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Abstract 

Let ( )( )nkm,Φ  denote the number of representations of an integer n as 

a sum of k 2mth powers and ( )( )nkm,Ψ  denote the number of 

representations of an integer n as a sum of k polynomial ( ),γmP  where 

γ  is a triangular number. We show that ( )( ) =+Φ knk 8,2  

( )( )nk
k

,22 Ψ  for .71 ≤≤ k  A general relation between the number of 

representations ∑ =
k
i

mx1
2  and the sum of its associated polynomial of 

triangular numbers for any degree 2≥m  is given as ( )( )knkm +Φ 8,  

( )( ).2 , nkm
kΨ=   

Introduction 

Let m be a positive integer, ix  be an integer and iγ  denote the triangular 
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numbers ( )( ) ,2
1+

=γ ii
i

xx
 where ....,,2,1 ki =  Let ( )( )nkm,Φ  and 

( )( )nkm,Ψ  denote the number of representations of a non-negative integer n 

as a sum of k 2mth powers and as a sum of k associated polynomials of 
triangular numbers denoted by ( )γmP  of degree m, respectively. In [1], 

Barrucand et al. gave a relation between ( )( )nkm,Φ  and ( )( )nkm,Ψ  when 

1=m  and ( ) γ=γ1P  as 

( )( ) ( )( ),8 ,1,1 nakn kkk Ψ=+Φ  where 
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛+= −

4
12 1 k

a k
k  

for .71 ≤≤ k  They proved this result by applying generating functions in 
[1]. Later, a combinatorial proof was given in [3]. Bateman et al. proved in 
[2] that this result does not hold for any value .8≥k  Here, we give a 
relation between ( )( )nkm,Φ  and ( )( )nkm,Ψ  when .2≥m  

A Relation between Sum of k Fourth Powers and its Associated 
Polynomial of Triangular Numbers of Degree 2 

Let ( )( )nk,2Φ  and ( )( )nk,2Ψ  denote the number of representations of an 

integer n as ∑ =
k
i ix1

4  and as a sum of k polynomials of the form ,28 2 γ+γ  

where γ  is a triangular number, respectively. In other words, ( )( )nk,2Φ  is the 

number of solutions in integers of the equation 

nxxx k =+++ 44
2

4
1  

and ( )( )nk,2Ψ  is the number of solutions in non-negative integers of the 

equation 

( ) ( )∑
=

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +

+⎟
⎠
⎞

⎜
⎝
⎛ +k

i

iiii nxxxx

1

2
.2

122
18  

Theorem 1 gives a relation between ( )( )nk,2Φ  and ( )( )nk,2Ψ  for any 
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non-negative integer n and .71 ≤≤ k  The following lemma is needed for 
the proof of this theorem. 

Lemma 1. Let 

( ) ∑∞

=
+=α

1

4
21

i
iqq  

and  

( )
( ) ( )

∑∞

=

⎟
⎠
⎞⎜

⎝
⎛ ++⎟

⎠
⎞⎜

⎝
⎛ +

=β
0

2
122

18
.

2

n

iiii

qq  

Then, we have 

( ) ( ) ( )162 qqq α=−α+α  

and 

( ) ( ) ( ).4 8qqqq β=−α−α  

Proof. 

( ) ( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−++

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=−α+α ∑∑

∞

=

∞

= 11

44
2121

i

i

i

i qqqq  

( ( ) )∑
∞

=

−++=
1

44
22

i

ii qq  

( )∑
∞

=

+=
1

2 4
42

i

iq  

∑
∞

=

+=
1

16 4
42

i

iq  

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+= ∑

∞

=1

16 4
212

i

iq  

( ),2 16qα=  
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( ) ( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=+−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=−α−α ∑∑

∞

=

∞

= 11

44
2121

i

i

i

i qqqq  

( ( ) )∑
∞

=

−−=
1

44
2

i

ii qq  

( )∑
∞

=

−=
1

12 4
4

i

iq  

( )∑
∞

=

+=
0

12 4
4

i

iq  

∑
∞

=

++++=
0

18243216 234
4

i

iiiiq  

∑
∞

=

+++=
0

8243216 234
4

i

iiiiqq  

( ) ( )

∑
∞

=

⎟
⎠
⎞⎜

⎝
⎛ ++⎟

⎠
⎞⎜

⎝
⎛ +

=
0

2
1162

164
2

4
i

iiii

qq  

( ).4 8qqβ=  � 

From Lemma 1, we provide a relation between ( )( )nk,2Φ  and ( )( )nk,2Ψ  

in the following theorem. 

Theorem 1. For any non-negative integer n, 

( )( ) ( )( ) .71,28 ,2,2 ≤≤Ψ=+Φ knkn k
k

k  

Proof. From Lemma 1, we have 

( ) ( ) ( )162 qqq α=−α+α  (0.1) 
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and 

( ) ( ) ( ).4 8qqqq β=−α−α  (0.2) 

Using Equation (0.1) and Equation (0.2), we obtain 

( ) ( ) ( ).2 168 qqqq α+β=α  

Then, we have 

( ) ( ( ) ( ))kk qqqq 1682 α+β=α  

( ) ( )∑
=

−−− αβ⎟
⎠
⎞

⎜
⎝
⎛=

k

r

rrkrkrk qqq
r
k

0

1682  

( ) ( ) ( )∑
=

−−− αβ⎟
⎠
⎞

⎜
⎝
⎛+β=

k

r

rrkrkrkkkk qqq
r
k

qq
1

1688 .22  

Extracting all terms in which the exponents are congruent to ( ),8modk  we 

have 

( )( ) ( )∑
∞

=

+ β=+Φ
0

88
,2 .28

n

kkkkn
k qqqkn  

Followed by dividing by kq  and replacing 8q  by q, we obtain 

( )( ) ( )∑
∞

=

β=+Φ
0

,2 ,28
n

kkn
k qqkn  

( )( ) ( )( ).28 ,2,2 nkn k
k

k Ψ=+Φ  � 

A Relation between ∑ =
k
i

m
ix1
2  and its Associated Polynomial of 

Triangular Numbers of Degree 2≥m  

In this section, we extend our discussion to cases in which 2≥m  and 
give a general relation between number of representations of a non-negative 
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integer n as ∑ =
k
i

m
ix1
2  and the sum of its associated polynomial of triangular 

numbers ( )γmP  of degree m, where 

( ) γ++γ+γ=γ −
− 1,

1
1,, m

m
mm

m
mmm aaaP  

with γ  is a triangular number and 

( )( ) ( )
( )∑

−

+θ−=
−θ−−

−−θ−θ
θ ++θ−=

1

1
1,

1313
, 212

m

mi
mii

i
m ama  for .θ≥m  

In order to show a relation between ( )( )nkm,Φ  and ( )( ),, nkmΨ  the 

following lemmas are needed. 

Lemma 2. For any positive integer n, we have 

( ) ,112 1,
1

1,,
2 +γ++γ+γ=+ −

− n
n

nn
n

nn
n bbbx  

where 

( )
2

1+=γ xx  

and 

( ) ( )
( )∑

−

+θ−=
−θ−−

−θθ
θ ++θ−=

1

1
1,

33
, 212

n

ni
nii

i
n bnb  for .1 n≤θ≤  

Proof. We prove the following identity by induction on n: 

( ) ( )( ) ( ) 1
1

2
,

131332 222212 −
−

=

−−− γ
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++γ=+ ∑ n

n

i
ii

innnnn bx  

( )( ) ( ) 2
1

3
1,

2323 232 −
−

=
−

−−− γ
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++ ∑ n

n

i
ii

inn b  

,11, +γ++ nb  
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where 

( ) .2
1+=γ xx  

When 1=n  

( ) 112 1,1
2 +γ=+ bx  

.123 +γ=  

Assume that assertion is true for .kn =  That is 

( ) ( )( ) ( ) 1
1

2
,

131332 222212 −
−

=

−−− γ
⎟
⎟
⎠

⎞

⎜
⎜
⎝

⎛
++γ=+ ∑ k

k

i
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ikkkkk bx  

 ( )( ) ( ) .1232 1,
2

1

3
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⎛
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−
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ikk bb  

When ,1+= kn  

( ) ( ) ( ) ( )2212 121212 ++=+ + xxx kk  
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2
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13133 2222 k
k
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2
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( ) ( )( ) ( ) ( ) k
k

i

k
ii

ikkkk b γ
⎟
⎟
⎠

⎞

⎜
⎜
⎝

⎛
+++γ= ∑

−

=

−++
1

2

3
,

33113 22222  
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1,

1313 222232 −
−

=

−

=

−−−
−

−−− γ
⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛
++++ ∑ ∑ k

k

i

k

i
ii

ikk
ii

ikk bb  

( ) 1123 +γ+++ k  
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( ) ( )( ) ( ) k
k

i
kkii

ikkkk bb γ
⎟
⎟
⎠

⎞

⎜
⎜
⎝

⎛
+++γ= ∑

−

=

−++
1

2
,,

33113 2222  

( )( ) ( ) 1
1

3
1,1,

1313 232 −
−

=
−−

−−− γ
⎟
⎟
⎠

⎞

⎜
⎜
⎝

⎛
+++ ∑ k

k

i
kkii

ikk bb  

( ) 1123 +γ+++ k  
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ikk bb  

By the above induction, it is clear that the assertion is true for all .1≥n  � 

Lemma 3. Let ( ) ∑∞
=+=α 1

2
21 i

i m
qq  and ( ) ( )∑∞

=
γ=β 0 .i

P imqq  Then 

we have 

( ) ( ) ( )
m

qqq
222α=−α+α  

and 

( ) ( ) ( ).4 8qqqq β=−α−α  

Proof. 

( ) ( ) ( ) .2121
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∞

=

∞
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i

i
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In the summations ∑∞
=1

2

i
i m

q  and ( )∑∞
= −1 ,

2

i
i m

q  clearly ( )
mm ii qq

22
−=  

for even values of i and will cancel out for odd values of i. Hence 

( ) ( ) ( ( ) )∑
∞

=

−++=−α+α
1

22
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i

ii mm
qqqq  
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In the subtraction ∑∞
=1

2

i
i m

q  and ( )∑∞
= −1 ,

2

i
i m

q  clearly ( )
mm ii qq

22
−=  

for even values of i and will cancel out when i is even. Hence 
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From Lemma 2, we have 
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( )∑
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m
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( ).4 8qqβ=  � 

By applying Lemma 3, the relation between ( )( )nkm,Φ  and ( )( )nkm,Ψ  

for 2≥m  is obtained as in the following theorem. 

Theorem 2. For any non-negative integer n 

( )( ) ( )( ) .71,28 ,, ≤≤Ψ=+Φ knkn km
k

km  

Proof. From Lemma 3, we have 

( ) ( ) ( )
m

qqq
222α=−α+α  (0.3) 

and 

( ) ( ) ( ).4 8qqqq β=−α−α  (0.4) 

By applying Equation (0.3) and Equation (0.4), we obtain 

( ) ( ) ( ).2
228 m

qqqq α+β=α  

It follows that 

( ) ( ( ) ( ))kk m
qqqq

2282 α+β=α  

( ) ( )∑
=

−−− αβ⎟
⎠
⎞

⎜
⎝
⎛=

k

r

rrkrkrk m
qqq
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0

28 2
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⎠
⎞

⎜
⎝
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k

r
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qqq

r
k
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1

288 .22
2

 

For ,2≥m  extracting all terms in which the exponents are congruent to 
( ),8modk  we obtain 

( )( ) ( )∑
∞

=

β=++Φ
0

8
, .288

n

kkk
km qqknqkn  
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Dividing by kq  and replacing 8q  by q, we have 

( )( ) ( )∑
∞

=

β=+Φ
0

, ,28
n

kkn
km qqkn  

( )( ) ( )( ).28 ,, nkn km
k

km Ψ=+Φ  � 

Conclusion 

In this paper, a general relation between the number of representations           

of non-negative integer n as a ∑ =
k
i

m
ix1
2  and as a sum of its associated 

polynomial of triangular numbers ( )γmP  is given by ( )( ) =+Φ knkm 8,  

( )( )nkm
k

,2 Ψ  when 2≥m  and .71 ≤≤ k  
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