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Abstract 

In this paper, we first discuss the primeness of basic ideals in a free     
R-algebra where R is a unital commutative ring. The condition of 
primeness is applied to show a prime basic ideal in a path algebra RE 
on a graph E. For every hereditary subset H, we can construct a 
(graded) basic ideal HI  in RE. The basic ideal HI  is an ideal of linear 

combinations of vertices in H and paths whose ranges in H. The     
main purpose of this paper is to present the necessary and sufficient 
conditions on a graph, so that HI  is a prime basic ideal, if H is 
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saturated hereditary. Since ∅ is saturated hereditary, we find the 
necessary and sufficient conditions on a graph, so that a path algebra 
RE is basically prime. 

1. Introduction 

Given a field K and a (directed) graph ( ),,,, 10 rsEEE =  where 0E  is 

a set of vertices, 1E  is a set of edges and two functions .:, 01 EErs →  A 

path algebra KE is a free K-algebra having a basis ∗E  in which ∗E  is a      
set of all paths in the graph [4, 6, 7]. Consider that the path algebra 

m
m

KEKE
0≥

⊕=  is a graded algebra [6, 7] and an associative algebra [7]. 

Moreover, KE is a unital algebra if 0E  is finite and it has a finite dimension 
if E is an acyclic finite graph [7]. In this paper, we discuss a path algebra 
over a unital commutative ring as a generalization of the path algebra KE. 

The path algebra KE can be extended to a Leavitt path algebra ( )ELK  

over a field K on the extended graph with two conditions of Cuntz Krieger.  
It is important to note that ( )ELK  is also a free K-algebra [1, 2-6]. 

Furthermore, Tomforde [11] generalized ( )ELK  into ( )ELR  that is a Leavitt 

path algebra over a unital commutative ring R. He introduced the term of a 
basic ideal in ( )ELR  to define basically simple ( )ELR  [11]. Based on [11], 

Wardati et al. developed a definition of prime basic ideal in ( )ELR  to define 

basically prime ( )ELR  [12]. A generalization of a basic ideal in a free         

R-algebra over a unital commutative ring R has been discussed in [13]. A part 
of this paper will be devoted to the discussion of the primeness of the free    
R-algebra and its properties characterized by the prime basic ideals. This 
topic is a continuation of the paper [13] and it also refers to [8, 10, 14]. 

Larki [9] and Pino et al. [2, 5] defined that a nonempty subset 0EM ⊆  
is called a maximal tail if it satisfies three conditions MT1, MT2, MT3. They 
found a relationship between the conditions MT1, MT2 and the saturated 
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hereditary nature. A subset 0EH ⊂  is saturated hereditary if and only if 

HEM \0=  satisfies MT1, MT2. Based on this property, ∅ is saturated 

hereditary and 0E  always satisfies the conditions MT1, MT2. The most 
important result is the necessary and sufficient condition of primeness of 

( ),ELK  i.e., 0E  is a maximal tail. In other words, ( )ELK  is prime if and 

only if 0E  satisfies the condition MT3. 

The primeness of ( )ELK  viewed as a ring (an algebra over itself) is a 

result of Larki [9], that is ( )ELR  is prime if and only if R is an integral 

domain and 0E  satisfies the condition MT3. Different from Larki, the 
primeness of ( )ELK  is a consequence of a proposition of Pino et al. in [2, 5]. 

They stated that if H is saturated hereditary, then the graded ideal in ( )ELK  

constructed by H, { ( ) ( ) }HrrESpanI KH ∈β=α∈βααβ= ∗∗ ,,:  is a 

prime basic ideal if and only if HEM \0=  is a maximal tail [2, 5]. Since ∅ 

is saturated hereditary and { },0=∅I  ( )ELK  is a prime algebra if and only 

if ∅I  is a prime basic ideal if and only if 0E  is a maximal tail. 

Based on [7], we can define an arrow ideal EI  in RE, where E is a 

connected finite graph. The arrow ideal EI  is an ideal consisting of the   

linear combinations of paths of length .1≥l  In other words, =EI  

{ }0\EESpanR
∗∈µ  is a basic ideal that does not contain the vertices and it 

is only defined on the connected graph. If given any finite graph having an 

isolated vertex ,0Eu ∈  i.e., ( ) ( ) ,11 ∅== −− usur  then we can form a basic 

ideal Ru that consists a linear combination of u. If a hereditary subset 
0EH ⊆  contains the isolated vertices, then { ( ) ( ) }∅== −− usuruSpanR

11:  

{ ( ) }HrEESpanR ∈µ∈µ⊕ ∗ :\ 0  is also a basic ideal. It is clear that          

the last two basic ideals do not contain H. Furthermore, we can define a   
basic ideal constructed by the hereditary subset H, i.e., { ∈µ= RH SpanI  
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( ) }HHrE ∈µ∨∈µ∗ :  that contains H. The basic ideal HI  in RE plays an 

important role to discuss basically prime path algebra RE. 

While the Leavitt path algebra ( )ELK  is always semiprime [3, 4, 6], the 

case for the path algebra KE is somewhat different. Pino et al. in [4, 6] 
showed that a necessary and sufficient condition of a semiprime path algebra 
KE is: 

for every ,∗∈µ E  there exists ∗∈ Ev  such that 

( ) ( ) ( ) ( )., vrsvsr =µ=µ  (1) 

If (1) is not met, then KE is neither a semiprime nor a prime algebra. So (1) is 
a necessary condition of a prime path algebra KE. This indicates that (1) is 
also a necessary condition for a basically prime path algebra RE. 

The main purpose of this paper is to determine a necessary and sufficient 
condition for the path algebra RE over a unital commutative ring is basically 
prime. We can show that if H is saturated hereditary and a basic ideal 

{ ( ) }HHrESpanI RH ∈µ∨∈µ∈µ= ∗ :  is prime, then HEM \0=  is a 

maximal tail, but not the converse. The main result is if H is saturated 

hereditary, then HI  is a prime basic ideal if and only if HEM \0=  is a 

maximal tail and for every path a whose range ( ) ,Mar ∈  there exists a path 

b such that ( ) ( )bsar =  and ( ) ( ).bras =  Furthermore, the path algebra RE is 

basically prime if and only if for every 0, Ewv ∈  there exists 0Ey ∈  such 

that ywyv ≤≤ ,  and for every path µ, there is a path ν such that 

( ) ( )ν=µ sr  and ( ) ( ).ν=µ rs  

2. Basic Properties of Graphs 

The discussions on the path algebras over a field can be found in           
[4, 6, 7]. We first recall the notion of a quiver or directed graph and its 
properties to discuss path algebras over a unital commutative ring. In further 
discussion, a directed graph is stated by a graph only. 
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Definition 2.1 [7]. A graph ( )rsEEE ,,, 10=  is 4-tuples consisting of 

two sets 0E  (whose elements are called vertices) and 1E  (whose elements 

are called edges) and two maps .:, 01 EErs →  For every edge ,1Ee ∈  its 

source ( )es  and its range ( )er  are in .0E  

A graph E is called row-finite graph if ( )vs 1−  is finite for every .0Ev ∈  

A vertex 0Eu ∈  is called an isolated vertex if ( ) ( ) ,11 ∅== −− usur  i.e., 

( ) ,uer ≠  ( ) ues ≠  for every .1Ee ∈  In this paper, we restrict to a finite 

graph and row-finite graph. Throughout we simply write a finite graph. 

A path meee …21=µ  of length 1≥m  on a graph E is a sequence          

of edges such that ( ) ( )1+= ii eser  with ,1Eei ∈  ,1...,,2,1 −= mi  where 

source and range of µ are ( ) ( ),1ess =µ  ( ) ( ),merr =µ  respectively. The path 

meee …21=µ  is called cycle if ( ) ( )µ=µ sr  and ( ) ( )ji eses ≠  for every 

.ji ≠  A cycle of length 1 is called a loop. A set of all paths of length n is 

denoted as ,nE  so that every vertex is a path of length 0. Furthermore, ∗E  

denote a set of all paths in graph E. The composition of any two paths can be 

defined as a multiplicative operation on .∗E  Then the multiplication of 

lµµ=µ …1  and kvvv …1=  is defined as: 

( ) ( )

( ) ( )





≠µ

=µµµ
=µ

.if,0

,if,

1

111

vsr

vsrvv
v

l

lkl ……
 (2) 

This refers to [7] and we use it to define a path algebra over a unital 
commutative ring. 

Definition 2.2. Given a unital commutative ring R and a graph =E  

( ).,,, 10 rsEE  A path algebra over R on the graph E denoted RE is a free    

R-algebra whose a basis ∗E  such that the multiplication of two basis vectors 
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defined by (2) satisfies two conditions: iijji vvv δ=  and ( ) == iii eree  

( ) ,ii ees  for every .,, 10 EeEvv iji ∈∈  

The first condition in Definition 2.2 shows that every vertex in the graph 
is an idempotent element and any two distinct vertices form a pair of 
orthogonal idempotent elements in RE. Moreover, based on Definition 2.2, 
the path algebra RE has the properties stated in the following lemma. 

Lemma 2.3. Let RE be a path algebra over a unital commutative ring on 
a graph E. Then the following statements apply: 

(1) RE is a graded associative algebra. 

(2) RE has an identity if and only if 0E  is finite. 

(3) RE has a finite dimension if and only if E is a finite acyclic graph. 

Proof. Based on Definition 2.2, it is easy to show that RE is a graded 

algebra, i.e., ,
0

m
m

RERE
≥
⊕=  where mRE  is an R-submodule of RE for 

every 0≥m  and every nonnegative integer ( )( ) .,, lklk RERERElk +⊆  A 

proof of an associative algebra RE, points (2) and (3) is analogous to the 
proof of [7]. ~ 

An ideal in RE can be constructed by a hereditary subset of .0E  The 
definition of the hereditary subset is related to a preorder relation ≤ on the 

vertex set 0E  defined by Abrams and Pino [1] as: for every ,, 0Ewv ∈  

wv ≤  if and only if wv =  or there is a path µ such that ( ) ,vs =µ  

( ) .wr =µ  According to [1], a subset 0EH ⊂  is hereditary if Hv ∈  and 

wv ≤  imply .Hw ∈  Then the subset H is called saturated if ( ) ∅≠− vs 1  

and ( ( )) Hvsr ⊆−1  imply .Hv ∈  

We know that the tree of 0Ev ∈  is defined and denoted as ( ) =vT  

{ }.:0 wvEw ≤∈  This definition can be extended to the tree of a subset 
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,0EX ⊂  namely ( ) ( )∪
Xv

vTXT
∈

= .  For every ,Xv ∈  ( ),vTv ∈  ⊆X  

( ).XT  Therefore, saturated hereditary closure of X denoted X  is the 

smallest saturated hereditary subset that contains X. This means that for   
every saturated hereditary subset XH ⊇  implies .HX ⊆  To determine X  

requires the following lemma which has been proven in [2]. 

Lemma 2.4. Given a graph E and .0EX ⊆  Then ( ),
0
∪
∞

=
=

n
n XGX  

where ( ) ( )XTXG =0  and 

( ) { ( ) ( ( )) ( )} ( )XGXGvsrvsEvXG nnn 11
110 ,: −−
−− ⊆∅≠∈= ∪  

for every .1≥n  

Besides the saturated hereditary subset, there is a nonempty subset of 0E  

that meets the conditions of maximal tail. According to [2, 5, 9], the maximal 
tail is defined as follows: 

Definition 2.5. Let E is a graph. Then a nonempty subset 0EM ⊆  is 

called a maximal tail if it implies: 

MT1. If MwEv ∈∈ ,0  and ,wv ≤  then .Mv ∈  

MT2. If Mv ∈  with ( ) ,1 ∅≠− vs  then there is 1Ee ∈  with ( ) ves =  

and ( ) .Mer ∈  

MT3. For every ,, Mwv ∈  there is My ∈  such that yv ≤  and .yw ≤  

The saturated hereditary subset is interrelated to some conditions of 
maximal tail. The relationship is stated in the following lemma that has been 
proven by [2]. 

Lemma 2.6. Given a graph E and .0EH ⊂  Then H is saturated 

hereditary if and only if HEM \0=  satisfies the conditions MT1, MT2. 
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3. The Primeness of Free Algebras over a Unital Commutative Ring 

This section is a continuation of the paper [13], so we refer some of the 
previous results. The algebra considered in this section is always a unital free 
R-algebra that is simply written as a free R-algebra. We first recall the 
definition of an ideal in the free R-algebra that meets a certain requirement. 

Definition 3.1 [13]. Let A be a free R-algebra with a basis X. Then an 
ideal I in A is called a basic ideal if Ikx ∈  for every non-zero ,Rk ∈  and 
every ,Xx ∈  implies .Ix ∈  

In summary, the properties are stated in the following proposition (see 
Proposition 2.7 and Lemma 2.8 in [13]). 

Proposition 3.2. Let A be a free R-algebra with a basis X and I be an 
ideal of A. Then we have the following assertions: 

(1) I is a basic ideal if and only if I is a free ideal, namely the ideal I has 
a basis in X. 

(2) If ,Xh ∈  then ( )








∈= ∑i iiii Abahbah ,:  is a basic ideal. 

The basic ideal is very important to discuss the primeness of a free        
R-algebra. Analogous to the special properties of an ideal in a ring [10, 14], 
we can define a prime basic ideal. There is a class of the free R-algebras 
characterized by the basic ideal. 

Definition 3.3. Let A be a free R-algebra and I be a basic ideal of A. 

(1) I is a prime basic ideal whenever AI ≠  and any two basic ideals 
,, AQP ⊆  if ,IPQ ⊆  then IP ⊆  or .IQ ⊆  

(2) The algebra A is called basically prime algebra if the zero ideal is the 
prime basic ideal. 

The definition of basically prime algebra is based on the primeness of 
zero basic ideal. We need the properties of prime basic ideal to discuss the 
basically prime algebra. This is in line to the one presented in [10] and [14]. 
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Proposition 3.4. Let A be a free R-algebra with a basis X and P be a 
basic ideal of A. Then the following assertions are equivalent: 

(1) P is a prime basic ideal. 

(2) For every ,, Aba ∈  if ( ) ( )ba ,  are basic ideals, and ( ) ( ) ,Pba ⊆  

then Pa ∈  or .Pb ∈  

(3) For every ,, Aba ∈  if ( ) ( )ba ,  are basic ideals, and ,PaAb ⊆  then 

Pa ∈  or .Pb ∈  

Proof. It is clear to prove (1) ⇒ (2) ⇒ (3). To prove (3) ⇒ (1), take any 
two basic ideals AJI ⊆,  such that PJI ⊆  but .PI ⊄  According to 

Proposition 3.2 point (1), the basic ideals I, J are free ideals. Then there is a 
basis vector ., PaIa ∉∈  Suppose { }mbb ...,,1  is a basis of J. According to 

Proposition 3.2 point (2), ( ),a  ( )ib  are basic ideals for any .1, mii ≤≤  In 

addition, PJIaAbi ⊆⊆  and based on (3), we find .Pbi ∈  For any ,Jx ∈  

∑
=

=
m

i
iibrx

1
 for some Rri ∈  and all basis vectors ,Jbi ∈  ,1 mi ≤≤  then 

∑
=

∈=
m

i
ii Pbrx

1
.  It means that .PJ ⊆  Hence, any two basic ideals 

AJI ⊆,  such that PJI ⊆  and ,PI ⊄  then .PJ ⊆  Similarly to show 

that any two basic ideals AJI ⊆,  such that PJI ⊆  and ,PJ ⊄  then 

.PI ⊆  Thus, the basic ideal P is prime. ~ 

A basically prime free R-algebra A depends on the primeness of the zero 
basic ideal. Based on Definition 3.3 and Proposition 3.4, { }0  is a prime basic 

ideal if and only if for every ,, Aba ∈  if (a), (b) are basic ideals and 

{ },0)()( =ba  then 0=a  or ,0=b  if and only if for every ,, Aba ∈  if (a), 

(b) are basic ideals and { },0=aAb  then 0=a  or .0=b  Furthermore, if X 

is a basis of A, then { } ( )x≠0  is a basic ideal for every Xx ∈  (Proposition 

3.2, point (2)). In addition, each element in A is a linear combination of the 
elements of X. Then we have a corollary stated as follows: 
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Corollary 3.5. Let A be a free R-algebra with a basis X. Then A is 
basically prime algebra if and only if ( ) ( ) { }0≠yx  if and only if { }0≠xAy  

for every ., Xyx ∈  

4. Prime Basic Ideals in Path Algebras over a Ring 

Throughout this section, the path algebra RE is a free R-algebra on a 

finite graph E, where ∗E  is a basis of RE. The arrow ideal l
l

E KEI
1≥

⊕=  in 

path algebras over a field studied in [7], is an ideal generated by ,\ 0EE∗  

where E is a connected finite graph. Similarly, we define ( ) l
l

REEI
1≥

⊕=  is 

an arrow ideal in RE. Consequently, the ideal ( )EI  is an ideal that does not 

contain a vertex and it is only defined on a connected finite graph E. 
Analogous to the definition of the arrow ideal, when given a finite graph E 

and ,0EX ⊆≠∅  where each vertex is not isolated and there is an edge 
1Ee ∈  such that ( ) .Xer ∈  Then we can define the set of all paths whose 

ranges in X, as follows: 

Definition 4.1. Given a graph E and 0EX ⊆≠∅  such that every 

vertex in X is not isolated and there is an edge 1Ee ∈  such that ( ) .Xer ∈  

We can define a set of all linear combinations of paths whose ranges in X and 

they are not vertices, i.e., { ( ) }.:\ 0 XrEESpanR ∈µ∈µ ∗  

It is easy to show that { ( ) }XrEESpanR ∈µ∈µ ∗ :\ 0  is an R-submodule 

of RE, but it is not necessarily an ideal. Note the following graph G with 

{ }wvuG ,,0 =  and { }:,1 feG =  

 



On Primeness of Path Algebras over a Unital Commutative Ring 131 

We have a path algebra { } ....,,...,,,,,,,,,, 1232 feefeeefefewvuRG mm −=  

If { },vX =  then { ( ) } { }...,...,,,:\ 20 n
R eeevrEESpan ==µ∈µ ∗  is an   

R-submodule but not an ideal in RG. 

Proposition 4.2. Given a graph E and 0EX ⊂  such that every vertex  

in X is not isolated and there is an edge 1Ee ∈  such that ( ) .Xer ∈          

Then { ( ) }XrEESpanR ∈µ∈µ ∗ :\ 0  is a graded basic ideal if and only if X 

is hereditary. 

Proof. Consider { ( ) }.:\ 0 XrEESpanJ R ∈µ∈µ= ∗  We first suppose 

that X is not hereditary. Take any ∑
∈

∈µ=
Rk

ii
i

Jka  and a monomial 

REcx ∈  such that ( ) Xxr ∉  and ( ) ( )∑∑
∈∈

µ=













µ=≠

Rk
ii

Rk
ii

ii

xckcxkcxa .0  

Then there is a monomial ( ) 0≠µ xck ll  such that ( ) ( ) Xrxs l ∈µ=  but 

( ) ( ) .Xxrxr l ∉=µ  We find ( ) ,Jxck ll ∉µ  so J is not an ideal and there is a 

contradiction. Hence, X should be hereditary. For the converse, take any 

Jba ∈,  and any monomial REkx ∈  with ,Kk ∈  .∗∈ Ex  Then we have 

∑ ∑
∈ ∈

µ=µ=
Rk Rk

jjii
i j

kbka ,  for some ,\, 0EEji
∗∈µµ  ( ) ( ) ., Xrr ji ∈µµ  

It is clear that .Jba ∈−  Furthermore, for every ,Ji ∈µ  ( ) ( ),xsr i ≠µ  we 

have ( ) ( ) ( ) .0 Jxkkkxkkxa
Rk

ii
Rk

ii
ii

∈=













µ=














µ= ∑∑

∈∈
 Likewise, if there 

is Ji ∈µ  with ( ) ( ) ,Xrxs i ∈µ=  then ,0≠µ xi  and since X is hereditary, 

( ) ( ) ,Xxrxr i ∈=µ  so that ( ) ( ) .0 Jxkkkxa
Rk

ii
i

∈













µ=≠ ∑

∈
 Hence, ( )kxa  

.J∈  Similarly, we get ( ) .Jakx ∈  In other words, J is an ideal of RE.   

Based on Definition 4.1, J is a free ideal, so that J is a basic ideal. Since 
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{ }00 =REJ ∩  and 

{ ( ) }XrEESpanJ R ∈µ∈µ= ∗ :\ 0  

{ ( ) },,:\ 0
1

lXrEESpanR
l

=µ∈µ∈µ⊕= ∗

≥
 

,
0

k
k

JJ
≥
⊕=  where k

k REJJ ∩=  is an R-submodule of RE. Furthermore, it 

is easy to show that .mlml JJJ +⊆  Hence, J is a graded basic ideal.  

If the finite graph E is connected, then the all vertices are not isolated. It 
means that Proposition 4.2 implies the following corollary. 

Corollary 4.3. If the finite graph E is connected, then the arrow ideal 

EI  is a graded basic ideal in RE. 

A hereditary subset 0EH ⊆  may contain an isolated vertex. On the 

graph G, { }wuH ,=  is hereditary subset containing an isolated vertex u 

then { } uuSpanR =  is a basic ideal. In addition, we can form a basic ideal 

generated by the isolated vertex and the paths that are not vertices and the 
ranges of the paths equal to w, i.e., 

{ } { ( ) } { } ....,...,,,,:\ 0 feeffuHwrEESpanuSpan n
RR =∈=µ∈µ⊕ ∗  

Analogous to the proof of Proposition 4.2, the last basic ideal is graded but 
does not contain H. This inspires us to define a graded basic ideal which is 
constructed by a hereditary subset contained in the ideal. 

Definition 4.4. Given a finite graph E and a hereditary subset .0EH ⊆  

We define a graded basic ideal { ( ) }.: HHrESpanI RH ∈µ∨∈µ∈µ= ∗  

Consider a graph Q with { }4321
0 ,,, uuuuQ =  and { }321

1 ,, eeeQ =  as 

follows: 
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The acyclic graph Q does not contain an isolated vertex. We have a free      
R-algebra RQ with a finite basis { },,,,,,,, 323214321 eeeeeuuuu  and the 

arrow ideal ( ) { } .,,, 32321 eeeeeQI =  Furthermore, { }31 uH =  is hereditary 

but not saturated and { }321 , uuH =  is a saturated hereditary closure of .1H  

Then { } { } .,,,,,, 3232323233 11 eeeeuuIeeeuI HH ==  From the graph 

G, we know that { },, wuH =  { }wvK ,=  and KH ∩  are hereditary subsets. 

Then we have { } ,...,...,,,, fefwuI n
H =  { } ,...,,...,,,,, 1 nn

K efefewvI −=  

{ }...,...,,,,, 2 fefeeffwI n
KH =∩  and { } == ...,...,,,, feeffwII n

HK  

.KHKH III =∩  The above cases illustrate the properties of basic ideals 

constructed by a hereditary subset. 

Proposition 4.5. Given a finite graph E and the hereditary subsets 

., 0
21 EHH ⊆  Then we have the following: 

(1) If ,21 HH ⊆  then .21 HH II ⊆  

(2) .2121 HHHH III ∩=  

Proof. We can prove (1) directly from the definition. Furthermore, take 
any ,21 HH IIx∈  then abx =  such that 

∑ ∑∑ ∑
∈
∈ ∈

∈
∈ ∈

∈+=∈+=

2

2

1

1 ,

Hv
Rd Rl

Hjjjj

Hu
Rc Rk

Hiiii

j
j j

i
i i

IblvdbIakuca  
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with ,\, 0EEba ji
∗∈  and ( ) ,1Har i ∈  ( ) .2Hbr j ∈  Then we have 

.

21

21∑ ∑ ∑
∈

∈ ∈ ∈

∈+=

HHw
Rc Rk Rl

HHjiji
i j

Ibalkcwx

∩

∩  

If ,0≠x  then there exist 21 HHw ∩∈  or 0\, EEba ji
∗∈  with ( ) =iar  

( ) 1Hbs j ∈  such that ,\ 0EEba ji
∗∈  where ( ) ( ) 2Hbrbar jji ∈=  and      

since ( ) 1Hbs j ∈  and 1H  is hereditary, so that ( ) .1Hbar ji ∈  We find 

( ) 21 HHbar ji ∩∈  or .21 HHji Iba ∩∈  Hence, .2121 HHHH III ∩⊆  For the 

converse, take any .21 HHIy ∩∈  Then ∑ ∑
∈ ∈

µ+=
Rk Rc

jjii
i j

cwky  for some 

,121 HHHwi ⊆∈ ∩  0\EEj
∗∈µ  with ( ) ,121 HHHr j ⊆∈µ ∩  so that 

.1HIy ∈  Since 0E  is finite, 21 HH ∩  is also finite. Suppose 

{ } 2211 ...,, HHHww m ⊆= ∩  and ∑
=

=
m

i
iwc

1
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Hence, .21 HH IIy ∈  ~ 

If we reexamine the previous two graphs, KHH ∩,  are the saturated 

hereditary subsets in ,0G  as well as 1H  in .0Q  Based on Lemma 2.6, the 

complements of them are, respectively, ,M  M ′  and 1M ′  which satisfy two 

conditions MT1, MT2. However, only M ′  does not meet MT3, so that both 
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1, MM ′  are maximal tails. According to Proposition 3.4, we can investigate 

that 
1

, HKH II ∩  are not prime basic ideals and the only prime basic ideal     

is .HI  

If H is a saturated hereditary subset of ,0E  then we have a necessary 

condition of primeness of the basic ideal ,HI  i.e., HEM \0=  is a maximal 

tail. The next theorem states the necessary and sufficient conditions of 
primeness of a basic ideal .HI  This theorem is an important result in this 

paper. 

Theorem 4.6. Let E be a finite graph and subset 0EH ⊂  be a saturated 

hereditary. A (graded) basic ideal HI  is prime if and only if HEM \0=  is 

a maximal tail and for every path µ whose a range ( )µr  in M, there is a path 

ν in RE such that ( ) ( )ν=µ sr  and ( ) ( ).ν=µ rs  

Proof. Based on Lemma 2.6, since H is saturated hereditary, 

HEM \0=  meets the conditions MT1, MT2. Suppose M does not meet 

MT3, namely, 

there exist Mwv ∈,  such that yv  or yw  for every .My ∈  (3) 

According to Lemma 2.4, we have ( ) ( )( ),0∪n
i i vTGvT ==  where ( )( ) =vTG0  

( )vT  and ( )( ) { ( ( )) ( )( )} ( )( )vTGvTGxsrExvTG iii 11
10 0: −−
− ⊆≠∈= ∪  for 

every .1≥i  We would show that ( ) ( ) ∅=MwTvT ∩∩  as follows: suppose 

( ) ( ) .∅≠MwTvT ∩∩  Then there is the smallest integer nkk ≤≤0,    

such that ( )( ) ( ) .∅≠MwTvTGk ∩∩  If ,0 nk ≤<  then there exists ∈x  

( )( ) ( ) MwTvTGk ∩∩  and ( )( ) ( ) .1 ∅=− MwTvTGk ∩∩  On the other hand, 

( )wT  is hereditary, then ( ( )) ( )( ) ( ) .1
1 HwTvTGxsr k ⊆⊆≠∅ −
− ∩  Since    

H is hereditary, we find Hx∈  which contradicts to .Mx∈  If 0=k  or 
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( ) ( ) ,∅≠MwTvT ∩∩  then there is the smallest integer nll ≤≤0,       

such that ( ) ( )( ) .∅≠MwTGvT l ∩∩  Since ( )vT  is hereditary, there is 

analogously a contradiction if .0 nl ≤<  If ,0=l  then ( ) ( ) ∩∩ wTvT  

∅≠M  or there exists ( ) ( ) MwTvTy ∩∩∈  such that ,yv ≤  yw ≤  and 

.My ∈  This contradicts to (3). Hence, we have ( ) ( ) ∅=MwTvT ∩∩        

or ( ) ( ) .HwTvT ⊆∩  Then ( ) ( ) ( ) ( ) HwTvTwTvT IIII ⊆⊆ ∩  because of 

Proposition 4.5. Since HI  is a prime basic ideal, it implies ( ) HvT II ⊆       

or ( ) .HwT II ⊆  If ( ) HvT II ⊆  and take any path ( ) HvT IIa ⊆∈  such that 

( ) ,var =  then Hv ∈  which contradicts to .Mv ∈  We have a contradiction 

similarly if ( ) .HwT II ⊆  Thus, HEM \0=  meets (MT3). In other words, M 

is a maximal tail. Furthermore, suppose that there is a path a with ( ) Mar ∈  

such that for every path REb ∈  implies ( ) ( )bsar ≠  or ( ) ( ).bras ≠  Then 

( ) .0 HIaREa ⊂=  Since HI  is a prime basic ideal, based on Proposition 

3.4, .HIa ∈  It means that ( ) Har ∈  which contradicts to ( ) .Mar ∈  Thus, 

for every path µ whose a range ( )µr  in M, there is a path ν in RE such that 

( ) ( )ν=µ sr  and ( ) ( ).ν=µ rs  The contrary proof, suppose that the basic 

ideal HI  is not prime. Then there exist the paths RE∈βα,  such that (α), 

(β) are basic ideals, where HIRE ⊆βα  but ., HI∉βα  If { } βα≠ RE0  

,HI⊆  then there is a path RE∈δ  such that .0 HI∈αδβ≠  It means 

( ) ( ) Hrr ∈β=αδβ  or .HI∈β  Then there is a contradiction. The next, if 

{ },0=βαRE  then for every path ∗∈µ E  such that 0=βαu  with HI∉βα,  

has some possibilities. The first case, HI∉βα,  with 0\, EE∗∈βα  or 

,, 0E∈βα  then ( ) ( ) Mrr ∈βα ,  or ., M∈βα  Since 0=αµ  or ,0=µβ  

we find ( ) ( )µ≠α sr  or ( ) ( )β≠µ sr  which contradicts to the second 

condition of hypothesis. The second case, HI∉βα,  with ,\ 0EE∗∈α  
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,0Eu ∈=β  then ( ),αr  .Mu ∈  If ,0=αµ  then ( ) ( )µ≠α sr  that 

contradicts to the second condition. If 0≠αµ  and ,0=µ=µβ u  then we 

have ( ) ( ) Msr ∈µ=α  and ( ) ,1 ∅=− ur  so that ( ) ∅=− us 1  because of the 

following: suppose ( ) .1 ∅≠− us  Then there is an edge 1Ee ∈  such that 

( ) ( )α== resu  which contradicts to ( ) .1 ∅=− ur  Hence, the vertex Mu ∈  

is isolated, so that M is not a maximal tail. It contradicts to the first condition. 

The last case, HI∉βα,  with ,0Eu ∈=α  .\ 0EE∗∈β  The proof of this 

case is analogous to the second case. ~ 

The trivial subset ∅ is hereditary and { } ,0 ∅= I  then according to 

Theorem 4.6, 0 is a prime basic ideal if and only if 0EM =  is a maximal tail 
and for every path µ, there is a path ν such that ( ) ( )ν=µ sr  and ( ) ( ).ν=µ rs  

Then Theorem 4.6 implies the discovery of the necessary and sufficient 
conditions of basically prime path algebra RE stated in the following 
corollary: 

Corollary 4.7. The path algebra RE on a finite graph E is basically 

prime if and only if for every ,, 0Ewv ∈  there exists 0Ey ∈  such that 

,yv ≤  yw ≤  and for every path µ, there is a path ν such that ( ) ( )ν=µ sr  

and ( ) ( ).ν=µ rs  
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