© 2014 Pushpa Publishing House, Allahabad, India

Published Online: October 2014

 $A vailable\ on line\ at\ http://pphmj.com/journals/jpanta.htm$

Volume 34, Number 2, 2014, Pages 109-119

RELATION BETWEEN SUM OF 2mth POWERS AND POLYNOMIALS OF TRIANGULAR NUMBERS

Mohamat Aidil Mohamat Johari, Kamel Ariffin Mohd Atan and Siti Hasana Sapar

Institute for Mathematical Research Universiti Putra Malaysia 43400, UPM Serdang Selangor, Malaysia

e-mail: mamj@upm.edu.my

Abstract

Let $\Phi_{(m,k)}(n)$ denote the number of representations of an integer n as a sum of k 2mth powers and $\Psi_{(m,k)}(n)$ denote the number of representations of an integer n as a sum of k polynomial $P_m(\gamma)$, where γ is a triangular number. We show that $\Phi_{(2,k)}(8n+k)=2^k\Psi_{(2,k)}(n)$ for $1 \le k \le 7$. A general relation between the number of representations $\sum_{i=1}^k x^{2m}$ and the sum of its associated polynomial of triangular numbers for any degree $m \ge 2$ is given as $\Phi_{(m,k)}(8n+k)=2^k\Psi_{(m,k)}(n)$.

Introduction

Let m be a positive integer, x_i be an integer and γ_i denote the triangular

Received: April 18, 2014; Accepted: July 7, 2014

2010 Mathematics Subject Classification: 11E25, 05A19, 11O85.

Keywords and phrases: polynomial, triangular numbers, number of representations.

numbers $\gamma_i = \frac{(x_i)(x_i+1)}{2}$, where i=1, 2, ..., k. Let $\Phi_{(m,k)}(n)$ and $\Psi_{(m,k)}(n)$ denote the number of representations of a non-negative integer n as a sum of k 2mth powers and as a sum of k associated polynomials of triangular numbers denoted by $P_m(\gamma)$ of degree m, respectively. In [1], Barrucand et al. gave a relation between $\Phi_{(m,k)}(n)$ and $\Psi_{(m,k)}(n)$ when m=1 and $P_1(\gamma)=\gamma$ as

$$\Phi_{(1,k)}(8n+k) = a_k \Psi_{(1,k)}(n)$$
, where $a_k = 2^{k-1} \left\{ 1 + \binom{k}{4} \right\}$

for $1 \le k \le 7$. They proved this result by applying generating functions in [1]. Later, a combinatorial proof was given in [3]. Bateman et al. proved in [2] that this result does not hold for any value $k \ge 8$. Here, we give a relation between $\Phi_{(m,k)}(n)$ and $\Psi_{(m,k)}(n)$ when $m \ge 2$.

A Relation between Sum of k Fourth Powers and its Associated Polynomial of Triangular Numbers of Degree 2

Let $\Phi_{(2,k)}(n)$ and $\Psi_{(2,k)}(n)$ denote the number of representations of an integer n as $\sum_{i=1}^k x_i^4$ and as a sum of k polynomials of the form $8\gamma^2 + 2\gamma$, where γ is a triangular number, respectively. In other words, $\Phi_{(2,k)}(n)$ is the number of solutions in integers of the equation

$$x_1^4 + x_2^4 + \dots + x_k^4 = n$$

and $\Psi_{(2,k)}(n)$ is the number of solutions in non-negative integers of the equation

$$\sum_{i=1}^{k} \left[8 \left(\frac{x_i(x_i+1)}{2} \right)^2 + 2 \left(\frac{x_i(x_i+1)}{2} \right) \right] = n.$$

Theorem 1 gives a relation between $\Phi_{(2,k)}(n)$ and $\Psi_{(2,k)}(n)$ for any

non-negative integer n and $1 \le k \le 7$. The following lemma is needed for the proof of this theorem.

Lemma 1. Let

$$\alpha(q) = 1 + 2\sum_{i=1}^{\infty} q^{i^4}$$

and

$$\beta(q) = \sum_{n=0}^{\infty} q^{8\left(\frac{i(i+1)}{2}\right)^2 + 2\left(\frac{i(i+1)}{2}\right)}.$$

Then, we have

$$\alpha(q) + \alpha(-q) = 2\alpha(q^{16})$$

and

$$\alpha(q) - \alpha(-q) = 4q\beta(q^8).$$

Proof.

$$\alpha(q) + \alpha(-q) = \left(1 + 2\sum_{i=1}^{\infty} q^{i^4}\right) + \left(1 + 2\sum_{i=1}^{\infty} (-q)^{i^4}\right)$$

$$= 2 + 2\sum_{i=1}^{\infty} (q^{i^4} + (-q)^{i^4})$$

$$= 2 + 4\sum_{i=1}^{\infty} q^{(2i)^4}$$

$$= 2 + 4\sum_{i=1}^{\infty} q^{16i^4}$$

$$= 2\left[1 + 2\sum_{i=1}^{\infty} (q^{16})^{i^4}\right]$$

$$= 2\alpha(q^{16}),$$

$$\alpha(q) - \alpha(-q) = \left(1 + 2\sum_{i=1}^{\infty} q^{i^4}\right) - \left(1 + 2 = \sum_{i=1}^{\infty} (-q)^{i^4}\right)$$

$$= 2\sum_{i=1}^{\infty} (q^{i^4} - (-q)^{i^4})$$

$$= 4\sum_{i=1}^{\infty} q^{(2i-1)^4}$$

$$= 4\sum_{i=0}^{\infty} q^{(2i+1)^4}$$

$$= 4\sum_{i=0}^{\infty} q^{16i^4 + 32i^3 + 24i^2 + 8i + 1}$$

$$= 4q\sum_{i=0}^{\infty} q^{16i^4 + 32i^3 + 24i^2 + 8i}$$

$$= 4q\sum_{i=0}^{\infty} q^{64\left(\frac{i(i+1)}{2}\right)^2 + 16\left(\frac{i(i+1)}{2}\right)}$$

$$= 4q\beta(q^8).$$

From Lemma 1, we provide a relation between $\Phi_{(2,k)}(n)$ and $\Psi_{(2,k)}(n)$ in the following theorem.

Theorem 1. For any non-negative integer n,

$$\Phi_{(2,k)}(8n+k) = 2^k \Psi_{(2,k)}(n), \qquad 1 \le k \le 7.$$

Proof. From Lemma 1, we have

$$\alpha(q) + \alpha(-q) = 2\alpha(q^{16}) \tag{0.1}$$

and

$$\alpha(q) - \alpha(-q) = 4q\beta(q^8). \tag{0.2}$$

Using Equation (0.1) and Equation (0.2), we obtain

$$\alpha(q) = 2q\beta(q^8) + \alpha(q^{16}).$$

Then, we have

$$\alpha(q)^{k} = (2q\beta(q^{8}) + \alpha(q^{16}))^{k}$$

$$= \sum_{r=0}^{k} {k \choose r} 2^{k-r} q^{k-r} \beta(q^{8})^{k-r} \alpha(q^{16})^{r}$$

$$= 2^{k} q^{k} \beta(q^{8})^{k} + \sum_{r=1}^{k} {k \choose r} 2^{k-r} q^{k-r} \beta(q^{8})^{k-r} \alpha(q^{16})^{r}.$$

Extracting all terms in which the exponents are congruent to $k \pmod{8}$, we have

$$\sum_{n=0}^{\infty} \Phi_{(2, k)}(8n + k) q^{8n+k} = 2^k q^k \beta(q^8)^k.$$

Followed by dividing by q^k and replacing q^8 by q, we obtain

$$\sum_{n=0}^{\infty} \Phi_{(2, k)}(8n + k) q^n = 2^k \beta(q)^k,$$

$$\Phi_{(2, k)}(8n + k) = 2^k \Psi_{(2, k)}(n).$$

A Relation between $\sum_{i=1}^k x_i^{2m}$ and its Associated Polynomial of Triangular Numbers of Degree $m \ge 2$

In this section, we extend our discussion to cases in which $m \ge 2$ and give a general relation between number of representations of a non-negative

integer n as $\sum_{i=1}^k x_i^{2m}$ and the sum of its associated polynomial of triangular numbers $P_m(\gamma)$ of degree m, where

$$P_m(\gamma) = a_{m,m} \gamma^m + a_{m,m-1} \gamma^{m-1} + \dots + a_{m,1} \gamma$$

with γ is a triangular number and

$$a_{m,\theta} = 2^{3(\theta-1)}(m-\theta+1) + \sum_{i=m-\theta+1}^{m-1} 2^{3(\theta-i-1)} a_{i,i-(m-\theta-1)}$$
 for $m \ge \theta$.

In order to show a relation between $\Phi_{(m,k)}(n)$ and $\Psi_{(m,k)}(n)$, the following lemmas are needed.

Lemma 2. For any positive integer n, we have

$$(2x+1)^{2n} = b_{n,n}\gamma^n + b_{n,n-1}\gamma^{n-1} + \dots + b_{n,1}\gamma + 1,$$

where

$$\gamma = \frac{x(x+1)}{2}$$

and

$$b_{n,\theta} = 2^{3\theta}(n-\theta+1) + \sum_{i=n-\theta+1}^{n-1} 2^{3(\theta-i)} b_{i,i-(n-\theta-1)} \text{ for } 1 \le \theta \le n.$$

Proof. We prove the following identity by induction on n:

$$(2x+1)^{2n} = 2^{3n}\gamma^n + \left(2^{3(n-1)}(2) + \sum_{i=2}^{n-1} 2^{3(n-i-1)}b_{i,i}\right)\gamma^{n-1} + \left(2^{3(n-2)}(3) + \sum_{i=3}^{n-1} 2^{3(n-i-2)}b_{i,i-1}\right)\gamma^{n-2} + \dots + b_{n,1}\gamma + 1,$$

where

$$\gamma = \frac{x(x+1)}{2}.$$

When n = 1

$$(2x+1)^2 = b_{1,1}\gamma + 1$$
$$= 2^3\gamma + 1.$$

Assume that assertion is true for n = k. That is

$$(2x+1)^{2k} = 2^{3k} \gamma^k + \left(2^{3(k-1)}(2) + \sum_{i=2}^{k-1} 2^{3(k-i-1)} b_{i,i}\right) \gamma^{k-1} + \left(2^{3(k-2)}(3) + \sum_{i=3}^{k-1} 2^{3(k-i-2)} b_{i,i-1}\right) \gamma^{k-2} + \dots + b_{k,1} \gamma + 1.$$

When n = k + 1,

$$(2x+1)^{2(k+1)} = (2x+1)^{2k}(2x+1)^{2}$$

$$= \left[2^{3k}\gamma^{k} + \left(2^{3(k-1)}(2) + \sum_{i=2}^{k-1} 2^{3(k-i-1)}b_{i,i}\right)\gamma^{k-1} + \left(2^{3(k-2)}(3) + \sum_{i=3}^{k-1} 2^{3(k-i-2)}b_{i,i-1}\right)\gamma^{k-2} + \dots + b_{k,1}\gamma + 1\right][2^{3}\gamma + 1]$$

$$= 2^{3(k+1)}\gamma^{k+1} + \left(2^{3(k)}(2) + \sum_{i=2}^{k-1} 2^{3(k-i)}b_{i,i} + 2^{3(k)}\right)\gamma^{k}$$

$$+ \left(2^{3(k-1)}(3) + \sum_{i=3}^{k-1} 2^{3(k-i-1)}b_{i,i-1} + 2^{3(k-1)}(2) + \sum_{i=2}^{k-1} 2^{3(k-i-1)}b_{i,i}\right)\gamma^{k-1}$$

$$+ \dots + 2^{3}(k+1)\gamma + 1$$

$$= 2^{3(k+1)}\gamma^{k+1} + \left(2^{3(k)}(2) + \sum_{i=2}^{k-1} 2^{3(k-i)}b_{i,i} + b_{k,k}\right)\gamma^{k}$$

$$+ \left(2^{3(k-1)}(3) + \sum_{i=3}^{k-1} 2^{3(k-i-1)}b_{i,i-1} + b_{k,k-1}\right)\gamma^{k-1}$$

$$+ \dots + 2^{3}(k+1)\gamma + 1$$

$$= 2^{3(k+1)}\gamma^{k+1} + \left(2^{3(k)}(2) + \sum_{i=2}^{k} 2^{3(k-i)}b_{i,i}\right)\gamma^{k}$$

$$+ \left(2^{3(k-1)}(3) + \sum_{i=3}^{k-1} 2^{3(k-i-1)}b_{i,i-1}\right)\gamma^{k-1} + \dots + b_{k+1,1}\gamma + 1.$$

By the above induction, it is clear that the assertion is true for all $n \ge 1$.

Lemma 3. Let $\alpha(q) = 1 + 2\sum_{i=1}^{\infty} q^{i^{2m}}$ and $\beta(q) = \sum_{i=0}^{\infty} q^{P_m(\gamma_i)}$. Then we have

$$\alpha(q) + \alpha(-q) = 2\alpha(q^{2^{2m}})$$

and

$$\alpha(q) - \alpha(-q) = 4q\beta(q^8).$$

Proof.

$$\alpha(q) + \alpha(-q) = \left(1 + 2\sum_{i=1}^{\infty} q^{i^{2m}}\right) + \left(1 + 2\sum_{i=1}^{\infty} (-q)^{i^{2m}}\right).$$

In the summations $\sum_{i=1}^{\infty} q^{i^{2m}}$ and $\sum_{i=1}^{\infty} (-q)^{i^{2m}}$, clearly $q^{i^{2m}} = (-q)^{i^{2m}}$ for even values of i and will cancel out for odd values of i. Hence

$$\alpha(q) + \alpha(-q) = 2 + 2\sum_{i=1}^{\infty} (q^{i^{2m}} + (-q)^{i^{2m}})$$

$$= 2 + 4 \sum_{i=1}^{\infty} q^{(2i)^{2m}}$$

$$= 2 + 4 \sum_{i=1}^{\infty} q^{2^{2m}(i^{2m})}$$

$$= 2 \left[1 + 2 \sum_{i=1}^{\infty} (q^{2^{2m}})^{(i^{2m})} \right]$$

$$= 2\alpha (q^{2^{2m}}),$$

$$\alpha(q) - \alpha(-q) = \left(1 + 2 \sum_{i=1}^{\infty} q^{i^{2m}} \right) - \left(1 + 2 \sum_{i=1}^{\infty} (-q)^{i^{2m}} \right).$$

In the subtraction $\sum_{i=1}^{\infty} q^{i^{2m}}$ and $\sum_{i=1}^{\infty} (-q)^{i^{2m}}$, clearly $q^{i^{2m}} = (-q)^{i^{2m}}$ for even values of i and will cancel out when i is even. Hence

$$\alpha(q) - \alpha(-q) = 2\sum_{i=1}^{\infty} (q^{i^{2m}} - (-q)^{i^{2m}})$$

$$= 4\sum_{i=1}^{\infty} q^{(2i-1)^{2m}}$$

$$= 4\sum_{i=0}^{\infty} q^{(2i+1)^{2m}}.$$

From Lemma 2, we have

$$\alpha(q) - \alpha(-q) = 4 \sum_{i=0}^{\infty} q^{b_{m,m} \gamma_i^m + b_{m,m-1} \gamma_i^{m-1} + \dots + b_{m,1} \gamma_i + 1}$$

$$= 4q \sum_{i=0}^{\infty} q^{b_{m,m} \gamma_i^m + b_{m,m-1} \gamma_i^{m-1} + \dots + b_{m,1} \gamma_i}$$

$$= 4q \sum_{i=0}^{\infty} q^{2^{3}(a_{m,m}\gamma_{i}^{m} + a_{m,m-1}\gamma_{i}^{m-1} + \dots + a_{m,1}\gamma_{i})}$$

$$= 4q\beta(q^{8}).$$

By applying Lemma 3, the relation between $\Phi_{(m,k)}(n)$ and $\Psi_{(m,k)}(n)$ for $m \ge 2$ is obtained as in the following theorem.

Theorem 2. For any non-negative integer n

$$\Phi_{(m,k)}(8n+k) = 2^k \Psi_{(m,k)}(n), \quad 1 \le k \le 7.$$

Proof. From Lemma 3, we have

$$\alpha(q) + \alpha(-q) = 2\alpha(q^{2^{2m}}) \tag{0.3}$$

and

$$\alpha(q) - \alpha(-q) = 4q\beta(q^8). \tag{0.4}$$

By applying Equation (0.3) and Equation (0.4), we obtain

$$\alpha(q) = 2q\beta(q^8) + \alpha(q^{2^{2m}}).$$

It follows that

$$\alpha(q)^{k} = (2q\beta(q^{8}) + \alpha(q^{2^{2m}}))^{k}$$

$$= \sum_{r=0}^{k} {k \choose r} 2^{k-r} q^{k-r} \beta(q^{8})^{k-r} \alpha(q^{2^{2m}})^{r}$$

$$= 2^{k} q^{k} \beta(q^{8})^{k} + \sum_{r=1}^{k} {k \choose r} 2^{k-r} q^{k-r} \beta(q^{8})^{k-r} \alpha(q^{2^{2m}})^{r}.$$

For $m \ge 2$, extracting all terms in which the exponents are congruent to $k \pmod{8}$, we obtain

$$\sum_{n=0}^{\infty} \Phi_{(m,k)}(8n+k)q8n+k=2^k q^k \beta(q^8)^k.$$

Dividing by q^k and replacing q^8 by q, we have

$$\sum_{n=0}^{\infty} \Phi_{(m,k)}(8n+k)q^{n} = 2^{k}\beta(q)^{k},$$

$$\Phi_{(m,k)}(8n+k) = 2^{k}\Psi_{(m,k)}(n).$$

Conclusion

In this paper, a general relation between the number of representations of non-negative integer n as a $\sum_{i=1}^k x_i^{2m}$ and as a sum of its associated polynomial of triangular numbers $P_m(\gamma)$ is given by $\Phi_{(m,k)}(8n+k)=2^k\Psi_{(m,k)}(n)$ when $m\geq 2$ and $1\leq k\leq 7$.

References

- [1] P. Barrucand, S. Cooper and M. D. Hirschhorn, Relation between squares and sums of triangles, Discrete Math. 248 (1-3) (2002), 59-71.
- [2] P. T. Bateman, B. A. Datskovsky and M. I. Knopp, Sums of squares and the preservation of modularity under congruence restrictions, Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics. (Gainesville, FL, 1999), Dev. Math. 4 (2002), 245-247.
- [3] S. Cooper and M. D. Hirschhorn, A combinatorial proof of a result from number theory, Integers 4 (2004), A9, 4 pp. (electronics).