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Abstract 

The evaluation of hydrodynamic coefficients and loads on submerged 
bodies has a lot of significance in designing these structures. Analytical 
expressions for the exciting forces, added-mass and damping coefficients 
due to the effects of diffraction and radiation arising out of interaction of 
water waves with a submerged sphere are derived. Theory of multi-pole 
expansions is used in obtaining the velocity potential in terms of an 
infinite series of associated Legendre functions with unknown 
coefficients. Two motions, namely surge and heave motions, are 
considered. Numerical results for the various expressions are presented 
for various depth to radius ratios. 

1. Introduction 

The forces exerted by the surface waves on a structure in water are 
very important for designing these structures. Accurate prediction of 
wave loads becomes indispensable in order to design safe structures. The 
researchers have been trying to evaluate the various loads and 
coefficients associated with the interaction of water waves with a 
submerged sphere. The motions of a floating or submerged body are 
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influenced by the added-mass effect in the water and the damping 
introduced by the motion of the structure. 

A number of notable works have been done over the last few decades 
on analytical solutions for the linear or first order forces acting on a 
floating or submerged body of spherical, hemispherical or spheroidal 
shape in water. Havelock [3] can be considered the pioneer in the area of 
hydrodynamic loading on spherical structures. He started with 
calculating the wave resistance of a submerged spheroid by replacing it 
with a distribution of sources and sinks, or of doublets. Gray [2] 
considered a fully submerged, rigid, stationary sphere reducing the 
problem to the solution of an infinite set of linear algebraic equations for 
the expansion coefficients in spherical harmonics of the velocity potential. 

Hulme [4] considered the heave and surge motions of a floating 
hemisphere to derive added-mass and damping coefficients associated 
with the periodic motions. Wang [9] discussed the free motions of 
submerged vehicle with spherical hull form but with different 
metacentric heights. The works of Hulme and Wang were based on the 
multi-pole expansions of Thorne [8] which proves to be very successful for 
periodic motions without forward speed but this method did not seem to 
be applicable to the problem of a body with forward speed. As forward 
speed significantly affects the body-surface, free-surface and radiation 
boundary conditions imposed on the velocity potential corresponding to 
the oscillations of the body, Wu and Eatock Taylor [10] have discussed 
the hydrodynamic problems of a submerged spheroid in waves based on 
linearized potential theory and in spheroidal coordinates. But these 
solutions could not be extended for the cases with forward speed. 

Recent mathematical developments in potential theories applied to 
diffraction and radiation of water waves by the floating or submerged 
spherical bodies can be found in the work of Bora et al. [1]. Based on the 
linear diffraction theory, Rahman [6] has presented a simulation of 
diffraction of ocean waves by a submerged sphere in finite depth. The 
method of multi-pole expansions is used to obtain the fluid velocity 
potential in the form of double series of the associated Legendre functions 
with the unknown coefficients of the infinite set of infinite matrix 
equations. 
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In this paper we have presented an analytical procedure for the 
boundary value problem to evaluate the hydrodynamic coefficients and 
motions for a submerged sphere in finite depth due to surge and heave 
motions. We have considered the boundary value problem to consist of 
two distinct problems: the diffraction problem and the radiation problem. 
The diffraction velocity potential is expressed in terms of an infinite 
series of associated Legendre functions with unknown coefficients. Using 
the body boundary condition, we set up a linear system of equations. By 
solving the linear system, we find the velocity potential and hence the 
exciting forces along horizontal and vertical directions are evaluated. 
Similarly the radiation potentials due to the surge and heave motions are 
found using the same technique and that helps us to evaluate the 
coefficients related with the radiation problem. The analytical 
expressions for the added-mass and damping coefficients due to surge and 
heave motions are computed for different depth to radius ratios. These 
results are displayed in tabular and graphical forms. 

2. Mathematical Formulation 

We assume that the fluid is homogeneous, inviscid and 
incompressible and the fluid motion is irrotational. The waves are also 
assumed to be of small amplitude. Here we consider the coefficients 
related to the motion with two degrees of freedom, namely, the two 
translational motions in the x and z directions, i.e., surge and heave 

motions, respectively. We consider a surface wave of amplitude A incident 

on a sphere of radius a submerged in water of finite depth d. The body is 
assumed to have motions with three degrees of freedom in the presence of 

incident wave with angular frequency σ. The wave is parallel to x-axis at 
the time of incidence on the sphere and is propagating along the positive 
direction. 

We consider two sets of coordinate systems. One is a right-handed 

Cartesian coordinate system ( ),,, zyx  in which the x-y plane coincides 

with the undisturbed free surface and the z-axis is taken vertically 
downwards from the Still Water Level (SWL). The other coordinate 

system is the spherical coordinate system ( )ψθ,,r  with the origin at the 

geometric centre of the sphere. The depiction in Figure 1 shows the axes 
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systems along a sphere of radius a in water of depth d with its geometric 

centre located at ( )h,0,0  with respect to the Cartesian coordinate 

system, and hdH −=  is the depth below the centreline of the sphere. 

The relationship between the coordinate systems is 

22 yxR +=  

( )22 hzRr −+=  

hz
R
−

=θtan  for π≤θ≤0  

x
y=ψtan  for .π≤ψ≤π−  

For an incompressible and inviscid fluid, and for small amplitude wave 
theory with irrotational motion, we can express the fluid motion by 

introducing a velocity potential ( ).,,, tr ψθΦ  This Φ can be written as 

( ) [ ( ) ],,,Re,,, tiertr σ−ψθφ=ψθΦ  (1) 

where Re stands for the real part. 

The motion is assumed harmonic. Also, from Bernoulli’s equation, we 

get pressure, ( )trP ,,, ψθ  as 

.
t

P
∂
Φ∂ρ−=  (2) 

Now, the problem can be considered as a combination of two 
fundamental problems: the diffraction problem of an incident wave 
interacting with a fixed body; and the radiation problem of a body forced 
to oscillate in otherwise still water. Because of the linearity of the 

situation, the time-independent velocity potential ( )ψθφ ,,r  can be 

decomposed into four velocity potentials 1,, φφφ DI  and 3φ , where Iφ  is 

the incident potential, Dφ  is the velocity potential due to the diffraction 

of an incident wave acting on the sphere; and 1φ  and 3φ  are the velocity 

potentials due to the radiation of surge and heave, respectively. 

Thus φ can be written as ,3311 φ+φ+φ+φ=φ XXDI  where 1X  and 

2X  are the displacements for surge and heave motions, respectively. Here 



w
w

w
.p

ph
m

j.c
om

EXCITING FORCES AND HYDRODYNAMIC COEFFICIENTS … 57

3,1,,, =φφφ jjDI  are all functions of θ,r  and ψ and 3,1, =jX j  is 

the independent parameter. 

To obtain the velocity potential φ, the following boundary problem is 
to be solved: 

   (I) Laplace’s equation in spherical coordinates: 

.02 =φ∇  (3) 

 (II) Free surface condition: 

0=φ+
∂
φ∂

K
z

 on .0=z  (4) 

(III) Bottom boundary condition: 

.,0 dz
z

==
∂
φ∂  (5) 

 (IV) Radiation condition: 

,0lim 0 =φ




 −
∂
∂

∞→
ik

R
R

R
 (6) 

where 
g

K
2σ=  and 0k  is the finite depth wave number defined by 

0coshsinh 000 =− dkKdkk  (7) 

and the incident and diffraction potentials satisfy the body surface 
condition 

nn ∂
φ∂

−=
∂
φ∂ DI  on ar = , (8) 

where n denotes the normal vector from body surface to fluid. 

The radiation potentials satisfy the body surface condition 

(a) for surge motion: 

ψθσ=
∂
φ∂ cossini
r

 on ar =  (9) 

(b) for heave motion: 

θσ=
∂
φ∂

cosi
r

 on .ar =  (10) 
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The boundary conditions (9) and (10) have arisen from the equation 

( ) .3,1, =σ−=
∂
φ∂

jni j
j

n
 (11) 

2.1. Incident potential 

The incoming waves of amplitude A and frequency σ propagating in 

the positive x-direction can be described by the following incident velocity 
potential: 

( )
.

cosh
cosh cos

0

0 0 ψ−
σ

=φ Rik
I e

dk
dzkAg  (12) 

Using McLachlan [5] and Thorne [8], the incident potential can be 
expressed in terms of associated Legendre function as 

∑
∞

=

ψε
σ

=φ
00

cos
cosh2

m

m
mI mi

dk
Ag  

{( ) ( ) ( )} ( )
( ) ( ),cos

!
1 000∑

∞

=

−−+ θ
+

+−×
ms

m
s

s
dhkhdkms P

ms
rk

ee  (13) 

where 10 =ε  and 2=εm  for 1≥m  or we can write for our convenience, 

( ) ( ) ,cos,ˆ,,
0

∑
∞

=

ψθφ=ψθφ
m

II mrr  (14) 

where 

( ) ( )
( ) ( )∑

∞

=
+

+
θ

+
χε

σ
=θφ

0

0 cos
!2

,ˆ

s

m
ms

ms

s
m

mI P
ms

rk
iAgr  (15) 

with 

( ) ( ) ( )

dk
ee hdkhdks

s
0cosh2

1 00 −−− +−=χ  

( )

( )









=
−

−

=
−

=
....,5,3,1,

cosh
sinh

...,,6,4,2,0,
cosh

cosh

0

0

0

0

s
dk

hdk

s
dk

hdk

 (16) 
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2.2. Diffraction potential 

The diffraction velocity potential Dφ  satisfies equations (3)-(6) and 

(8). We can express this potential by making it ψ-independent as 

( ) ( ) ,cos,ˆ,,
0

∑
∞

=

ψθφ=ψθφ
m

DD mrr  (17) 

where the ψ-independent potential is 

( ) ∑
∞

=

+=θφ
mn

m
nmn

n
D GAar .,ˆ 2  (18) 

Here mnA  are the unknown complex coefficients and m
nG  are the multi-

pole potentials. Multi-pole potentials are solutions of Laplace’s equation 
which satisfy the free surface and bottom boundary conditions and 
behave like outgoing waves from the singular point which in this case is 
the centre of the sphere. 

m
nG  can be expressed as 

( ) ( )
( )!

1coscos
1

1
1 mnr

P

r

P
G

n

m
n

n

m
nm

n −
+

α
+

θ
=

++
 

( ) [ ( ) ( ) ] ( ) ( )∫
∞ −++−

−
−

−++
×

0
.cosh

coshsinh
1

dkkRJdzkk
kdKkdk

eekK
m

n
khmnHdk

 

 (19) 

The quantities α and 1r  are defined as 

( )22
1 zHdRr −++=  

,tan
zHd

R
−+

=α  

where R, d and H have already been defined. 

The line integration in the expression for m
nG  passes under the 

singular point of the integrand at .0kk =  The potentials m
nG  and Dφ  
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satisfy Laplace’s equation, free surface condition, bottom surface 
condition and the radiation condition. 

The second and third terms in equation (19) can be expanded in the 

region near the body surface into a series of associated Legendre 

functions by 

( ) ( )∑
∞

=
+

+

+
θ





=

α

0
1

1

cos
2

cos

s

m
ms

ms
m
nsn

m
n P

H
rB

r

P
 (20) 

and 

( )
( ) [ ( ) ( ) ] ( ) ( )∫

∞ −++−
−

−
−++

− 0
cosh

coshsinh
1

!
1 dkkRJdzkk

kdKkdk
eekK

mn m
n

khmnHdk
 

( ) ( ),cos
2

,
0
∑
∞

=
+

+
θ





=

s

m
ms

ms

s P
H
rmnC  (21) 

where m
nsB  and ( )mnCs ,  are given by 

( )
( )

( ) ( )!!2
!

2

1
1 mnms

mns

H
B

n
m
ns −+

++
=

+
 (22) 

( )mnCs ,  

 
( )

( ) ( )
( ) [ ( ) ( ) ] ( )∫

∞ −++−+

−
−++

+−
=

0 coshsinh
1

!2!
2

dkkHu
kdKkdk

eekK
msmn

H
s

khmnHdkms
 

 (23) 

with ( )kHus  as 

( )




=−
=

=
....,5,3,1,sinh

...,,4,2,0,cosh
skH

skH
kHus  (24) 

Hence the multi-pole potentials m
nG  can finally be written as 

( ) [ ( )] ( )∑
∞

=
+

+

+
θ





++

θ
=

0
1

.cos
2

,
cos

s

m
ms

ms

s
m
nsn

m
nm

n P
H
rmnCB

r

P
G  (25) 
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Now the body boundary condition (8) becomes equivalent to 

∑
∞

= ==

+
∂
φ∂

−=
∂

∂

mn ar

I

ar

m
n

mn
n

rr
G

Aa .
ˆ

2  (26) 

From the expressions for m
nG  and Iφ̂  from equations (25) and (15) 

respectively and using the orthogonality property of associated Legendre 

functions, we arrive at 

∑
∞

=

=
mn

m
s

m
nsmn TEA  for ...,,2,1, ++= mmms  (27) 

where 

( ) ( ) ms
sm

m
m
s ms

saki
Agk

T −
− χ

+
ε

σ
−=

!
1

0
0  (28) 

( ) ( )msDnE m
nns

m
ns −+δ+−= 1  (29) 

( ) ( ) [ ( ) ].,
2

1 m
nss

ms
nm

n BmnC
H
amsasD +





+=

+
+  (30) 

Equation (27) is a complex matrix equation in the unknowns .mnA  Since 

the infinite series appearing in equations (28) and (30) have excellent 

truncation property, the infinite matrices can be truncated at a certain 

term to solve equation (27) numerically. Commercially available complex 

matrix inversion routines are used to obtain the solution of the modified 

equation. Once these coefficients are known, the diffraction problem is 

completely known. 

3. Exciting Forces 

The forces associated with the incident and diffraction potentials are 

the exciting forces which play a very important role in the wave field for 

a structure in water. The exciting forces ( )e
jF  can be obtained from 

( ) ∫ ∫
π π

= ψθθ|φσρ=
0 0

2 ,sin2 ddnAaiF jarID
e

j  (31) 
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where 0=j  corresponds to heave motion and 1=j  corresponds to surge 

motion and we have written ,DIID φ+φ=φ  

( ) .1,0,coscos1 =ψθ−= jjPn j
j  (32) 

Applying the body surface condition 
rr
ID

∂
φ∂

−=
∂
φ∂

 at ar =  and after 

some simplifications, we have 

( )∑ ∑
∞

=

∞

=
= ψθ+=|φ

0

.coscos12

m mn

m
nmnarID mPA

n
na  (33) 

Now, the exciting forces are given by 

( ) ( )∫ ∑
π ∞

=

θθθ+
ε

πρσ−=
0

2
,sincos122

jn

j
njn

j

e
j dPA

n
na

Aai
F  (34) 

where 1=ε j  for 2,0 =ε= jj  for .1≥j  

Using the orthogonality property of associated Legendre functions, 

( )
1

34 j
e

j AAaiF ρσπ−=  (35) 

since the terms jε  and 
( )
( )!1

!1
j
j

−
+

 cancel out for the respective values of j. 

Hence the surge exciting force ( )
xd

e
x fF =  and the heave exciting 

force ( )
zd

e
z fF =  are given by 

1134
A

aAi

fxd −=
πρσ

 (36) 

and 

.
4

013
A

aAi

fzd −=
πρσ

 (37) 

4. Radiation Potentials 

Having solved the diffraction problem for the submerged sphere, now 
we turn our attention to the radiation problem. As mentioned earlier we 
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will consider surge and heave potentials only. Both these potentials 
mainly satisfy the same set of equations except for the body boundary 
condition which is different for each motion. Both being related with 
translational motions, surge and heave potentials have resemblance in 
their expressions. 

The radiation velocity potential mφ  must satisfy 

02 =φ∇ m  in the fluid (38) 

0=φ+
∂
φ∂

m
m k
z

 on 0=z  (39) 

0=
∂
φ∂
z
m  on dz =  (40) 

( ) 3,1, =σ−=
∂
φ∂

jni
r j
m  on ar =  (41) 

.0lim 2
1

=φ






 −
∂
∂

∞→ mR
ik

R
R  (42) 

The kinematic boundary condition on the body surface for the 
radiation problem in case of surge and heave motions can be written as 

( ) ,coscos1 ψθσ=
∂
φ∂

mPi
r

mm  (43) 

0=m  and 1=m  correspond to heave and surge motion, respectively. 

The ψ-dependence of mφ  can be removed by assuming 

( ) ( ) .cos,ˆ,, ψθφ=ψθφ mrr mm  (44) 

The velocity potential ( )θφ ,ˆ rm  will be expanded in multi-pole 

potentials which have already been discussed while dealing with the 
diffraction potential. Now, removing the time dependence term, 

( ) ( ) ( )
( )

( ) ( )∫
∞

+−
−+

+ −
+

−
−+

θ
=θφ

0

1

1 !
1cos

,ˆ dkkRJek
kK
kK

mnr

P
r m

dzkn
mn

n

m
n

m  

 
( )
( )

( ) ( ),2
!

1 1 KRJeK
mn

i m
dzkn

nm
+−+

+
π

−
−+  (45) 
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mφ̂  can be finally expressed as 

( ) ( )
1

cos
,ˆ

+
θ

=θφ
n

m
n

m
r

P
r  

( )
( ) ( ) ( )∑ ∫

∞

=

∞
−+

−+

−
+θ

+−
−+

ms

kdsnm
s

s
sm

dkek
kK
kKPVPr

msmn 0

2
1

cos
!!

1
 

( )
( ) ( ) ( )∑

∞

=

−++
+

θπ
+−

−+
ms

m
s

sKdsn
sn

PreK
msmn

i ,cos2
!!

1 21  (46) 

where PV means the principal value of the integral is to be considered. 

Or we can write mφ̂  as 

( ) ( ) [ ] ( )∑
∞

=
+

θ++
θ

=θφ
ms

m
s

sm
s

m
sn

m
n

m PriBA
r

P
r ,cos

cos
,ˆ

1
 (47) 

where 

( )
( ) ( ) ∫

∞
−+

−+

−
+

+−
−=

0

2
1

,
!!

1
dkek

kK
kK

msmn
A kdsn

sm
m
s  (48) 

( )
( ) ( ) .2

!!
1 21 Kdsn

sn
m
s eK

msmn
B −++

+
π

+−
−=  (49) 

Hence the radiation potential mφ  can be written as 

( ) ( ) ( ) ( ) .coscos
cos

,,
1

ψ











θ++

θ
=ψθφ ∑

∞

=
+

mPriBA
r

P
r

ms

m
s

sm
s

m
sn

m
n

m  (50) 

Applying the body boundary condition, simplifying and using the 
orthogonality of associated Legendre functions, we obtain 

( )
( ) ( )∑

∞

=

−
+

−
+

+
mn

m
n

m
n

n
iBA

mn
mn

n
na

!
!

12
2 1

 

( )
( )

( )
( )

( )
( ) 1,0,

!1
!1

3
2

!
!

12

12
2

=
−
+σ+

−
+

+

+=
+

m
m
mi

mn
mn

an

n
n

 (51) 

which is an infinite system of linear algebraic equations in an infinite 
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number of unknowns. Solution of these will enable us to find the 
radiation potentials and subsequently the surge and heave hydrodynamic 
coefficients. 

We can also write m
n

m
n

m
n DiBA =+  to have complex coefficients .m

nD  

Then, we can rewrite equation (51) as 

 
( )
( )∑

∞

=

−

−
+

+
mn

m
n

n
D

mn
mn

n
na

!
!

12
2 1

 

( )
( )

( )
( )

( )
( ) 1,0,

!1
!1

3
2

!
!

12

12
2

=
−
+σ+

−
+

+

+=
+

m
m
mi

mn
mn

an

n
n

 (52) 

or we can equate real and imaginary parts from equation (51), 

( )
( )

( )
( )

( )
( )∑

∞

=
+

−

−
+

+

+=
−
+

+
mn

n
m
n

n

mn
mn

an

n
A

mn
mn

n
na

!
!

12

12
!
!

12
2

2

1
 (53) 

( )
( )

( )
( )∑

∞

=

−

−
+

σ=
−
+

+
mn

m
n

n

m
m

B
mn
mn

n
na .

!1
!1

3
2

!
!

12
2 1

 (54) 

5. Determination of Hydrodynamic Coefficients and Motion 

The coefficients related with the radiation play an important role in 
allowing us to know the impact of motions due to radiation. The 
evaluation of added-mass and damping coefficients is of utmost 
importance in analyzing the contribution of radiation to the total 
boundary value problem. 

5.1. Surge hydrodynamic coefficients 

From Sarpkaya and Isaacson [7], the components of the radiated 
force can be written as 

( ) ∑ 













∂
∂

λ+
∂

∂
µ−=

j

j
ij

j
ij

R
i t

X

t

X
F ,

2

2

 (55) 

where ijµ  and ijλ  are respectively called the added-mass and damping 

coefficients. Those coefficients are taken to be real. 
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The equation of motion can be written as 

( ) ( ),
2

2
e

ijij
j

ij
j

ijij FXC
t

X

t

X
M =+

∂
∂

λ+
∂

∂
µ+  (56) 

where ijM  is the mass matrix, ijC  is the hydrodynamic stiffness matrix 

and ( )e
iF  are the exciting forces associated with the diffraction potential. 

The radiated force 1rF  due to the surge motion can be written as the 

real part of ,1
ti

r ef σ−  where 1rf  is given by 

( )∫ ∫
π π

ψθψθψθφσρ−=
0 0

2
11

2
1 .cossin,,ˆ2 ddaXAaifr  (57) 

This radiated force can be conveniently decomposed into components in 
phase with the velocity and the acceleration, 

.1
112

1
2

111 









∂
∂

λ+
∂

∂
µ−=

t
X

t

X
Fr  (58) 

Also, { }.ˆRe 11
tieXX σ−=  Hence, we can write 

{ }.ˆˆRe 1111
2

1 XiXFr σλ+µσ=  (59) 

From equations (58) and (59) we can write 

( )∫ ∫
π π

ψθψθψθφ
σ
ρ−=

σ
λ

+µ
0 0

2
1

2
11

11 .cossin,,
2

dda
Aai

i  (60) 

Hence, the added-mass and damping coefficients are respectively given 
by 

( )[ ]∫ ∫
π π

ψθψθψθφ
σ

ρ−=µ
0 0

2
1

2

11 cossin,,Re
2

ddai
Aa  (61) 

( )[ ]∫ ∫
π π

ψθψθψθφρ−=λ
0 0

2
1

2
11 .cossin,,Im2 ddaiAa  (62) 

The surge potential ( )ψθφ ,,1 r  can be written from equation (50) and at 

( ),1, == mar  

( ) ( ) ( ) .coscos
cos

,,
1

11
1

1

1 ψ











θ+

θ
=ψθφ ∑

∞

=
+

n
n

n
nn

n PaD
a

P
a  (63) 
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Hence using equation (63) in equations (61) and (62) and simplifying by 
the use of associated Legendre functions, we obtain the added-mass and 
damping coefficients as 

1
1

3

11 3
4 B

Aa
σ
πρ=µ  (64) 

[ ].1
3
4 31

111 aAA +ρπ−=λ  (65) 

Or else we can represent 11µ  and 11λ  as 

1
13

11

3
4

B
Aa

=

σ
πρ

µ
 

and 

[ ].1

3
4

31
1

11 aA
A

+−=
ρπ

λ
 

5.2. Heave hydrodynamic coefficients 

The radiated force 3rF  due to the heave motion can be written as the 

real part of ,3
ti

r ef σ−  where 3rf  is given by 

( )∫ ∫
π π

ψθθθψθφσρ−=
0 0

33
2

3 .cossin,,ˆ2 ddaXAaifr  (66) 

Considering { },ˆRe 33
tieXX σ−=  we have, proceeding as in the previous 

subsection, 

( )∫ ∫
π π

ψθθθψθφ
σ
ρ−=

σ
λ

+µ
0 0

3

2
33

33 ,cossin,,2
dda

Aai
i  (67) 

where 33µ  and 33λ  are the heave added-mass and damping coefficient 

due to heave motion, respectively. Hence, 

( )[ ]∫ ∫
π π

ψθθθψθφ
σ

ρ−=µ
0 0

3

2

33 cossin,,Re
2

ddai
Aa  (68) 

( )[ ]∫ ∫
π π

ψθθθψθφρ−=λ
0 0

3
2

33 .cossin,,Im2 ddaiAa  (69) 
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The heave potential ( )ψθφ ,,3 r  at ar =  is ( ),0=m  

( ) ( ) ( )∑
∞

=
+

θ+
θ

=ψθφ
0

00
1

0

3 .cos
cos

,,
n

n
n

nn
n PaD
a

P
a  (70) 

Therefore, proceeding similarly as in the previous subsection, we obtain 
the coefficients as 

0
1

3

33 3
4 B

Aa
σ
πρ=µ  (71) 

and 

( ).1
3
4 30

133 aAA +ρπ−=λ  (72) 

Or else we can represent 33µ  and 33λ  as 

0
13

33

3
4

B
Aa

=

σ
πρ

µ
 

and 

[ ].1

3
4

30
1

33 aA
A

+−=
πρ

λ
 

6. Results and Conclusions 

In this section we present the results of the analytical expressions for 
the exciting forces, added-mass and damping coefficients due to surge 
and heave motions. The complex matrix equation (27) is to be solved in 

order to determine the unknown coefficients mnA  for 0=m  and .1=m  

To compute the horizontal exciting force, ,xdf  we need to solve the 

equation (36) and the vertical exciting force, ,zdf  is evaluated by solving 

equation (37). This infinite system of equations represented by equation 
(27) is made finite by truncating as 

,
0
∑
=

=
pN

n

m
s

m
nsmn TEA  (73) 

where m
nsE  and m

sT  are respectively given by equations (28) and (29). 
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To compute the hydrodynamic coefficients due to the surge and heave 

motions, we need to find the coefficients m
n

m
n

m
n iBAD +=  from equation 

(52). Once the coefficients m
nA  and m

nB  are found, then the surge and 

heave added-mass and the damping coefficients can be computed. 

Tables 1-4 give us the exciting force coefficients for both fixed 

submergence and fixed depth. The results are compared with the results 

of Wang [9] and they agree with those sets of results. The first two tables 

present the surge and heave exciting forces for a fixed submergence 

25.1=ah  for various depths, e.g., ,5.2=ad  3.0, 5.0, 11.0 and =ad  

.0.20  Tables 3 and 4 present us the surge and heave exciting forces for a 

fixed depth 0.6=ad  but for a set of different submergence value. 

Figures 2-5 represent those results in graphical forms. 

Tables 5-8 give us the results for the added-mass and damping 

coefficients for both surge and heave motions for different submergence 

values. These results show good agreement with those obtained by Wang 

[9]. The added-mass 11µ  and 33µ  steadily decrease after reaching the 

maximum values in the range .5.04.0 ≤≤ Ka  The damping coefficients 

start from zero and then decrease uniformly to zero again. Also, the 

damping coefficients are smaller compared to the added-mass for all the 

submergence values. These numerical behaviours are confirmed by the 

graphical plots in Figures 6-9. 

The work is motivated by the need for analytical solutions for the 

exciting forces, the added-mass and the damping coefficients. It has been 

shown that the body submergence and depth have influence on the forces 

and the coefficients. The use of associated Legendre functions reduces the 

solutions to simpler forms. The pitch motion due to the radiation was not 

considered as for a spherical body the moment acting on it becomes 

automatically zero. It will be interesting to extend the investigation 

further to consider two or more submerged spheres. The analysis of 

interaction among several structures nearer to each other would help in 

many practical cases. 
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Table 1. Surge exciting force ( )25.1=ah  

 ad  

Ka 2.5 3.0 5.0 11.0 20.0 

0.10 3.1539 2.7864 2.1872 1.5893 1.4897 

0.20 2.1152 2.1152 1.5902 1.3151 1.2621 

0.30 1.6347 1.3976 1.1861 1.1361 1.1102 

0.40 1.2862 1.1471 0.9861 0.9858 0.9826 

0.50 1.1134 0.9876 0.8862 0.8852 0.8834 

0.60 0.9217 0.8692 0.8682 0.7809 0.8124 

0.70 0.7692 0.7418 0.7398 0.6947 0.7395 

0.80 0.6824 0.6675 0.6482 0.6345 0.6315 

0.90 0.5824 0.5791 0.5789 0.5786 0.5785 

1.00 0.5037 0.4981 0.4925 0.4911 0.4901 

1.20 0.3476 0.3403 0.3391 0.3379 0.3377 

Table 2. Heave exciting force ( )25.1=ah  

 ad  

Ka 2.50 3.00 5.00 11.00 20.00 

0.10 0.8241 0.9582 1.2041 1.3979 1.4671 

0.20 0.7965 0.9297 1.1505 1.3192 1.3294 

0.30 0.7752 0.9042 1.1421 1.2547 1.2609 

0.40 0.7598 0.8847 1.1167 1.1147 1.1162 

0.50 0.7421 0.8624 0.9917 0.9867 0.9872 

0.60 0.7134 0.8261 0.9256 0.9269 0.9283 

0.70 0.6790 0.7931 0.8291 0.8304 0.8317 

0.80 0.6224 0.7391 0.7398 0.7404 0.7409 

0.90 0.5631 0.6112 0.6123 0.6136 0.6149 

1.00 0.4832 0.4841 0.4846 0.4850 0.4852 

1.10 0.4162 0.4221 0.4247 0.4261 0.4275 

1.20 0.3281 0.3289 0.3286 0.3284 0.3283 
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Table 3. Surge exciting force ( )6=ad  

 ah  

Ka 1.25 1.75 3.00 

0.10 2.0117 1.8694 1.7021 

0.20 1.5106 1.2864 0.9462 

0.30 1.2461 0.9862 0.6741 

0.40 1.0967 0.7421 0.3909 

0.50 0.8984 0.6842 0.3646 

0.60 0.7791 0.5098 0.2517 

0.70 0.7364 0.4726 0.2021 

0.80 0.6274 0.3622 0.1271 

0.90 0.5097 0.2671 0.0983 

1.00 0.4892 0.2491 0.0608 

1.20 0.3972 0.1977 0.0323 

1.40 0.2947 0.1389 0.0086 

1.60 0.2566 0.1082 0.0016 

1.80 0.2314 0.0627 0.0009 

Table 4. Heave exciting force ( )6=ad  

 ah  

Ka 1.25 1.75 3.00 

0.10 1.2561 1.0692 0.6841 

0.20 1.2293 0.9542 0.6194 

0.30 1.2007 0.7781 0.4382 

0.40 1.1467 0.7392 0.3922 

0.50 0.9724 0.6107 0.2965 

0.60 0.8862 0.5566 0.2264 

0.70 0.6833 0.4192 0.1791 

0.80 0.6374 0.3643 0.1267 

0.90 0.5277 0.2818 0.1082 
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1.00 0.4721 0.2364 0.0927 

1.40 0.2021 0.1028 0.0237 

1.80 0.1161 0.0711 0.0081 

2.00 0.0986 0.0529 0.0072 

2.40 0.0583 0.0294 0.0039 

2.80 0.0185 0.0129 0.0014 

3.00 0.0011 0.0081 0.0005 

Table 5. Surge added-mass 11µ  for different submergence values 

 ah  

Ka 1.50 1.75 2.00 3.00 

0.00 0.5287 0.5179 0.5118 0.5034 

0.10 0.5403 0.5266 0.5187 0.5066 

0.20 0.5545 0.5363 0.5255 0.5082 

0.30 0.5656 0.5422 0.5283 0.5069 

0.40 0.5693 0.5416 0.5255 0.5030 

0.50 0.5646 0.5347 0.5187 0.4986 

0.60 0.5527 0.5234 0.5092 0.4949 

0.70 0.5359 0.5107 0.4989 0.4920 

0.80 0.5160 0.4966 0.4895 0.4905 

0.90 0.4962 0.4841 0.4815 0.4893 

1.00 0.4776 0.4732 0.4752 0.4896 

1.20 0.4475 0.4578 0.4675 0.4903 

1.40 0.4286 0.4497 0.4648 0.4915 

1.60 0.4189 0.4475 0.4652 0.4925 

1.80 0.4158 0.4481 0.4676 0.4930 

2.00 0.4171 0.4505 0.4698 0.4938 

3.00 0.4381 0.4653 0.4787 0.4950 

4.00 0.4523 0.4721 0.4825 0.4955 

5.00 0.4582 0.4750 0.4839 0.4966 
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Table 6. Surge damping coefficients 11λ  for different submergence values 

 ah  

Ka 1.50 1.75 2.00 3.00 

0.00 0.0000 0.0000 0.0000 0.0000 

0.10 0.0018 0.0017 0.0016 0.0013 

0.20 0.0113 0.0098 0.0088 0.0057 

0.30 0.0285 0.0237 0.0200 0.0106 

0.40 0.0506 0.0398 0.0317 0.0138 

0.50 0.0734 0.0544 0.0412 0.0147 

0.60 0.0934 0.0655 0.0472 0.0138 

0.70 0.1082 0.0722 0.0496 0.0120 

0.80 0.1172 0.0745 0.0489 0.0099 

0.90 0.1205 0.0733 0.0460 0.0076 

1.00 0.1190 0.0695 0.0418 0.0057 

1.20 0.1063 0.0574 0.0317 0.0030 

1.40 0.0873 0.0438 0.0223 0.0014 

1.60 0.0678 0.0318 0.0148 0.0006 

1.80 0.0504 0.0220 0.0094 0.0003 

2.00 0.0363 0.0148 0.0058 0.0001 

3.00 0.0053 0.0015 0.0004 0.0000 

4.00 0.0005 0.0001 0.0000 0.0000 

5.00 0.0000 0.0000 0.0000 0.0000 

Table 7. Heave added-mass 33µ  for different submergence values 

 ah  

Ka 1.50 1.75 2.00 3.00 

0.00 0.5586 0.5362 0.5239 0.5070 

0.10 0.5834 0.5539 0.5375 0.5131 

0.20 0.6139 0.5742 0.5518 0.5166 

0.30 0.6365 0.5859 0.5570 0.5133 
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0.40 0.6421 0.5831 0.5506 0.5055 

0.50 0.6272 0.5667 0.5350 0.4969 

0.60 0.5955 0.5414 0.5147 0.4895 

0.70 0.5541 0.5127 0.4939 0.4845 

0.80 0.5095 0.4846 0.4752 0.4890 

0.90 0.4680 0.4598 0.4598 0.4794 

1.00 0.4316 0.4394 0.4481 0.4793 

1.20 0.3788 0.4123 0.4346 0.4805 

1.40 0.3497 0.3998 0.4306 0.4827 

1.60 0.3381 0.3971 0.4321 0.4847 

1.80 0.3374 0.4000 0.4362 0.4863 

2.00 0.3428 0.4055 0.4412 0.4874 

3.00 0.3852 0.4331 0.4587 0.4901 

4.00 0.4091 0.4457 0.4654 0.4910 

5.00 0.4203 0.4513 0.4686 0.4918 

Table 8. Heave damping coefficients 33λ  for different submergence values 

 ah  

Ka 1.50 1.75 2.00 3.00 

0.00 0.0000 0.0000 0.0000 0.0000 

0.10 0.0040 0.0036 0.0033 0.0026 

0.20 0.0245 0.0208 0.0182 0.0116 

0.30 0.0631 0.0505 0.0416 0.0215 

0.40 0.1129 0.0847 0.0658 0.0276 

0.50 0.1627 0.1149 0.0848 0.0293 

0.60 0.2037 0.1361 0.0958 0.0275 

0.70 0.2304 0.1473 0.0991 0.0237 

0.80 0.2423 0.1490 0.0964 0.0193 

0.90 0.2414 0.1439 0.0896 0.0150 

1.00 0.2318 0.1340 0.0805 0.0115 

1.20 0.1966 0.1078 0.0604 0.0059 



w
w

w
.p

ph
m

j.c
om

MATIUR RAHMAN 76

1.40 0.1554 0.0809 0.0421 0.0028 

1.60 0.1172 0.0579 0.0279 0.0013 

1.80 0.0856 0.0399 0.0177 0.0005 

2.00 0.0609 0.0267 0.0109 0.0002 

3.00 0.0085 0.0026 0.0007 0.0000 

4.00 0.0009 0.0002 0.0003 0.0000 

5.00 0.0001 0.0000 0.0000 0.0000 

 

 

Figure 1. Reference coordinate system 
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Figure 2. Surge exciting force for a fixed submergence 25.1=ah  

 

Figure 3. Heave exciting force for a fixed submergence 25.1=ah  
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Figure 4. Surge exciting force for a fixed depth 0.6=ad  

 

Figure 5. Heave exciting force for a fixed depth 0.6=ad  
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Figure 6. Surge added-mass 11µ  for different submergence values 

 

 

Figure 7. Surge damping coefficient 11λ  for different submergence values 
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Figure 8. Heave added-mass 33µ  for different submergence values 

 

Figure 9. Heave damping coefficient 33λ  for different submergence values 
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