈−− ,0...,, 1NN k   and  ( ),,00 ∞∈N  (3) 

then the solutions { }nN  of equation (1) are positive. 

Besides their theoretical interests, difference equations play an important 
role in economic sphere, mathematical biology. Many scholars have studied 
the difference equation with biological background, for examples [2-5]. 

In this work, we obtain a sufficient condition for every positive solution 
of equation (1) is global asymptotic stability under condition (2) and (3) by 
using the Lyapunov function method, and answer the above open problems. 

2. Some Lemmas 

Definition 2.1. Lyapunov functions. 
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Consider the equation 

 ( ).1 nn xGx =+  (4) 

Let 1+⊂ kS R  be contained in the .dom G  A function [ )∞,0: RV  is 

said to be a Lyapunov function of equation (1) on S if V is continuous and 
( )( ) ( )xVxGV ≤  for all .Sx ∈  

Lemma 2.1. Let 1+⊂ kS R  be a bounded open set such that ( ) .SSG ⊂  

Assume that x  is the only equilibrium point of equation (4) in S. Suppose 
that V is a Lyapunov function of equation (4) on S such that 

( )( ) ( )xVxGV <   for all  Sx ∈   with  .xx ≠  

Let 0E  be the set of all points on the boundary of S such that ( )( ) =xGV  

( )xG  and 0M  be the set of all points such that ( ) xxV =  for .0Mx ∈  

Denote { }.0 xMM ∪=  Then the following statements are true: 

(a) if { },xM =  then x  is globally asymptotically stable relative to S; 

(b) if there is no solution { }nx  of equation (4) such that { }zxnMz
−

∈ 0
inf  

0→  when ,∞→n  then x  is globally asymptotically stable relative to S. 

One can refer to Kocić and Ladas [1, P10, Theorem 1.3.1]. 

Next, we consider the delay difference equations 
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and 

[ ) ( )[ ],,0,,0 ∞∞∈ CF  F has a unique positive fixed point x  
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and 

 ( ) ( )( ) 0<−− xxFxx   for  xx ≠<0  (7) 

and 

 ( )nn zFz =+1   for  ....,1,0=n  (8) 

Now, we have the following lemma: 

Lemma 2.2. Assume that (6) and (7) hold and suppose that there exists a 
convex function v which is a Lyapunov function of the first-order difference 
equation (8) on ( )∞,0  such that ( )( ) ( )xVxFV <  for .xx ≠  Then the 

positive equilibrium x  of equation (5) is globally asymptotically stable. 

One can refer to Kocić and Ladas [1, P51, Theorem 2.5.2]. 

Lemma 2.3. Assume that ( )∞∈ ,0ip  and { }...,1,0∈ik  with ( )∑
=
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.1≠  Let ( ){ }npi  be a sequence of positive numbers such that 
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Suppose that the linear difference inequality 
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has an eventually positive solution. Then the difference equation 

∑
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−+ =+−
m

i
kninn ixpxx

1
1 0   for  ...,1,0=n  

has a positive solution. 

One can refer to Kocić and Ladas [1, P6, Theorem 1.2.2]. 

Lemma 2.4. Assume that R∈p  and k is a nonnegative integer. Then 

every solution of the difference equation 
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01 =+− −+ knnn pyyy   for  ...,1,0=n  

oscillates if and only if 

 1≥p  if  ,0=k  
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k
kp  if  .1≥k  

One can refer to Kocić and Ladas [1, P6, Corollary 1.2.1]. 

Lemma 2.5. Consider the difference equation 
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where ( )∞∈ ,0,, zqk  and 
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One can refer to Kocić and Ladas [1, P120, Corollary 4.7.1]. 

3. Main Results 

Theorem 3.1. Assume that (2) holds and 
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Then every positive solution of equation (1) oscillates about the positive 
equilibrium .k  

Proof. Assume for the sake of contradiction that equation (1) has a 
positive solution which does not oscillate about the positive equilibrium .k  
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Now, we set 

nn xkN +=   for  ...,,1, +−−= kkn  

then { }nx  is a nonoscillatory solution of the difference equation 
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Without loss of generality, we assume that { }nx  is eventually positive. 

Let 0n  be an integer such that 0>nx  for .0nn ≥  

First, we will claim that { }nx  is a bounded sequence. Otherwise, there 

exists a subsequence { }inx  such that for 0nni ≥  and ...,,2,1=i  

+∞=
∞→ in

i
xlim    and   .01 ≥−+ ii nn xx  

It follows from (10) that for i sufficiently large 
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Furthermore, we have the following inequality holds: 
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so 

 .1 knn ii xkx −+ +≤  (12) 

By (12), we can see that .lim +∞=−
∞→

kn
i ix  But, equation (11) leads to a 

contradiction as .∞→i  
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Second, we claim that 

 .0lim =
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n
n
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Otherwise, let 
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Then 0>λ  and there exists a subsequence { }inx  such that for 0nni ≥  and 
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which is impossible. Hence, (13) holds. 

Now, we rewrite equation (10) as follows: 

 ( ) 01 =+µ+− −+ knnnn xnpxxx   for  ...,,1,0=n  (15) 
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and ( ) .01 >µ−qz  

One can easily see that the hypotheses of Lemma 2.3 are satisfied. So the 
linear equation 
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 ( ) 011 =µ−+µ+− −+ knnnn yqzyyy   for  ...,1,0=n  (16) 

has an eventually positive solution. 

Let { }ny  be an eventually positive solution of equation (16). Then =nz  

( ) n
n yµ−1  is an eventually positive solution of the following difference 

equation: 

( ) ( ) 011 1
1 =µ−µ−+− −

−−
+ kn

k
nn zqzzz   for  ....,1,0=n  

According to Lemma 2.4, we know that equation (16) has no 
nonoscillatory solutions. This is a contradiction and we complete the proof. 

Theorem 3.2. Assume that 
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Then the positive equilibrium k  of equation (1) is globally asymptotically 

stable relative to the interval ( ).,0 ∗N  

Proof. First, we show that the function defined by 

 ( ) kxxV −=   for  ( )∗∈ Nx ,0  (17) 

is a Lyapunov function for equation (9). 

Clearly, V is a nonnegative and continuous function, and then the 
remaining is to show that 

 ( )( ) ( )xVxfV <   for  ( )∗∈ Nx ,0   and  ,xx ≠  (18) 

where 
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Let ( ).,0 kx ∈  Then (18) is equivalent to 
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We can easily know that ( ) 020 <−= kg  and ( ) .0=kg  Thus, ( ) 0<xg  

for ( ),,0 kx ∈  and this shows that (18) holds. 

Furthermore, let ( )., ∗∈ Nkx  Then (18) is equivalent to 
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and this is true provided that ( ) 0>xg  for ( )., ∗∈ Nkx  

Indeed, we can get 

( ) ( ) ( ) .0,02,0 <′′≥−== ∗∗ xgkNNgkg  

Therefore, ( )xg  is a convex function in ( )., ∗∈ Nkx  By the properties 

of convex functions, we know that (( )) ( ).,0,0 ∗∗ ⊂ NNf  
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Thus, by Lemma 2.1, we know that k  is globally asymptotically stable 

relative to the interval ( ),,0 ∗N  and by Lemma 2.2, we can complete the 

proof. 
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