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Abstract 

The closed-form formula of average run length for exponentially 
weighted moving average (EWMA) control chart is proposed based on 
the martingale approach. Usually, the number of defective products is 
defined by binomial distribution. Based on this approach, we prove a 
martingale identity and apply it for obtaining the closed-form formula 
for the first passage times. Furthermore, the algorithms for obtaining 
the optimal parameter of EWMA control chart have been developed  
in order to design the optimal EWMA control chart for detecting of     
a change in number of defective products in process. The numerical 
results are compared with the algorithm which combined the results 
from the martingale and the Monte Carlo simulations, the proposed 
algorithm is very time saving. 
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1. Introduction 

Traditionally, statistical process control (SPC) charts are widely used not 
only in monitoring and improving quality in manufacturing and industrial 
statistics but also in finance, medicine, epidemiology, environmental 
statistics, and in other fields of applications. The SPC is easily used to track 
the performance of a process in order to bring the process back to a target 
value as quickly as possible. To detect this change, one needs to apply 
statistical techniques and constraints. Generally, the most used ones are mean 
of false alarm time or in-control average run length ( )0ARL  - the expectation 

of the time or observation before the control chart gives a false alarm that an 
in-control process has gone out-of-control. 

A second important characteristic is an out-of-control average run length 
( )1ARL  which is the expectation of the time or observation between a 

process going out-of-control and the control chart giving the alarm that the 
process has gone out-of-control. The 0ARL  of an acceptable chart should be 

large and the 1ARL  should be small. There must be a trade-off between these 

two conflicting requirements. 

The Shewhart chart is the most commonly used method for detecting a 
change and it is easily calculated. However, this chart has been proposed to 
be unsatisfactory in monitoring and detecting small changes. During the past 
few decades, two extremely effective alternatives to the Shewhart chart have 
been developed which overcome its shortcomings. These are methods based 
on the cumulative sum (CUSUM) and exponentially weighted moving 
average (EWMA). The CUSUM chart was introduced by Page [10] (see 
Siegmund [15] and Pollak [11]). The EWMA chart was initially presented by 
Roberts [12] (see more, Hunter [5], Lucas and Saccucci [8] and Srivastava 
and Wu [16]). Both the CUSUM and EWMA control charts are known to be 
more sensitive to the detection of small to moderate changes because they 
pay attention to the historical observations. However, EWMA charts are 
inherently simpler and are also believed to be more robust with respect to the 
assumptions than are CUSUM charts (Sukparungsee and Novikov [17]). 
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In this paper, the closed-form formula and exact lower bound of the   
ARL for EWMA control chart when the observations are from binomial 
distribution are presented. A derivation of expression and this bound are 
based on a martingale approach. 

2. The EWMA Control Chart and its Properties 

Let ...,...,,, 21 tXXX  be observed independent random variables. The 

martingale approach can be used for different distributions but we restrict our 
attention in this paper to the most important case of binomial distributed 
random variables. The model we study is as follows: 

( )

( )





α≠α+θθ=α

−θ=α

....,,1,;,~

,1...,,2,1;,~

0

0

tnbinX

tnbinX

t

t
 

We use notation ∞=θ  for the case when there is no change in the 
distribution of observed data. Note that if ,1=θ  then the change occurs at 

the very beginning. 

2.1. The EWMA control chart 

The exponentially weighted moving average (EWMA) chart, initiated by 
Roberts [12], is an effective alternative to the CUSUM chart for detecting 
small shifts. The EWMA for discrete time case is defined by the following 
recursion: 

( ) ( ) ....,2,1,1 1 =ξλ+λ−= − tgZZ ttt  (1) 

Typically, ( )1,0∈λ  is a weighting factor for previous observations and 

for the function ( ) ( ).ttt Eg ξ−ξ=ξ ∞  To start the recursion, required for 0Z  

is usually assumed that .00 α=Z  If the anticipated shift in the mean value is 

positive, then we take the decision that the process is out-of-control when for 
the first time HZt >  as follows: 

{ }.:inf HZNt t >∈=τ  (2) 
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2.2. The properties of EWMA control chart  

There are many other criteria that have been used for optimality of SPC 
(see, e.g., Shiryaev [13, 14] and Lorden [7]). However, 0ARL  and 1ARL  are 

still the most popular and commonly used characteristics for evaluating the 
performance of a control chart. These two criteria will be used as the basis 
for the comparison of different charts throughout this research. Let ( )⋅θE  

denote the expectation of τ under the assumption that the change-point 
occurs at point .∞≤θ  Then by definition 

( ) ,0 TEARL =τ= θ  (3) 

where τ is a given number. Another important characteristic of SPC is the 
quantity ( )τ1E  as 

( ) ( ).1sup1 θ≥τ|+θ−τ≤τ θ
θ

EE  (4) 

Of course, it would be desirable to minimise on equation (4) but the latter 
quantity is usually difficult to calculate. One can expect that SPC has a near 
optimal performance if its 1ARL  is closed to a minimal value. One of the 

objectives of this paper is to find the optimal combination of parameters 

( )∗∗λ H,  which satisfies to these criterions. 

There are several approaches to evaluate the average run length in the 
literatures, for example, Crowder [3] used a system of Fredholm integral 
equation for numerical approximation of ARL. Later, Brook and Evans [1] 
used the Markov Chain approach to evaluate these characteristics. Lucas and 
Saccucci [8] intensively studied the different pairs ( )H,λ  to find 1ARL  for 

different magnitudes of change in mean process. 

3. The Closed-form Formula for the ARL by Martingale Approach 

In this section, martingale approach is exploited to obtain closed-form 
relations for the expectations of stopping times of first order autoregressive 
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processes. We start with some general definitions and notation from 
stochastic analysis. 

3.1. Martingales and stopping times 

We always assume that given a probability space ( )P,, FΩ  and there is 

a sequence of σ-algebras ts FF ∈  such that ts FF ∈  for .st ≥  The sequence 

of σ-algebras { }tF  is called a filtration (or  history, or information available 

to the moment )....,2,1,0=t  Typically, one may consider tF  as a 

collection of all events generated by an underlying observed stochastic 
process ,tX  ....,1,0=t  For the latter case, we use notation: 

{ }....,,0 tt XXσ=F  

A random process tY  is adapted to tF  if tY  is tF -measurable for any 

....,2,1,0=t  

Definition 1. A process ,tM  ∞<≤ t0  is called a martingale with 

respect to filtration tF  if 

( ) ∞<tME  (5) 

and  

( ) .11 −− =| ttt MME F  (6) 

Definition 2 (Stopping Time). A stopping time τ is a nonnegative-
integer-valued random variable such that the event { } tt F∈≤τ  for any 

.0≥t  

Further, it will be convenient to use notation ( )PM t ,F  for the class of 

all martingales on the filtered probability space ( ).,,, Pt FFΩ  

Proposition 1. If ( ),, PMM tt F∈  then 

( ) ( ),0MEME t =  

( ) ( )( ) ( ) ( ).0MEMEMEEME tsts ===|= F  (7) 
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Theorem 1 (Martingale Stopping Theorem). If ( ),, PMM tt F∈  ,0≥t  

then for any stopping time τ, 

( ) ( )PMMX ttt ,: ,min F∈= τ  

and hence for any fixed ,0≥t  

( ( ) ) ( ).0,min MEME t =τ  (8) 

We define an AR(1) process as a recursive equation 

...,,2,1,0,1 ∈ξ+φ= − tXX ttt  (9) 

where tξ  is a sequence of independent identically distributed random 

variables (innovation), xX =0  and φ are nonrandom constants, .10 <φ<  

Note that EWMA statistic tZ  coincides with tX  for a particular case of 

λ−=φ 1  and independent random variables ( ).tt g ξλ=ξ  Set 

( ) ∞<= θψλξ
θ

uuu eeE t :  for any ( ),,0 ∞∈u  

where ∞=θ  (in-control) or 1=θ  (out-of-control) and let 

( ) (( ) )∑
∞

=
θθ λ−ψ=ϕ

0
.1

k

k uu  (10) 

Now make further assumptions that tξ  has the normal distribution, 

( ).,~ 2σαξ Nt  Then we obtain 

( ) ( ) .24

22

λ−
σλ+α=ϕθ

uuu  

Indeed, since for the case under consideration 

( ) ,
2

22
2

uuu σ
λ

+αλ=ϕθ  
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( ) (( ) )∑
∞

=
θθ λ−ψ=ϕ

0
1

k

k uu  

(( ) ) (( ) )∑
∞

=




 λλ−σ−λλ−α=

0

2222 12
11

k

kk uu  

( ) ( )λ−−
σλ+

λ−−
αλ= 112

1
11

222 uu  

( ) .24

22

λ−
λσ+α= uu  

Without losing generality, it is usually supposed that ( ) .00 =α=ξ∞ tE  

Here we also use this assumption and therefore we have 

( ) ( ) ( ) ( ) .24,24

22
1

22

λ−
σλ+α=ϕ

λ−
σλ=ϕ∞

uuuuu  

Consider now the case of binomial EWMA which is based on the first 
passage time 

{ },:0inf HZt tH >≥=τ  

assuming that .0=> zH  Then 

( ) ( ) ( ) ( )∫
∞ ϕ−

θτθ
θτ −

λ−
=

0
.11ln

1 dueeEE uuZ H
H  (11) 

3.2. Expectation of first passage times for binomial EWMA  

If tξ  are independent random variables with outcomes 0 and 1 such that 

the probability of “success” ( ) ,1 α==ξtP  then 

( ) (( ( )))nueu α−+α=ψ λ
θ 1log  

and 

( ) (( ( ( ) ) ( )))∏
∞

=

λλ−
θ α−+α+α−=ϕ

0

1
0 ,1log

k

nu k
euu  (12) 
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where 

( ) (( ( ( ) ) ( )))∏
∞

=

λλ−
θ α−+α+α−=ϕ

0
0

1
00 ,1log

k

nu k
euu  

( ) (( ( ( ) ) ( )))∏
∞

=

λλ− α−+α+α−=ϕ
0

1
01 .1log

k

nu k
euu  

Therefore, the closed-form expressions of ARL for binomial EWMA control 
chart are 

( ) ( )
( )

(( ( ( ) ) ( )))
,

1

1
1ln
1

0

0
0

1
0

0
0

∫
∏

∞

∞

=

λλ−

α
θ

τ∞

α−+α

−
λ−

==
τ

du

eu

eeEEARL

k

nu

uuZ

k

H

H  (13) 

( ) ( )
( )

(( ( ( ) ) ( )))
∫

∏

∞

∞

=

λλ−

α

τ

α−+α

−
λ−

==
τ

0

0

1

1
11 .

1

1
1ln
1 0

du

eu

eeEEARL

k

nu

uuZ

k

H

H  (14) 

3.3. Corrected approximation 

The closed-form formulas from equations (14) and (15) include the 
overshoot HZ HH −=χ τ  whose distribution is, generally speaking, 

unknown. Neglecting by overshoot, we obtained the explicit lower-bounds 
for 0ARL  and 1ARL  which are easy to calculate but it may be not an 

accurate approximation. Here we provide some considerations about how to 
find a correction term to improve the accuracy. 

Recall that the process EWMA is governed by the following equation: 

( ) .,1 01 zZZZ ttt =λξ+λ−= −  

Setting ,~
λ

= t
t

ZZ  we obtain 

( ) λ=ξ+λ−= − zZZZ ttt 01
~,~1~  (15) 
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and consequently, the alarm time is 

.~:0inf






λ
>>=τ HZt tH  

If λ is close to zero, then tZ~  is close to a random walk ∑
=
ξ=

t

k
ktS

1
 with 

i.i.d. increments .tξ  Based on these considerations, we suggest to use the 

following approximation: 

,~~~
H

HZ H χ+
λ

−τ  

where Hχ
~  is the overshoot of the random walk ∑

=
ξ=

t

k
ktS

1
 over level .

λ
H  

This leads to the following approximation: 

HH HHZZ HH χλ+=




 χ+
λ

λ−λ= ττ
~~~~  

and correspondingly, for ,0≥u  

( ) .~ ~~
HHH uuHHuuZ eEeeEeE χλ

θ
χλ+

θθ =−τ  

Note that due to Jensen inequality HH uEu eeE χλχλ
θ

θ≥
~~

 and also due to 

Taylor expansion ( ),1 xoxex ++=  ,0→x  we have for ,0→λ  

( ) ( ).~1
~~

λ+=λ+χλ+= χλ
θ

χλ
θ

θ oeouEeE HH uE
H

u  

For the cases when the level 
λ
H  is high, we can use the following well-

known result from the theory of random walks (see, e.g., Siegmund [15]). 

Theorem 2. Let ∑
=
ξ=

t

k
ktS

1
, { }bSt tb >>=τ :0inf  the distribution of 

tξ  be non-lattice, ,0≥=ξ aE k  .0 2 ∞<ξ< kE  Then there exists limit 

( ) .lim CbSE bb
=−τ

∞→
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The analytical calculation of the constant C could be a hard problem. 
Note that the constant C depends on .1ξ=α E  Under the assumption 

,3 ∞<ξkE  the constant C can be represented in the following form: 

( )
( ) ,2

2

+

+

τ

τ= SE
SE

C  (16) 

where { },0:0inf >>=τ+ tSt  
+τS  is the so-called positive ladder variable 

of a random walk .tS  If tξ  is nonnegative, then .1ξ=
+τS  

Remark 1. If the distribution of tξ  is lattice (e.g., Poisson and Bernoulli 

distribution), then the statement of Theorem 2 still holds. 

The monograph of Siegmund [15] and the papers of Chang and Peres [2] 
contain a lot of results concerning properties of limiting distribution of 
( )xbSP b >−τ  as ∞→b  for the case of Gaussian random walk. In 

particular, it is known that if ( ),1,0~ Ntξ  then 

( ) ,5826.0
2

21 =
π

ς−=C  (17) 

where ( )xς  is the Riemann zeta function. 

Summarizing the above considerations, we suggest for the case ~tξ  

( )1,0N  to use as the formula 

( ),~ λ+
θ −τ CHuuZ eeE H  (18) 

where 5826.0=C  for 0=λ  or when λ is close to zero. 

In this paper, we also use considerations to obtain approximations for an 
overshoot. Note that if ( ),,~ 0αξ nbinomialt  then 

( )
( )

( )
( ) .2

1
22

00
22

α+α−
=

ξ
ξ

==
+

+

τ

τ n
E

E
SE

SE
C

t
t  (19) 
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Proposition 2. The closed-form formulas for binomial EWMA: 

( ) ( )
( )

(( ( ( ) ) ( )))
∫

∏

∞

∞

=
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α
θ
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1

1
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k

H
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( ) ( )
( )
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∫

∏

∞

∞

=
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α

τ
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−
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τ

0

0

1
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1

1
1ln
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eu

eeEEARL

k

nu

uuZ

k

H

H  (21) 

If the overshoot is neglected, then we obtain exact lower-bounds: 

( )
( )

(( ( ( ) ) ( )))
,

1

1
1ln
1

0

0

1
0

0

∫
∏

∞

∞

=

λλ−

α

α−+α

−
λ−

≥
τ

du

eu

eeARL

k

nu

uuZ

k

H
 (22) 

( )
( )

(( ( ( ) ) ( )))
∫

∏

∞

∞

=

λλ−

α

α−+α

−
λ−

≥
0

0

1
1 .

1

1
1ln
1 0

du

eu

eeARL

k

nu

uuH

k
 (23) 

4. Numerical Results 

The accuracy of the lower-bounds is reasonable for small λ. The 
numerical results of approximations ,1ARL  lower-bounds are presented        

in Table 1 with in-control parameter 01.00 =α  and including the “first 

approximation” with constant 745.0=C  and MC. However, the accuracy of 
the first approximation differs significantly from MC. The closed-form 
formulas for 0ARL  and 1ARL  presented above contain an overshoot. To get 

more accurate numerical approximations, we suggest using a combination   
of MC and a martingale closed-from formula applying nonlinear. We then 

obtain the constant 596487.0~
=C  for evaluating a “second approximation” 

which is more certainly accurate approximation. 
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Note that similar approximations are often used in many other problems 
of sequential analysis. The theoretical justification of such an approximation 
is a very hard problem and the value 745.0=C  should be used only as a 
“first approximation” for binomial distribution in case 01.0=λ  is presented 
in Table 1 when fixed .01.0,50 0 =α=n  The first approximation of the 

overshoot produces usually a good approximation for small λ. A more 
accurate approximation can be obtained with Monte Carlo simulations and 
fitting with the non-linear least-square methods as a “second approximation”. 

Table 1. Comparison of numerical results of 1ARL  between lower-bounds, 

first approximation and MC for binomial EWMA when fixed ,50=n  

01.00 =α  and 01.0=λ  

H 
Lower-bounds 
equation (23) 

First 
approximation 
( )745.0=C  

Second 
approximation 

( )596487.0~
=C  

MC 

0.10 21.929 23.771 23.392 23.492 ± 0.024 

0.15 34.987 37.085 36.649 36.806 ± 0.032 

0.20 49.977 52.412 51.903 51.983 ± 0.042 

0.25 67.553 70.450 69.90 69.843 ± 0.053 

0.30 88.757 92.322 91.559 91.559 ± 0.069 

0.35 115.371 119.974 119.036 119.04 ± 0.093 

0.40 150.789 157.185 155.844 155.91 ± 0.132 

0.45 202.455 212.450 210.353 210.13 ± 0.207 

0.50 290.341 309.426 305.394 305.44 ± 0.379 

4.1. Comparison of analytical approximation with Monte Carlo 
simulations 

We have numerically calculated based on the closed-form formula 
suggested above and compared these values with the results obtained from 
MC. The accuracy of the approach is confirmed by the simulations as shown 
in Table 2. 
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Table 2. Comparison of the approximations with Monte Carlo simulations 
for the Bernoulli EWMA when fixed 50=n  and 01.00 =α  

N   α 100=T  

  λ
~  H~  C~  ∗

1ARL  MC 

50 0.01010 0.109773 0.814459 0.727083 95.6534 95.6576 ± 0.271 

 0.01050 0.117894 0.836782 0.73718 80.8942 80.8942 ± 0.274 

 0.01100 0.128177 0.863633 0.754808 66.9327 66.9327 ± 0.279 

 0.01250 0.159631 0.941007 0.80750 41.9089 41.9089 ± 0.287 

 0.01500 0.213393 1.06635 0.870672 23.7304 23.7304 ± 0.295 

n   α 370=T  

  λ
~  H~  C~  ∗

1ARL  MC 

50 0.01010 0.038408 0.703383 0.652939 342.53 340.871 ± 0.970  

 0.01050 0.043579 0.727204 0.657833 258.61 258.021 ± 0.659  

 0.01100 0.050316 0.756717 0.663189 191.438 192.531 ± 0.484  

 0.01250 0.071701 0.840745 0.703237 96.7764 98.069 ± 0.234  

 0.01500 0.109204 0.968894 0.771411 45.8983 47.151 ± 0.109 

4.2. Choices of optimal parameter of binomial EWMA designs 

Tables 3 and 4 contain the approximations for optimal value parameters 

( )H~,~
λ  when observations are from binomial distribution. The values were 

calculated numerically for the one-side EWMA case. These optimal values 
were obtained by minimising 1ARL  values when fixed 0ARL  values of 100 

and 370 in-control parameter 50=n  and 100, 01.00 =α  and the sizes of 

parameter changes, ,0101.0=α  0.01025, 0.0105, 0.01075, 0.011, 0.015, 
0.0175. The numerical results from the martingale technique approximations 
are as good as the results from the Monte Carlo simulations. The suggested 
algorithms can be easily used to create curves of 1ARL  for a range of 

magnitudes of change. 
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Table 3. Optimal parameter values and 1ARL  of binomial EWMA when 
fixed ,50=n  01.00 =α  and 1000 =ARL  and 370 

0ARL  α λ
~

 H~  C
~

 ∗
1ARL  MC 

100 0.01010 0.109773 0.814459 0.727083 95.6534 95.6576 ± 0.271 

 0.01050 0.117894  0.836782  0.73718  80.8942  80.8942 ± 0.274 

 0.01075 0.123018  0.850425  0.744797  73.3956  73.3956 ± 0.276 

 0.0110 0.128177  0.863633  0.754808  66.9327  66.9327 ± 0.279 

 0.0150 0.213393  1.06635  0.870672  23.7304  23.7304 ± 0.295 

 0.0175 0.269317  1.19612  0.905754  15.6254  15.6254 ± 0.301 

 0.020 0.330223 1.32976 0.959683 11.2413 11.2413 ± 0.301 

370 0.01010 0.038408 0.703383 0.652939 342.53  340.871 ± 0.970  

 0.01050  0.043579  0.727204  0.657833  258.61  258.027 ± 0.659  

 0.01075  0.046914  0.742542  0.649166  221.144  223.336 ± 0.569  

 0.0110  0.050316  0.756717  0.663189  191.438  192.531 ± 0.484  

 0.0150  0.109204  0.968894  0.771411  45.8983  47.151 ± 0.109  

 0.0175  0.147519  1.08860  0.812893  27.5776  28.726 ± 0.064  

 0.020 0.186182 1.20620 0.831984 18.7764 19.738 ± 0.044 

Table 4. Optimal parameter values and 1ARL  of binomial EWMA when 
fixed ,100=n  01.00 =α  and 1000 =ARL  and 370 

0ARL  p λ
~

 H~  C
~

 ∗
1ARL  MC 

100 0.01010 0.123236 1.47935  0.915069 97.2307  94.4671 ± 0.251  

 0.01050  0.135439  1.52263  0.933812  75.5766  76.1648 ± 0.199  

 0.01075  0.143203  1.54873  0.950169  66.6535  66.9576 ± 0.173  

 0.0110  0.151057  1.57508  0.962824  59.2623  59.6703 ± 0.152  

 0.0150  0.284887  1.97611  1.14816  17.0882  17.8888 ± 0.043  

 0.0175 0.380823 2.24857 1.12379 10.6272 11.4632 ± 0.027 

370 0.01010 0.042864  1.30863  0.813591 333.446 334.955 ± 0.872 

 0.01050  0.050780  1.34719  0.866811 230.388 231.388 ± 0.578  

 0.01075  0.059595  1.38450  0.842689  189.115  190.023 ± 0.469  

 0.0110  0.061284  1.41359  0.847562  158.045  160.523 ± 0.392  

 0.0150  0.155607  1.55607  0.991610  30.452  31.4703 ± 0.068  

 0.0175 0.217927 2.06065 1.083740 17.5074 18.4426 ± 0.040 
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5. Conclusions 

In this research, a martingale technique has been used to obtain analytical 
proofs of approximations for 0ARL  and 1ARL  for EWMA charts. The 

approximations are presented as closed-form formulas. We have shown that 
our martingale approximations are easy to program and calculate. The 
approximations also produce accurate results and reduce the computational 
time when compared with other standard methods such as Monte Carlo 
simulation methods. In addition, we have shown that the martingale approach 
can be adopted and expanded to non-Gaussian distributions such as               
the binomial distribution. We have also developed algorithms and 
Mathematica® programs that we have used to obtain optimal parameter for 
optimal EWMA designs for binomial distribution. 
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