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Abstract

Let @y )(n) denote the number of representations of an integer n as
a sum of k 2mth powers and ‘¥(p k)(n) denote the number of
representations of an integer n as a sum of k polynomial Py, (y), where
y is a triangular number. We show that @, )(8n +k) =
2k‘}f(2'k)(n) for 1 < k < 7. A general relation between the number of

m

representations Z:(Zl x2™ and the sum of its associated polynomial of

triangular numbers for any degree m > 2 is given as Q(m,k)(Sn +k)

= 2k‘P(m'k)(n).
Introduction

Let m be a positive integer, x; be an integer and y; denote the triangular

Received: April 18, 2014; Accepted: July 7, 2014
2010 Mathematics Subject Classification: 11E25, 05A19, 11085.
Keywords and phrases: polynomial, triangular numbers, number of representations.



110 Mohamat Aidil Mohamat Johari et al.

numbers  y; =L)2('+1) where i=1 2,.. k. Let cD(m‘k)(n) and
F(m, k)(n) denote the number of representations of a non-negative integer n

as a sum of k 2mth powers and as a sum of k associated polynomials of
triangular numbers denoted by Py, (y) of degree m, respectively. In [1],

Barrucand et al. gave a relation between @y )(n) and ¥(m )(n) when

m=1and R(y) =7y as

D1, k)(8n + k) = & ¥(g,k)(n), where a = 2k‘1{1+ (Zj}

for 1<k < 7. They proved this result by applying generating functions in
[1]. Later, a combinatorial proof was given in [3]. Bateman et al. proved in
[2] that this result does not hold for any value k > 8. Here, we give a
relation between @y, i)(n) and ¥ )(n) when m > 2.

A Relation between Sum of k Fourth Powers and its Associated
Polynomial of Triangular Numbers of Degree 2

Let @5 )(n) and ¥, k)(n) denote the number of representations of an

integer n as Z:(:1Xi4 and as a sum of k polynomials of the form 8y2 + 2y,
where v is a triangular number, respectively. In other words, cD(zyk)(n) is the
number of solutions in integers of the equation

R

and W2 k)(n) is the number of solutions in non-negative integers of the

equation
iZ:{S(xi(xi;r 1))2 N 2( xi(xi2+ 1))} n

Theorem 1 gives a relation between @, )(n) and ¥ k)(n) for any
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non-negative integer n and 1< k < 7. The following lemma is needed for
the proof of this theorem.

Lemma 1. Let

o ;4
a(q) =1+ ZZizlq'

and

B@) =" q8C(i_2+l))2ﬂ(i(i2ﬂ)j_

n=0
Then, we have
a(@) + a(-q) = 2a(q"®)
and
a(q) - a(-q) = 4qp(a®).

Proof.
o(q) + a(-q) = (1+ 2y q‘4] + [1+ 2y (—q)i“J
i=1 i=1
—2+23 (@ +(-a))
i=1

=2+4y q@*
i=1
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a(q) - a(-q) = {1 + 22 inJ _ [1 - Z(_q)i“j
i=1 i=1
= ZZ @ - (a)
= 4§: q(2i_1)4
i=1

_ 42 q(2i+1)4
i=0

8

4 003 0pi2 o
_ 42 q16| +321° +24i“ +8i+1

0]
4 003 5pi2 o
1617 +32i° +24i“ +8i
=49) q

i=0
. S )
i=0

= 4ap(c®). O
From Lemma 1, we provide a relation between @, y(n) and ‘¥(5, \)(n)

in the following theorem.

Theorem 1. For any non-negative integer n,
d)(zlk)(Bn +k)= 2k\I’(2,k)(n), 1<k<7.
Proof. From Lemma 1, we have

a(q) + o(-q) = 2a(q'®) (0.1)
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and
a(q) - a(-q) = 49B(q®). (0.2)

Using Equation (0.1) and Equation (0.2), we obtain

a(q) = 29B(a®) + o(a™).

Then, we have

(@) = (29B(q®) + a(q™®))*

Kk
_ Z( jzk—qu—rﬁ(qS)k—ra(qIG)r
r=0 r

K|k
_ qukB(qB)k " ;(rj2k—qu—rB(q8)k—ra(q16)l’.

Extracting all terms in which the exponents are congruent to k(mod8), we
have

D D, 1B + k)P = 24K p(a®) .
n=0
Followed by dividing by qk and replacing q8 by g, we obtain
- n _ ~k k
Z‘D(z, K@n+k)g" =2"B(q)",
n=0

k
(D(Z, k)(8n +k)=2 lP(Z. k)(n). Ul
A Relation between Z:‘zl xizm and its Associated Polynomial of
Triangular Numbers of Degree m > 2

In this section, we extend our discussion to cases in which m > 2 and
give a general relation between number of representations of a non-negative
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integer n as Z:‘Zl xizm and the sum of its associated polynomial of triangular

numbers P, (y) of degree m, where
Pn(y) = am, mym + ap, m—ﬂ’m_1 + o4+ ap 1Y
with y is a triangular number and
m-1 _
am o = 23(9‘1)(m -0+1)+ Z 23(9"‘1)ai1i_(m_9_1) for m > 6.
i=m-6+1
In order to show a relation between @y )(n) and ¥y k)(n), the

following lemmas are needed.

Lemma 2. For any positive integer n, we have

(2x + 1)2n = by, ny" + by, n_ly”_l +eo by gy +1,

where
_ X(x+1)
TET3
and
n-1 ]
bno=2*(n-0+1)+ Z 23(9_')bi,i_(n_9_1) forl1<@<n.
i=n-0+1

Proof. We prove the following identity by induction on n:

n-1 .
(2X +1)2n — 23nyn + {23(“-1)(2)4_ 223(n—|—1)bi’inn—l
i=2

-1
+ [23(”—2)(3) + nz: 23(n—|—2)b|’ i_lJyn_z

i=3

+o by gy +1
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_X(x+1)
5
When n =1

(2x +1)2 =b 1y +1
= 23y+1.

Assume that assertion is true for n = k. That is

k-1 _
i=2

115

k-1
+ (23“(_2)(3) + Z 23(k_|_2)bi,i—1JYk_2 +oe by gy + 1

i=3

When n =k +1,

(2x + 1)2K+D = (2x + 12K (2x + 1)

k-1
i=2

k-1 _
+ (23("_2)(3) + Z 23(k_'_2)bi’ i_lJyk_z + by 1y + 1] 2%y +1]
i=3

k-1
i=2

k-1 k-1

i=3 i=2

+---+23(k +1)y+1

-1
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k-1
_ 23(k+1), kel (23(")(2) + 22 2%y 4y k}/k
i—2

k-1 .
+ (23(k—1)(3) + z 23(k_'_1)bi,i—1 + by, k—1}/k_1
i=3

+~~+23(k +1)y+1

k
_ p3(HD) kL, {23(k)(2)+ 3 23k, i},k
i=2

k-1
+ (23("_1)(3) + Z 23(k=i-Dp, i_lJyk_l +oo by gy + 1
i=3
By the above induction, it is clear that the assertion is true forall n >1. [
0 i2 0 f
Lemma 3. Let a(q) =1+2)." ¢ " and B(q) = Zizoqpm(y'). Then
we have
22m

a(q) + o(=a) = 20(q” )
and

a(q) - a(-q) = 48(a®).

Proof.
a(q)+a(-q) = [1 + ZZ qisz + {1+ 22 (—q)izmj.
i=1 i=1

. o i2m 0 :2m 2m i2m
In the summations »." ' and > (-q)' , clearly ' =(-q)

for even values of i and will cancel out for odd values of i. Hence

a(@)+ a(-a)=2+2 (@ +(0' )
i=1
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= \2m
=2+4y @
i=1

L omy2
:2+4Zq2 m(' m)
i=1

- 2{1 n 2i @ )(izm)]

i=1

2
= 2a(q>"

a(q) - a(- ) = [1+ 2" qizmj - {1+ 2y (—q)izm}
i=1 i=1

),

. o _j2m o0 j2m i2m jem
In the subtraction >*." . q' ~ and " (-q)" , clearly ' = (-q)

for even values of i and will cancel out when i is even. Hence

(@) - a(-q) =25 (@ - ()"
i=1

=4 @y
i=1

_ 42 q(2i+1)2m_
i=0

From Lemma 2, we have
b M ob oy b gy 41
a(q) _ a(—q) _ 4Zq m, mY1 +Bm, m-1Yi m, 1Yi

i=0

. b, m“/{n +bm, mleim_l*""*‘bm,lYi
=492

i=0
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X 3 m m-1
2 a i +a _1Yi +---4a, .
_ 4qzq (@am,m7i" +am m-1vi m,1Yi)
i=0
= 4qB(q®). O

By applying Lemma 3, the relation between @y, )(n) and ¥(p )(n)

for m > 2 is obtained as in the following theorem.

Theorem 2. For any non-negative integer n
®(m k)BN +K) = 2¥( (n), 1<k < 7.

Proof. From Lemma 3, we have

o(q) + (=) = 2002 ) 03)
and

a(q) - a(-q) = 44B(a®). (0.4)
By applying Equation (0.3) and Equation (0.4), we obtain

o(q) = 20B(q®) + a(q® ).

It follows that

(@) = (20B(q®) + a@® )

(K K—r k—rg 8\k—r  22M\r
= Z[JZ a“7B(0°) "a(a® )
r=0

k k m
_ 2k gp(e) +Z(rjzk—rqk—rB(qS)k—ra(qzz Y
r=1

For m > 2, extracting all terms in which the exponents are congruent to
k(mod 8), we obtain

ZCD(m,k)(Sn +k)g8n +k = 2qu[3(q8)k.
n=0
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Dividing by qk and replacing q8 by g, we have

D O, )80 +k)g" = 24B(g)",
n=0

(D(m]k)(Sn +k) = Zk‘P(m,k)(n). ]

Conclusion

In this paper, a general relation between the number of representations

m

o k . .
of non-negative integer n as a Zizl xi2 and as a sum of its associated

polynomial of triangular numbers Py (y) is given by @y \)(8n +k) =

2k‘P(m,k)(n) when m>2and1<k <7.
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