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Abstract

The purpose of this paper is to introduce an operation F : P(U) —

P(U) induced by F< and a given soft set (F, X) over a common

universe set U, and to study some basic properties of the operation.

1. Introduction

In 1999, Molodtsov introduced the concept of soft set [8] to solve
complicated problems and various types of uncertainties. He introduced that
a soft set is an approximate description of an object precisely consisting of
two parts, namely predicate and approximate value set. Soft set theory is a
mathematical tool for dealing with uncertainties which is free from the
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difficulties of theory of fuzzy sets [11], theory of vague sets [3], and theory
of rough sets [9]. Maji et al. [5] introduced several operators for soft set
theory: equality of two soft sets, subset and superset of soft set, complement
of a soft set, null soft set, and absolute soft set. More, new operations [2] in
soft set theory were investigated by using the notions defined in [1]. In [4],

we introduced the notions of Ag, AF and F< ona parameter subset A,
and study some properties of such notions. We also studied various types
of subsets on a universe parameter set for a given soft set. In [7],
we investigated a monotonic operation ug : P(X)— P(X) defined by
Ae, F< in any soft set (F, X) (Ac X) as the following: ug(A) =

A UF(F(A)) for AeP(X). Naturally, we have very attentive to

research for any operation defined in a given common universe set U. For
one of the goals of this research, we are going to introduce an operation

F :P(U) - P(U) induced by F< and a given soft set (F, X) over a
common universe set U, and to study some basic properties of the operation.

2. Preliminaries

Let U be an initial universe set and E be a collection of all possible
parameters with respect to U, where parameters are the characteristics or
properties of objects in U. We will call E the universe set of parameters with
respect to U.

Definition 2.1 [8]. A pair (F, A) is called a soft set over U if Ac E
and F: A— P(U), where P(U) is the set of all subsets of U.

Definition 2.2 [10]. Let U be an initial universe set and E be a universe
set of parameters. Let (F, A) and (G, B) be soft sets over a common

universe set U and A, B < E. Then (F, A) is a subset of (G, B), denoted
by (F, A) c (G, B), if

() Ac B;

(i) forall e € A, F(e) < G(e).
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(F, A) equals (G, B), denoted by (F, A)=(G, B), if (F, A)c
(G, B) and (G, B) c (F, A).

Definition 2.3 [5]. A soft set (F, A) over U is said to be a null soft set
denoted by @, if Ve € A F(e) = @.

Definition 2.4 [5]. A soft set (F, A) over U is said to be an absolute soft
set denoted by A if Ve e A F(e) =U.

Definition 2.5 [6]. Let (F, X) be a soft set over a universe set U. For
A c X, we define F(A)=U{F(a):a e A}.

Definition 2.6 [4]. Let (F, X) be a soft set over a universe set U. For
Ac X cE and S c U,

Ar ={facA:Fa)=0) AF ={acA:F(a)=);
F(S)={ae X :F(@a)c S and F(a) = @}.

Lemma 2.7 [6]. Let (F, X) be a soft set over a universe set U. Then for
A BcX,

(i) A < B implies F(A) < F(B);
(i) F(AUB) = F(A)U F(B);
(iii) F(ANB) < F(A)N F(B).

Theorem 2.8 [4]. Let (F, X) be a soft set over a universe set U. Then
for A, B < X,

(i) A= As UAF;
(ii) F(A) = F(AF);

(i) AT c FE(F(A);
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(iv) if Ac B, then A < B and AF c BF: moreover, F<(F(A)
c FT(F(B)).

Theorem 2.9 [4]. Let (F, X) be a soft set over a universe set U. Then

(i) F(FT(S)) = S for S c U;

(i) F(FC(F(A)) = F(A) for Ac X;

(iii) F(F(FT(F(A)) = FT(F(A)) for A c X.

3. Main Results

In this section, for a fixed parameter subset X < E and a common

universe set U, we study an operation F : P(U) — P(U) induced by F<

and a given soft set (F, X) over acommon universe set U.

Definition 3.1. Let (F, X) be a soft set over a universe set U. We define

an operation F : P(U) — P(U) as follows:
F(S) = F(F<(S)) for S e P(U).
Theorem 3.2. Let (F, X) be a soft set over a universe set U. Then the
operation F : P(U) — P(U) satisfies the following:
(i) F(©) =<.
(i) F(S) = S for S e P(U).
Proof. Obvious. ]

Lemma 3.3 [7]. Let (F, X) be a soft set over a common universe U and

V1, Vo < U. Then we have the following:
(i) FTV)NFT (Vo) = FT(Vp NVy).

(i) FT (VP UFT (V) c FT (Vv UVy).
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Proof. (i) For ae X,ae FT (V) NF“(V,) iffac FT(V;) and a e

F<(V,) iff F(a) =V, and F(a) cV, for F(a) = @ iff F(a) c V4 NVs
for F(a) = @ iff a e F(V; NVs).

(iiyFor ae X, acF (V) )UF“(V,)=aecF (V) oraeF(Vy)

= F(a)cVyor F(a)cV, for F(a) # J = F(a) ¢V, UV, for F(a) =

@ =aeFT(V,UV,). L]

Example 3.4. Let U = {x{, X9, X3, X4} and a parameter set E = {e;, ey,
e3, €4}. Consider X = {e, e,, e3} and a soft set (F, X ) defined as follows:
Fle) =9; F(e2) ={x2}; F(es) = {x, X3}

Let Vi = {X, Xo} and V, = {Xy, X3, X4}. Then F(V; UV,) = {e,, e3}.
Note that F(ez) V4, Vo. So ez ¢ F< (V1) and ez ¢ F<(V,). It implies
that F<(V; UV,) = F< (V) U F<(Vy).

Theorem 3.5. Let (F, X) be a soft set over a universe set U. Then the

operation F : P(U) — P(U) satisfies the following:
.7-"(81 ﬂ 82) C f(Sl) n f(SZ) for Sl' 52 € P(U)

Proof. Let Sy, S, € P(U). Then by (iii) of Lemma 2.7 and Lemma 3.3,

we have

F(SNSp) = F(F (S, N Sy))
=F(F(S)NF(Sp)
c F(FT(S))NF(F(S2))
= F(S1) N F(Sy).

So F(S;N'Sy) < F(S1) N F(Sy). ]
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Example 3.6. Let U = {x{, Xp, X3, X4, Xg, X7, Xg} and a parameter set
E = {e1, ey, €3, €4, 5}. Consider X = E and a soft set (F, X) defined as
follows:
Fler) = {x1, X2, X3}; F(e2) = {X2, X3, X4}; F(e3) = {x3};

Fea) = X, X3, Xs)i F(es) = {Xp. ¥g, %)

Let S; = {X, Xp, X3, X4, X7} and Sy = {X,, X3, Xs, Xg, Xg}. Note that:
F(FC(S1NS2) = FIF ({0, x3)) = Flea)) = (g
F(F<(S0) = F(fer. e, 5)) = X1, X0, X3 Xa) < S
F(F(S2) = Flles. . e5)) = %o, X5, X5, X6} < So.

So F(F<(S{NSy)) = F(FT(S1) N F(F<(Sy)).

Theorem 3.7 (Monotonicity). Let (F, X) be a soft set over a universe
set U. Then the operation F : P(U) — P(U) satisfies the following:

Sl C SZ = ]—'(Sl) C f(SZ) for Sl’ 82 € P(U)

Proof. For S;, S» € P(U), let S; < S,. Then for each s € F<(S;), by
hypothesis, F(s) = S; < S, and so s € F<(S,). Hence, from Lemma 2.7,
we have F(S;) < F(S,). L]

Theorem 3.8. Let (F, X) be a soft set over a universe set U. Then the
operation F : P(U) — P(U) satisfies the following:

]-"(Sl) U f(Sz) c .7-"(81 U 82) for Sl! 82 € P(U)
Proof. From Theorem 3.7, it is obvious. ]

Example 3.9. Let U = {X{, X9, X3, X4, Xg, X7, Xg} and a parameter set
E = {e;, e, €3, €4, €5}. Consider X = E and a soft set (F, X) defined as

follows:
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Fler) = {x1, X2, X3}; F(e2) = {X2, X3, X4}; F(e3) = {x3};
F(eq) = {X4, X5, Xg}; F(es) = {Xg}-

Let S = {x, X2, X3, X4} and S, = {Xs, Xg, X7, Xg}. Note that:
F(FT(S1US2)) = F(FT(U)) = F(E) = {x, X2, X3, X4, X5, X, Xg};
F(F(S1) = F(fer, €2, e3}) = {x1, X2, X3, Xa};

F(F(S2)) = F(les}) = {xe}.
Hence, we know that F(F (S U S»)) = F(F(S1)) U F(F<(S))).

Theorem 3.10 (Idempotent). Let (F, X) be a soft set over a universe set
U. Then the operation F : P(U) — P(U) satisfies the following:
F(F(S)) = F(S) for S € P(U).
Proof. It is obviously obtained F(F(S)) < F(S) from Theorem 3.2 and
the monotonicity of F.

For the other part of proof, first we show that
F(S) c FT(F(FT(9)).

Let ze F<(S). Then F(z)#@ and F(z) < F(F(S)). From the
definition of F<, we have z € F<(F(F(S))) and finally F<(S) c
F(F(F(S))). From this fact and (i) of Lemma 2.7, it follows
F(F<(S)) < F(F(F(F<(S)))). Hence, we have F(S) c F(F(S)). [

Theorem 3.11. Let (F, X) be a soft set over a universe set U. Then for
ieJ=dand A < X, UF(A)=FUFA)).

Proof. Let ieJ=J and A < X. Then by F(A)<c UF(A),
monotonicity and idempotent of F, F(A)=F(F(A)) < FUF(A)) <
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UZF(A), and UF(A)c FIUF(A)) cUF(A). Hence UF(A)=

FUF(A)). [
Theorem 3.12. Let (F, X) be a soft set over a universe set U. If

A =F(A)forield = and A < X, then UA = F(UA).

Proof. It is straightforward from Theorem 3.11. O

Definition 3.13. A soft set (F, A) is said to be distinct over U if for

a,a, € A a #ay € Aimplies F(ay) N F(ap) = 2.

Theorem 3.14. Let (F, X) be a soft set over U. If the soft set (F, X) is
distinct over U, then F(AN B) = F(A)N F(B).

Proof. From Lemma 2.7, F(AN B) < F(A)N F(B). For the proof of
converse inclusion, let z € F(A) ) F(B). Then for some a € A and b € B,
zeF(a) and F(b). So zeF(a)NF(b)= and by the law of
contrapositive, a = b. This implies a € A(1B and z € F(A1B). Hence
F(A)N F(B) = F(AN B). U]

Theorem 3.15. Let (F, X) be a soft set over a universe set U. If (F, X)
is distinct, the operation F :PU)— P(U) satisfies F(S;NS,)=
F(S1)N F(Sy) for Sq, S, € P(U).

Proof. For S;, S; € P(U), by Lemma 3.3, F<(S{NSy) = F(S)N
F<(S,). From Theorem 3.14, it follows F(F<(S;NS)) = F(F<(S1)N
F(Sy)) = F(FT(S1)NF(F(Sy)). Hence, we have F(S;NSy)=
F(S1) N F(S2). H

Let U be an initial universe set. If a topology t is given on the universe

U, we call U a topological universe [6] with a topology t (denoted by U).

The member of 1 is said to be open in U.
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Definition 3.16 [6]. Let (F, A) be a soft set over a topological universe
set U,. We say that (F, A) is a quasi-open soft set if F(A)=U{F(a):
ae A}isopeninU_.

Theorem 3.17. If (F, A) is a quasi-open soft set over the topological

universe set U., then (F, F(F(A))) is quasi-open such that

T
F(F(F(A) = F(A).
Proof. We know that a soft set (F, F< (F(A))) is well defined. From
(ii) of Theorem 2.9, it follows that F(F < (F(A))) = F(A). By hypothesis,
F<(F(A)) is open, and so (F, F<(F(A))) is quasi-open. U]
In Theorem 3.17, (F, F<(F(A))) is not always a soft subset of (F, A)
as shown in the next example:

Example 3.18. Let U = {xq, Xp, X3, X4, X5} and a parameter set X =

{e1, €5, €3, €4}. Consider a soft set (F, X ) defined as follows:
F(e1) =9; F(ez) = {x2}; F(e3)=1{x1, X3} F(es)={x, X2}
For A ={ej, ey, e3} and a soft subset (F, A) of (F, X), F(F(A))
= {e,, €3, 84} £ A and so (F, F(F(A))) is not a soft subset of (F, A).

Lemma 3.19. Let (F, X) be a soft set over a universe set U. If (F, X)
is distinct, thenfor A< X and x € X, F(x) < F(A) implies x € A

Proof. For Ac X and x e X, let F(x) < F(A). Then since F(A)
=U{F(a): a € A}, there exists an element a in A such that F(x) N F(a)
# . By hypothesis and the law of contrapositive, x = a and so x € A ]

Theorem 3.20. Let (F, X) be a soft set over a universe set U. If (F, X)

is distinct, then for A = X, F<(F(A)) = AF.
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Proof. From (iii) of Theorem 2.8, it is obtained that AT = F<(F(A)).
Now we show the other inclusion F< (F(A)) = A™. For the proof, let

x € F<(F(A)). Then from the definition of F*, F(x) = @ and F(x) c

F(A). From the above lemma, x e A, and since F(x)= &, we have
x e AT, U]

Theorem 3.21. If (F, A) is a soft subset of (F, X) and if (F, X) is
distinct, then (F, F<(F(A))) is a soft subset of (F, A) such that
F(FT(F(A)) = F(A).

Proof. From the above theorem and (ii) of Theorem 2.9, F< (F(A)) =
AF c A and E(F(F(A)) = F(A). Since (F, E<(F(A) is a well
defined soft set as F(x) for x e F(F(A)), (F, F<(F(A))) is a soft
subset of (F, A) satisfying the condition. ]

In summary, we have the following theorem from the above lemma and
theorems:

Theorem 3.22. If (F, A) is a quasi-open soft set over the topological

universe set U and if (F, X) is distinct, then (F, F(F(A))) is a quasi-
open soft subset of (F, A).
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