Far East Journal of Mathematical Sciences (FJMS) © 2014 Pushpa Publishing House, Allahabad, India Published Online: October 2014 Available online at http://pphmj.com/journals/fjms.htm Volume 92, Number 1, 2014, Pages 113-123

REMARKS ON MONOTONIC OPERATIONS INDUCED BY A SOFT SET

Young Key Kim and Won Keun Min*

Department of Mathematics MyongJi University Yongin 449-728, Korea e-mail: ykkim@mju.ac.kr

Department of Mathematics Kangwon National University Chuncheon, 200-701, Korea e-mail: wkmin@kangwon.ac.kr

Abstract

The purpose of this paper is to introduce an operation $\mathcal{F}: P(U) \to P(U)$ induced by F^{\leftarrow} and a given soft set (F, X) over a common universe set U, and to study some basic properties of the operation.

1. Introduction

In 1999, Molodtsov introduced the concept of soft set [8] to solve complicated problems and various types of uncertainties. He introduced that a soft set is an approximate description of an object precisely consisting of two parts, namely predicate and approximate value set. Soft set theory is a mathematical tool for dealing with uncertainties which is free from the

Received: August 15, 2014; Accepted: September 13, 2014

2010 Mathematics Subject Classification: 94D05, 94D99, 03E70, 03E72.

Keywords and phrases: soft sets, quasi-open soft sets, monotonic operation induced by soft sets.

*Corresponding author

difficulties of theory of fuzzy sets [11], theory of vague sets [3], and theory of rough sets [9]. Maji et al. [5] introduced several operators for soft set theory: equality of two soft sets, subset and superset of soft set, complement of a soft set, null soft set, and absolute soft set. More, new operations [2] in soft set theory were investigated by using the notions defined in [1]. In [4], we introduced the notions of A_F , A^F and F^{\leftarrow} on a parameter subset A, and study some properties of such notions. We also studied various types of subsets on a universe parameter set for a given soft set. In [7], we investigated a monotonic operation $u_F: P(X) \to P(X)$ defined by A_F , F^{\leftarrow} in any soft set (F, X) $(A \subseteq X)$ as the following: $u_F(A) = A_F \cup F^{\leftarrow}(F(A))$ for $A \in P(X)$. Naturally, we have very attentive to research for any operation defined in a given common universe set U. For one of the goals of this research, we are going to introduce an operation $\mathcal{F}: P(U) \to P(U)$ induced by F^{\leftarrow} and a given soft set (F, X) over a common universe set U, and to study some basic properties of the operation.

2. Preliminaries

Let U be an initial universe set and E be a collection of all possible parameters with respect to U, where parameters are the characteristics or properties of objects in U. We will call E the universe set of parameters with respect to U.

Definition 2.1 [8]. A pair (F, A) is called a *soft set* over U if $A \subset E$ and $F: A \to P(U)$, where P(U) is the set of all subsets of U.

Definition 2.2 [10]. Let U be an initial universe set and E be a universe set of parameters. Let (F, A) and (G, B) be soft sets over a common universe set U and $A, B \subseteq E$. Then (F, A) is a *subset* of (G, B), denoted by $(F, A) \subseteq (G, B)$, if

- (i) $A \subset B$;
- (ii) for all $e \in A$, $F(e) \subseteq G(e)$.

(F, A) equals (G, B), denoted by (F, A) = (G, B), if $(F, A) \subseteq (G, B)$ and $(G, B) \subseteq (F, A)$.

Definition 2.3 [5]. A soft set (F, A) over U is said to be a *null soft set* denoted by Φ , if $\forall e \in A$, $F(e) = \emptyset$.

Definition 2.4 [5]. A soft set (F, A) over U is said to be an *absolute soft* set denoted by \widetilde{A} , if $\forall e \in A$, F(e) = U.

Definition 2.5 [6]. Let (F, X) be a soft set over a universe set U. For $A \subseteq X$, we define $F(A) = \bigcup \{F(a) : a \in A\}$.

Definition 2.6 [4]. Let (F, X) be a soft set over a universe set U. For $A \subseteq X \subseteq E$ and $S \subseteq U$,

$$A_F = \{a \in A : F(a) = \varnothing\}; \quad A^F = \{a \in A : F(a) \neq \varnothing\};$$

$$F^{\leftarrow}(S) = \{ a \in X : F(a) \subseteq S \text{ and } F(a) \neq \emptyset \}.$$

Lemma 2.7 [6]. Let (F, X) be a soft set over a universe set U. Then for $A, B \subseteq X$,

- (i) $A \subseteq B$ implies $F(A) \subseteq F(B)$;
- (ii) $F(A \cup B) = F(A) \cup F(B)$;
- (iii) $F(A \cap B) \subseteq F(A) \cap F(B)$.

Theorem 2.8 [4]. Let (F, X) be a soft set over a universe set U. Then for $A, B \subseteq X$,

- (i) $A = A_F \cup A^F$;
- (ii) $F(A) = F(A^F)$;
- (iii) $A^F \subseteq F^{\leftarrow}(F(A));$

(iv) if $A \subseteq B$, then $A_F \subseteq B_F$ and $A^F \subseteq B^F$; moreover, $F \leftarrow (F(A))$ $\subseteq F \leftarrow (F(B))$.

Theorem 2.9 [4]. Let (F, X) be a soft set over a universe set U. Then

(i)
$$F(F^{\leftarrow}(S)) \subseteq S \text{ for } S \subseteq U$$
;

(ii)
$$F(F \leftarrow (F(A))) = F(A)$$
 for $A \subset X$:

(iii)
$$F \leftarrow (F(F \leftarrow (F(A)))) = F \leftarrow (F(A))$$
 for $A \subset X$.

3. Main Results

In this section, for a fixed parameter subset $X \subseteq E$ and a common universe set U, we study an operation $\mathcal{F}: P(U) \to P(U)$ induced by F^{\leftarrow} and a given soft set (F, X) over a common universe set U.

Definition 3.1. Let (F, X) be a soft set over a universe set U. We define an operation $\mathcal{F}: P(U) \to P(U)$ as follows:

$$\mathcal{F}(S) = F(F \leftarrow (S)) \text{ for } S \in P(U).$$

Theorem 3.2. Let (F, X) be a soft set over a universe set U. Then the operation $\mathcal{F}: P(U) \to P(U)$ satisfies the following:

(i)
$$\mathcal{F}(\emptyset) = \emptyset$$
.

(ii)
$$\mathcal{F}(S) \subseteq S$$
 for $S \in P(U)$.

Lemma 3.3 [7]. Let (F, X) be a soft set over a common universe U and $V_1, V_2 \subseteq U$. Then we have the following:

(i)
$$F \leftarrow (V_1) \cap F \leftarrow (V_2) = F \leftarrow (V_1 \cap V_2)$$
.

(ii)
$$F \leftarrow (V_1) \cup F \leftarrow (V_2) \subseteq F \leftarrow (V_1 \cup V_2)$$
.

Proof. (i) For $a \in X$, $a \in F^{\leftarrow}(V_1) \cap F^{\leftarrow}(V_2)$ iff $a \in F^{\leftarrow}(V_1)$ and $a \in F^{\leftarrow}(V_2)$ iff $F(a) \subseteq V_1$ and $F(a) \subseteq V_2$ for $F(a) \neq \emptyset$ iff $F(a) \subseteq V_1 \cap V_2$ for $F(a) \neq \emptyset$ iff $a \in F^{\leftarrow}(V_1 \cap V_2)$.

(ii) For
$$a \in X$$
, $a \in F^{\leftarrow}(V_1) \cup F^{\leftarrow}(V_2) \Rightarrow a \in F^{\leftarrow}(V_1)$ or $a \in F^{\leftarrow}(V_2)$
 $\Rightarrow F(a) \subseteq V_1$ or $F(a) \subseteq V_2$ for $F(a) \neq \emptyset \Rightarrow F(a) \subseteq V_1 \cup V_2$ for $F(a) \neq \emptyset \Rightarrow a \in F^{\leftarrow}(V_1 \cup V_2)$.

Example 3.4. Let $U = \{x_1, x_2, x_3, x_4\}$ and a parameter set $E = \{e_1, e_2, e_3, e_4\}$. Consider $X = \{e_1, e_2, e_3\}$ and a soft set (F, X) defined as follows: $F(e_1) = \emptyset$; $F(e_2) = \{x_2\}$; $F(e_3) = \{x_1, x_3\}$.

Let $V_1 = \{x_1, x_2\}$ and $V_2 = \{x_2, x_3, x_4\}$. Then $F^{\leftarrow}(V_1 \cup V_2) = \{e_2, e_3\}$. Note that $F(e_3) \nsubseteq V_1, V_2$. So $e_3 \notin F^{\leftarrow}(V_1)$ and $e_3 \notin F^{\leftarrow}(V_2)$. It implies that $F^{\leftarrow}(V_1 \cup V_2) \neq F^{\leftarrow}(V_1) \cup F^{\leftarrow}(V_2)$.

Theorem 3.5. Let (F, X) be a soft set over a universe set U. Then the operation $\mathcal{F}: P(U) \to P(U)$ satisfies the following:

$$\mathcal{F}(S_1\cap S_2)\subseteq \mathcal{F}(S_1)\cap \mathcal{F}(S_2) \ for \ S_1, \ S_2\in P(U).$$

Proof. Let S_1 , $S_2 \in P(U)$. Then by (iii) of Lemma 2.7 and Lemma 3.3, we have

$$\mathcal{F}(S_1 \cap S_2) = F(F^{\leftarrow}(S_1 \cap S_2))$$

$$= F(F^{\leftarrow}(S_1) \cap F^{\leftarrow}(S_2))$$

$$\subseteq F(F^{\leftarrow}(S_1)) \cap F(F^{\leftarrow}(S_2))$$

$$= \mathcal{F}(S_1) \cap \mathcal{F}(S_2).$$

So
$$\mathcal{F}(S_1 \cap S_2) \subseteq \mathcal{F}(S_1) \cap \mathcal{F}(S_2)$$
.

Example 3.6. Let $U = \{x_1, x_2, x_3, x_4, x_6, x_7, x_8\}$ and a parameter set $E = \{e_1, e_2, e_3, e_4, e_5\}$. Consider X = E and a soft set (F, X) defined as follows:

$$F(e_1) = \{x_1, x_2, x_3\}; F(e_2) = \{x_2, x_3, x_4\}; F(e_3) = \{x_3\};$$

$$F(e_4) = \{x_2, x_3, x_5\}; F(e_5) = \{x_2, x_3, x_6\}.$$

Let $S_1 = \{x_1, x_2, x_3, x_4, x_7\}$ and $S_2 = \{x_2, x_3, x_5, x_6, x_8\}$. Note that:

$$F(F \leftarrow (S_1 \cap S_2)) = F(F \leftarrow (\{x_2, x_3\})) = F(\{e_3\}) = \{x_3\};$$

$$F(F \leftarrow (S_1)) = F(\{e_1, e_2, e_3\}) = \{x_1, x_2, x_3, x_4\} \subseteq S_1;$$

$$F(F \leftarrow (S_2)) = F(\{e_3, e_4, e_5\}) = \{x_2, x_3, x_5, x_6\} \subseteq S_2.$$

So
$$F(F \leftarrow (S_1 \cap S_2)) \neq F(F \leftarrow (S_1)) \cap F(F \leftarrow (S_2))$$
.

Theorem 3.7 (Monotonicity). Let (F, X) be a soft set over a universe set U. Then the operation $\mathcal{F}: P(U) \to P(U)$ satisfies the following:

$$S_1 \subseteq S_2 \Rightarrow \mathcal{F}(S_1) \subseteq \mathcal{F}(S_2) \text{ for } S_1, S_2 \in P(U).$$

Proof. For S_1 , $S_2 \in P(U)$, let $S_1 \subseteq S_2$. Then for each $s \in F^{\leftarrow}(S_1)$, by hypothesis, $F(s) \subseteq S_1 \subseteq S_2$ and so $s \in F^{\leftarrow}(S_2)$. Hence, from Lemma 2.7, we have $\mathcal{F}(S_1) \subseteq \mathcal{F}(S_2)$.

Theorem 3.8. Let (F, X) be a soft set over a universe set U. Then the operation $\mathcal{F}: P(U) \to P(U)$ satisfies the following:

$$\mathcal{F}(S_1) \cup \mathcal{F}(S_2) \subseteq \mathcal{F}(S_1 \cup S_2) \ for \ S_1, \ S_2 \in P(U).$$

Proof. From Theorem 3.7, it is obvious.

Example 3.9. Let $U = \{x_1, x_2, x_3, x_4, x_6, x_7, x_8\}$ and a parameter set $E = \{e_1, e_2, e_3, e_4, e_5\}$. Consider X = E and a soft set (F, X) defined as follows:

$$F(e_1) = \{x_1, x_2, x_3\}; F(e_2) = \{x_2, x_3, x_4\}; F(e_3) = \{x_3\};$$

$$F(e_4) = \{x_4, x_5, x_8\}; F(e_5) = \{x_6\}.$$

Let $S_1 = \{x_1, x_2, x_3, x_4\}$ and $S_2 = \{x_5, x_6, x_7, x_8\}$. Note that:

$$F(F \leftarrow (S_1 \cup S_2)) = F(F \leftarrow (U)) = F(E) = \{x_1, x_2, x_3, x_4, x_5, x_6, x_8\};$$

$$F(F \leftarrow (S_1)) = F(\{e_1, e_2, e_3\}) = \{x_1, x_2, x_3, x_4\};$$

$$F(F^{\leftarrow}(S_2)) = F(\{e_5\}) = \{x_6\}.$$

Hence, we know that $F(F \leftarrow (S_1 \cup S_2)) \neq F(F \leftarrow (S_1)) \cup F(F \leftarrow (S_2))$.

Theorem 3.10 (Idempotent). Let (F, X) be a soft set over a universe set U. Then the operation $\mathcal{F}: P(U) \to P(U)$ satisfies the following:

$$\mathcal{F}(\mathcal{F}(S)) = \mathcal{F}(S)$$
 for $S \in P(U)$.

Proof. It is obviously obtained $\mathcal{F}(\mathcal{F}(S)) \subseteq \mathcal{F}(S)$ from Theorem 3.2 and the monotonicity of \mathcal{F} .

For the other part of proof, first we show that

$$F^{\leftarrow}(S) \subseteq F^{\leftarrow}(F(F^{\leftarrow}(S))).$$

Let $z \in F^{\leftarrow}(S)$. Then $F(z) \neq \emptyset$ and $F(z) \subseteq F(F^{\leftarrow}(S))$. From the definition of F^{\leftarrow} , we have $z \in F^{\leftarrow}(F(F^{\leftarrow}(S)))$ and finally $F^{\leftarrow}(S) \subseteq F^{\leftarrow}(F(F^{\leftarrow}(S)))$. From this fact and (i) of Lemma 2.7, it follows $F(F^{\leftarrow}(S)) \subseteq F(F^{\leftarrow}(F(F^{\leftarrow}(S))))$. Hence, we have $\mathcal{F}(S) \subseteq \mathcal{F}(\mathcal{F}(S))$. \square

Theorem 3.11. Let (F, X) be a soft set over a universe set U. Then for $i \in J \neq \emptyset$ and $A_i \subseteq X, \bigcup \mathcal{F}(A_i) = \mathcal{F}(\bigcup \mathcal{F}(A_i))$.

Proof. Let $i \in J \neq \emptyset$ and $A_i \subseteq X$. Then by $\mathcal{F}(A_i) \subseteq \bigcup \mathcal{F}(A_i)$, monotonicity and idempotent of \mathcal{F} , $\mathcal{F}(A_i) = \mathcal{F}(\mathcal{F}(A_i)) \subseteq \mathcal{F}(\bigcup \mathcal{F}(A_i)) \subseteq$

$$\bigcup \mathcal{F}(A_i), \quad \text{and} \quad \bigcup \mathcal{F}(A_i) \subseteq \mathcal{F}(\bigcup \mathcal{F}(A_i)) \subseteq \bigcup \mathcal{F}(A_i). \quad \text{Hence} \quad \bigcup \mathcal{F}(A_i) = \mathcal{F}(\bigcup \mathcal{F}(A_i)).$$

Theorem 3.12. Let (F, X) be a soft set over a universe set U. If $A_i = \mathcal{F}(A_i)$ for $i \in J \neq \emptyset$ and $A_i \subseteq X$, then $\bigcup A_i = \mathcal{F}(\bigcup A_i)$.

Proof. It is straightforward from Theorem 3.11.

Definition 3.13. A soft set (F, A) is said to be *distinct* over U if for $a_1, a_2 \in A, a_1 \neq a_2 \in A$ implies $F(a_1) \cap F(a_2) = \emptyset$.

Theorem 3.14. Let (F, X) be a soft set over U. If the soft set (F, X) is distinct over U, then $F(A \cap B) = F(A) \cap F(B)$.

Proof. From Lemma 2.7, $F(A \cap B) \subseteq F(A) \cap F(B)$. For the proof of converse inclusion, let $z \in F(A) \cap F(B)$. Then for some $a \in A$ and $b \in B$, $z \in F(a)$ and F(b). So $z \in F(a) \cap F(b) \neq \emptyset$ and by the law of contrapositive, a = b. This implies $a \in A \cap B$ and $z \in F(A \cap B)$. Hence $F(A) \cap F(B) \subseteq F(A \cap B)$.

Theorem 3.15. Let (F, X) be a soft set over a universe set U. If (F, X) is distinct, the operation $\mathcal{F}: P(U) \to P(U)$ satisfies $\mathcal{F}(S_1 \cap S_2) = \mathcal{F}(S_1) \cap \mathcal{F}(S_2)$ for $S_1, S_2 \in P(U)$.

Proof. For $S_1, S_2 \in P(U)$, by Lemma 3.3, $F \leftarrow (S_1 \cap S_2) = F \leftarrow (S_1) \cap F \leftarrow (S_2)$. From Theorem 3.14, it follows $F(F \leftarrow (S_1 \cap S_2)) = F(F \leftarrow (S_1) \cap F \leftarrow (S_2)) = F(F \leftarrow (S_1)) \cap F(F \leftarrow (S_2))$. Hence, we have $F(S_1 \cap S_2) = F(S_1) \cap F(S_2)$.

Let U be an initial universe set. If a topology τ is given on the universe U, we call U a topological universe [6] with a topology τ (denoted by U_{τ}). The member of τ is said to be *open* in U.

Definition 3.16 [6]. Let (F, A) be a soft set over a topological universe set U_{τ} . We say that (F, A) is a *quasi-open soft set* if $F(A) = \bigcup \{F(a) : a \in A\}$ is open in U_{τ} .

Theorem 3.17. If (F, A) is a quasi-open soft set over the topological universe set U_{τ} , then $(F, F^{\leftarrow}(F(A)))$ is quasi-open such that $F(F^{\leftarrow}(F(A))) = F(A)$.

Proof. We know that a soft set $(F, F^{\leftarrow}(F(A)))$ is well defined. From (ii) of Theorem 2.9, it follows that $F(F^{\leftarrow}(F(A))) = F(A)$. By hypothesis, $F^{\leftarrow}(F(A))$ is open, and so $(F, F^{\leftarrow}(F(A)))$ is quasi-open.

In Theorem 3.17, $(F, F \leftarrow (F(A)))$ is not always a soft subset of (F, A) as shown in the next example:

Example 3.18. Let $U = \{x_1, x_2, x_3, x_4, x_5\}$ and a parameter set $X = \{e_1, e_2, e_3, e_4\}$. Consider a soft set (F, X) defined as follows:

$$F(e_1) = \emptyset$$
; $F(e_2) = \{x_2\}$; $F(e_3) = \{x_1, x_3\}$; $F(e_4) = \{x_1, x_2\}$.

For $A = \{e_1, e_2, e_3\}$ and a soft subset (F, A) of (F, X), $F \leftarrow (F(A))$ = $\{e_2, e_3, e_4\} \nsubseteq A$ and so $(F, F \leftarrow (F(A)))$ is not a soft subset of (F, A).

Lemma 3.19. Let (F, X) be a soft set over a universe set U. If (F, X) is distinct, then for $A \subseteq X$ and $x \in X$, $F(x) \subseteq F(A)$ implies $x \in A$.

Proof. For $A \subseteq X$ and $x \in X$, let $F(x) \subseteq F(A)$. Then since $F(A) = \bigcup \{F(a) : a \in A\}$, there exists an element a in A such that $F(x) \cap F(a) \neq \emptyset$. By hypothesis and the law of contrapositive, x = a and so $x \in A$. \square

Theorem 3.20. Let (F, X) be a soft set over a universe set U. If (F, X) is distinct, then for $A \subseteq X$, $F \leftarrow (F(A)) = A^F$.

Proof. From (iii) of Theorem 2.8, it is obtained that $A^F \subseteq F^{\leftarrow}(F(A))$. Now we show the other inclusion $F^{\leftarrow}(F(A)) \subseteq A^F$. For the proof, let $x \in F^{\leftarrow}(F(A))$. Then from the definition of F^{\leftarrow} , $F(x) \neq \emptyset$ and $F(x) \subseteq F(A)$. From the above lemma, $x \in A$, and since $F(x) \neq \emptyset$, we have $x \in A^F$.

Theorem 3.21. If (F, A) is a soft subset of (F, X) and if (F, X) is distinct, then $(F, F \leftarrow (F(A)))$ is a soft subset of (F, A) such that $F(F \leftarrow (F(A))) = F(A)$.

Proof. From the above theorem and (ii) of Theorem 2.9, $F^{\leftarrow}(F(A)) = A^F \subseteq A$ and $F(F^{\leftarrow}(F(A))) = F(A)$. Since $(F, F^{\leftarrow}(F(A)))$ is a well defined soft set as F(x) for $x \in F^{\leftarrow}(F(A))$, $(F, F^{\leftarrow}(F(A)))$ is a soft subset of (F, A) satisfying the condition.

In summary, we have the following theorem from the above lemma and theorems:

Theorem 3.22. If (F, A) is a quasi-open soft set over the topological universe set U_{τ} and if (F, X) is distinct, then $(F, F^{\leftarrow}(F(A)))$ is a quasi-open soft subset of (F, A).

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant No. NRF-2012R1A1A4A01004765).

References

[1] M. I. Ali, F. Feng, X. Liu, W. K. Min and M. Shabir, On some new operations in soft set theory, Comput. Math. Appl. 57 (2009), 1547-1553.

- [2] M. I. Ali, M. Shabir and M. Naz, Algebraic structures of soft sets associated with new operations, Comput. Math. Appl. 61 (2011), 2647-2654.
- [3] W. L. Gau and D. J. Buehrer, Vague sets, IEEE Trans. System Man Cybernet 23(2) (1993), 610-614.
- [4] Y. K. Kim and W. K. Min, Remarks on parameter sets for soft sets, Far East J. Math. Sci. (FJMS) 86(2) (2014), 211-220.
- [5] P. K. Maji, R. Biswas and A. R. Roy, On soft set theory, Comput. Math. Appl. 45 (2003), 555-562.
- [6] W. K. Min, Soft sets over a common topological universe, Journal of Intelligent and Fuzzy Systems 26(5) (2014), 2099-2106.
- [7] W. K. Min and Y. K. Kim, Monotonic operations, soft liftings and soft transformations induced by soft sets-(I), submitted.
- [8] D. Molodtsov, Soft set theory first results, Comput. Math. Appl. 37 (1999), 19-31.
- [9] Z. Pawlak, Rough sets, Internat. J. Comput. Inform. Sci. 11(5) (1982), 341-356.
- [10] D. Pei and D. Miao, From soft sets to information systems, 2005 IEEE Inter. Conf. 2, pp. 617-621.
- [11] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353.