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Abstract

It is well known that a normed space E is a uniformly convex (smooth)

normed space if and only if its dual E* is uniformly smooth (convex).
We extend these geometric properties to seminormed spaces and then
introduce definitions of uniformly convex (smooth) countably
seminormed spaces. A new vision of the completion of countably
seminormed space was helpful in our task. We get some fundamental
links between Lindenstrauss duality formulas. A duality property
between uniform convexity and uniform smoothness of countably
seminormed space is also given.

1. Definitions and Examples

Definition 1.1 (Countably seminormed space) [5, 3]. A linear space E
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equipped with a total countable family of seminorms {p,, n € N} is said
to be a countably seminormed space. Totality (pn(x)=0,Vn= x=0)

guarantees that E is Hausdorff. A complete countably seminormed space is
called a Fréchet space. If E is equipped with one seminorm p, then (E, p) is

called a seminormed space. If p is a norm, then (E, p) is a normed space.
Remarks [5, 7]. (1) Without loss of generality (by taking the equivalent

n
system of seminorms p,,(x) = max pi(x)), one can assume that the sequence
i=

of seminorms {p,; n=1 2, ..} is increasing, i.e., py(x) < pp(x)<--- <
pp(n) < -+, VxeE.

(2) Any countably seminormed space is metrizable and its metric d can

- -1 pix=-y)
be defined by d(x, y)= ) ——"1= 77
y 4 ) =2l 1+ pi(x—y)

Definition 1.2 (Compatible norms) [7]. Two norms |- |, and |-, in a

linear space E are said to be compatible if, whenever a sequence {x,} in E is

Cauchy with respect to both norms and converges to a limit x € E with
respect to one of them, it also converges to the same limit x with respect to
the other norm.

Remark 1.3 [7, 3]. If only one of the seminorms, say Png- is a norm,

then by adding this norm to each of the seminorms, we will get an equivalent
system of increasing norms and if these norms are pairwise compatible, then
E is, in fact, a countably normed space.

The following examples are Fréchet spaces [3].

(1) The space R™ of all sequences {a;} of real numbers is equipped with

pn({ai}) = i'ai | forne NV,
i=1
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(2) The space C™[a, b] of smooth functions (infinitely differentiable on
]a, b[ and continuous at the ends of the interval) is equipped with

i=n

pn(f) = sup| D'f(x)| for n e A"

i=0 X
(3) X is a compact manifold and V is a vector bundle over X. Let
€(X,V) be the vector space of smooth sections of the bundle over X.
Choose Riemannian metrics and connections on the bundles TX and V and
let D'f denote the ith covariant derivative of a section f of V. ¢(X,V) is
equipped with

i=n

pn(f)=28up| Dif(x)| for ne V.

i=0 X
Example 1.4 [4]. For1 < p < oo, the space ¢P*0 = () ¢9 is a countably
q>p

normed space. In fact, one can easily see that (PO = ﬂfp” for any choice
n

of a monotonic decreasing sequence {p,} converging to p. #Pn is Banach for

every n, it is clear now that the countably normed space ¢ P+0 s complete.

Notation. Let L be a subspace of a topological linear space E. We may
write x + L to denote the equivalence class X belonging to the factor space
E/L. So we canwrite x e X = x + L € E/L.

Definition 1.5 (Normed space associated with seminormed space) [5].
For a seminormed space (E, p), there is a normed space E/kerp with the

norm | x + kerp|, = p(x) called the associated normed space with the

seminormed space (E, p).

Definition 1.6 (Uniformly convex normed space) [8]. A normed linear
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space E is called uniformly convex if for any ¢ € (0, 2], there exists a & =
8(c) > 0 such that if x, y e E with [x||=1 [y[=1 and [x-y|>s,

then <1-.

%(Hy)

Definition 1.7 (Modulus of convexity) [8]. Let E be a normed linear
space with dim E > 2. The modulus of convexity of E is the function g :

(0, 2] — [0, 1] defined by

. X+
e =inf{L-| Y | xi =yl sz x-yl 2 e

Definition 1.8 (Uniformly smooth normed space) [8]. A normed linear
space E is said to be uniformly smooth if whenever given ¢ > 0 there exists
8 >0 suchthatif | x||=1and || y| <3, then

Ix+yl+Ix=-yl<2+eyl.

Definition 1.9 (Modulus of smoothness) [8]. Let E be a hormed linear
space with dimE > 2. The modulus of smoothness of E is the function

pg - [0, ) = [0, ) defined by

X+y|-[x-
pe) = sup P -1y - of

X+1y|+]x -1y _
~sup{ LI -1y,

Definition 1.10 [5]. A linear functional f on a countably seminormed
space E is continuous if there is a seminorm Pn, ONE and a constant ¢ > 0

such that for all x € E,
| £(X)| < cppy (%).

Definition 1.11 [5]. The space of all linear continuous functionals on a

countably seminormed space E is called the dual of E and is denoted by E™.
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We suggest the following definitions:

Definition 1.12 (Uniformly convex seminormed space). We call a
seminormed linear space (E, p) uniformly convex if for any ¢ € (0, 2], there

exists a & = 8(¢) > 0 such that if x, y e E with p(x)=1, p(y)=1 and

p(x — y) > g, then p(%(x + y)) <1-3.

Definition 1.13 (Uniformly smooth seminormed space). We call a
seminormed linear space (E, p) uniformly smooth if whenever given ¢ > 0

there exists 8 > 0 such that if p(x) =1 and p(y) < §, then
p(x +y) + p(x = y) < 2+ep(y).
2. Technical Lemmas

Since the norm in the associated normed space is defined by the
seminorm, so the following proposition is easy to prove.

Proposition 2.1. (1) A seminormed space (E, p) is uniformly convex if
and only if its associated normed space is uniformly convex. This gives an
equivalent definition of a uniformly convex seminormed space.

(2) A seminormed space (E, p) is uniformly smooth if and only if its
associated normed space is uniformly smooth. This gives an equivalent
definition of a uniformly smooth seminormed space.

(3) A seminormed space (E, p) is complete if and only if its associated
normed space is complete.

Proof. (1) “=” Let (E, p) be a uniformly convex seminormed space.

Then we prove that (E/kerp, | ||,) is a uniformly convex normed space. Let
e >0 be givenand X, § € E/kerp, |X||=]¥|=1suchthat |[X—¥|>e.
Then there exist x, y € E such that X = x + kerp, ¥y =y +kerp, p(x)=

p(y) =1 and p(x —y) > . Since (E, p) is uniformly convex according to
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Definition 1.12, there exists &(g) > 0 such that p(%(x + y)) <1-3&. So

H%(my) <1-%

“<"Let (E/kerp, || [ ,) bea uniformly convex normed space. Then we

prove that (E, p) is a uniformly convex seminormed space. Let ¢ > 0 be
given and x, y € E, p(x) = p(y) =1 such that p(x—y) > ¢. Then there
exist X = x+kerp, y=y+kerpeE/kerp, ||X|=]y||=1and [X-¥]|=>e

(2) “=" Let (E, p) a be uniformly smooth seminormed space. Then we
prove that (E/kerp, | |,) is a smooth convex normed space. Let & > 0 be
givenand X, y € E/kerp, | X||=1suchthat| X+ y|+[|X-Y|<2+¢| V]
Then there exist x, y € E suchthat X = x + kerp, y =y + kerp, p(x)=1
and p(x+y)+ p(x—y)<2+¢ep(y). Since (E, p) is uniformly convex
according to Definition 1.13, there exists 8(¢) > 0 such that p(y) < 3. So
|91 <s.

“<"Let (E/kerp, | [ ,) be a uniformly smooth normed space. Then we

prove that (E, p) is a uniformly smooth seminormed space. Let ¢ > 0 be
given and x, y € E, p(x)=1 such that p(x +y)+ p(x —y) < 2+ ¢p(y).
Then there exist X =x+kerp, y=y+kerpeE/kerp, |X|=1 and
[ X+ §[+1%x=Yl<2+¢].

(3) “=" Let (E, p) be complete. Then we prove that (E/kerp, || [|,) is
also complete. In fact, let {X,} be a Cauchy sequence in (E/kerp, | |).
where {X, = x, + kerp}. Then || X, — Xn, ||p =P(Xy — Xp) —> 0 as n, m

— 0. Hence, {X,} is a Cauchy sequence in (E, p). Since (E, p) is complete,
there exists an element xg € E such that p(x, —Xg) — 0 as n — oo. Hence,

Xo = Xg + kerp e E/kerp is the limit of the Cauchy sequence {Xp}.
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“<" by the same previous way. O

Example 2.2. Let Q be the set of all rational numbers. Q2 with the
following norm | z = (x, y) | = vx% + y? is uniformly convex.

Define Q2 = {(z,): (z,) is a Cauchy sequence in Q?} and a seminorm

on @2 by p((z)) = nIﬂ)nOO |z |. Since the associated normed space of

(@2, p) is R? with the norm | (x, y)| = Vx? + y? and it is uniformly
convex (smooth), (@2, p) is a uniformly convex (smooth) seminormed

space.

Remark 2.3. The dual of a seminormed space (E, p) is a normed space.

| f(0)l

In fact, for every f e (E, p)*, define | f | = sup ~——<', which is
xgker p p(x)

norm. Since if || f | =0, then | f(x)| =0 forall x ¢ kerp and | f(x)| =0
for all x e kerp because | f(x)| <cp(x), so f(x)=0 forall xe E, fis
the zero functional.

It is easy to prove |Af | =|A|| f| forall L e R and | f +g|<|f|
+lgl.
An interesting fact is the following:

Proposition 2.4. The dual of a seminormed space (E, p) is

isomorphically isometric to the dual of its associated normed space
(E/kerp, | [,)-

Proof. For any linear continuous functional f e (E, p)*, we define
fe(E/kerp, | ||p)* by f(x+kerp)= f(x), then f is well defined,

linear and continuous. In fact, if x + kerp = y + kerp, then x -y < kerp,
s0 | f(x)— f(y)| < cp(x—y) =0.
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On the other hand, for f e (E/kerp, | ||p)*, we define f e (E, p)* by

f(x)= f(x + kerp), then f is well defined, linear and continuous.

To show the isometry, we have for any f e (E, p)* and f e

(Efkerp. | [,)".

| {(%)] R .

= = Su =
220 15[, xekarp PXX)

Corollary 2.5. A seminormed space (E, p) is uniformly convex (smooth)

if and only if its dual (E, p)” is uniformly smooth (convex).

3. Completion of Countably Seminormed Space

In 1998, Merkle [2] introduced the completion of countably seminormed
space. We quoted his work and changed some notations to be suitable to
prove our work.

For fixed seminorm p,, one can define a seminorm P,, on the space
Ep, = {{x}:{x}is py Cauchy sequence}
as follows:
ﬁn({xi}ie/\/) = Ill)rgo Pn(Xi)-
This limit exists, because {pn(x;)}; o is a Cauchy sequence in R.

By standard arguments, one can prove that (Epn' Pn) is the completion

of the countably seminormed space E if equipped with only the seminorm
Pn-

In fact, definingamap n: E — Ep by n(x) = (X, X, X, ...) givesa 1-1
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isometrical and isomorphical mapping of E (as a seminormed space with
Pn) onto a dense linear subspace of the space (EIon , Pn)-

Since for any x € E, pp(x) < ppi1(x), vne N, every p,.q Cauchy
sequence is p,, Cauchy sequence.

So

Ec--cEpns)cEp, €< Ep.

Therefore, ﬂ Ep, is a countably seminormed space with
neN

P(X) < Po(0) << Pa(x) < oo Wx e (] Ep,
neN

but it is not, in general, a Hausdorff space because Py ({Xi};c ) =0 for all
n e N does not necessarily imply that {x; }ieN is the zero sequence. In fact,

ﬂ ker p, may not be the zero sequence.
neN

On the factor space (] Ep /(1) ker B;, we define
neN ieN

Pn(X) = ﬁn({xi}ie/\/’ + [ ker EJ = Pn((Xi})-

ieN

Assume épn = Epn/,ﬂ ker B;. In this case, [ ) épn equipped with the
ieN neN

seminorms Py(X) < Pp(X) <+ < Pp(X) < -+, VX e () épn is a countably
neN

seminormed Hausdorff space.

Defining n: E — épn such that 7(x) = {Xx, X, X, ..} + ﬂ ker pj, we
ieN
see that E is isomorphically isometric to a linear dense subset of épn' ie.,

~

Ec--cEpucEp - cEp.
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Proposition 3.1 [2]. Let E be a countably seminormed space. Then

ﬂ Ep, is a complete space. Moreover, there is an isometric and
neN

isomorphic, 1-1 mapping n of E onto a dense subspace of ﬂ épn' E is
neN

complete if and only if

#(E)= () Ep,.
neN

We may write E = () épn'
neN

~

Proof. Elements of ﬂ Ep, are equivalence classes of sequences that
neN

are py,-Cauchy for all n.
For any two Cauchy sequences {x,} and {y,} (in the sense of all p,) in

E let X, ye ﬂ épn be the two equivalence classes containing the two
neN

sequences {x,} and {y,}, respectively.

One can write X = {xn}+ (] ker pj and § = {yn}+ [ ker p;.
ieN ieN

We define the metric

o 1 BG-9)
&9 =2 T RGP

zii Pi(Xa = Yn) '
~2' 1+ Pi(Xh = Yn)
In fact, if &(R, y) =0, then pj(x, — yp) =0 forall i, hence {x,}—{yn}

e () kerp; and so the sequences {x,} and {y,} belong to the same
ieN

equivalence class in ﬂ Ep,’ ie, X=V.
neN
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To show that | ) épn is complete, let {X,} be a Cauchy sequence in
neN

N épn' We have
neN

&()“(1-, %)= lim d(x], x¢) > 0 as j, k — o.
n—o0
For each k, let us choose a Cauchy sequence {xj, fnenr 1N E that belongs

to the equivalence class X,. So we choose ny such that d(xg', xEk) <% if
m = ng.

Now let us define X, to be the equivalence class that contains the
sequence

(X%, X92, ooy XK, ).

For m > max(nj, ny ), we get

d(x7, xg) < d (T, M)+ d(x, x{) + d O, xgk)

11 m ,m
_T+E+d(Xj,Xk )

Letting j, k — oo and so nj, ng and m — oo, we get
d(x7), x™) > 0 as j, k
J ’ k Jr —> 0.
S0 (X%, X92, ..., X, ...) is a Cauchy sequence in E (in the sense of all p,)

and %o isin (] E

Dy
neN "

For any fixed j, k with j > ny, we have

d(x], x?j) <d(x), x¥) +d(gx, x?j)s%+ d(xgk, x?j ).



108 N. Faried, H. A. El-Sharkawy and Moustafa M. Zakaria

Letting j, k — oo, we get I(Iim d(%, %o) = I(Iim lim d(xlg, x?j)z 0. Then
-

-0 joo
N épn is complete. O
neN
Defining a mapping 7: E — [ épn such that
neN
(X)) = (X, X, X, ..)+ ﬂ ker pj,
ieN
we prove that 7(E) is a dense subspace in () épn'
neN
Since
Facy A 1 pix-y)
d(n(x), a(y)) = » ————2"-=d(x, ),
(%(x), 7(y)) 2112 oy = 400 Y)

so 7 is an isometry and a 1-1 mapping.
Let {x,}+ [ kerpj e () épn' Then {x,} is a d-Cauchy sequence
neN neN
in E, s0 {7(Xy)fpc s 18 @ d -Cauchy sequence in #(E), and as n — o, we

get

&[fc(xn), X} + ) ker ﬁ] -0,

ieN

hence 7(E) is densein () E

Py
neN "

Now we show that #(E)= [ épn is a necessary and sufficient
neN

condition for completeness of E.

In fact, if *(E)= () épn’ then knowing that (") épn is complete,
neN neN

we see that 7(E) also is complete and hence also is E.
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On the other hand, if E is complete, then we show that ﬂ épn c
neN

7(E). Forany y = {x,}+ [] kerpj € [ épn' we get {(Xy)fnerr = Y
ieN neN

in the metric d. By completeness of E, there is z € E such that x, — z.

Since 7 is an isometry, uniqueness of limits implies that y = 71(z) e
n(E). O

4. The Dual of a Countably Seminormed Space

Each complete seminormed space épn has a dual, which is a Banach
space denoted by é;n (by Proposition 2.4, the dual of épn is the dual of its
associated Banach space (épn, | ”ﬁn)’ where E, = E,_/ker py).

Proposition 4.1. The dual of a countably seminormed space E is given

o0

(e 0]
by E* = nL_Jl Ep, = nL_Jl Ep, and we have the following inclusions:

=k * *
EI01 c - C Epn cE

*
Pn+1 c--cE.

Moreover, for f e Ej , wehave | [ > f ;-

Proof. First we prove that E* =

Cs

Epn' For any feEpn, the

n=1
functional defined by f(x) = f(f() forany x e E and X = (X, X, X, ...) +

[ ker p; e épn is well defined, linear and continuous with respect to the
ieN
seminorm p,,. In fact,

| ()| =] F(R)] < cPn(R) = cpy(x).
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Since pj is one of the seminorms generating the topology on E, f € E*
(Definition 1.11).

On the other hand, forany f E*, there exist a seminorm Pny ON E and
aconstant ¢ > 0 such that forall x € E, | f(x)| < CPn, (X). Since (E, pp,)

is isomorphically isometric to
[V\? = {f(w =(X, X, X, ...)+ ﬂ kerpj : x € E}, ﬁnoj,
ieN
we can define f e W* by f(%,) = f(x).
Since W is dense in épno’ defining fe E’Bno by
f[(xn)ne/\/ + ﬂ ker ﬁij = r]Ii_r>noo f ((xn, Xny Xpy o) + ﬂ ker ﬁij
ieN ieN

= lim f(x,),
nN—o0

f is well defined, linear and continuous (because (x;) is a Cauchy sequence

and f is continuous functional, so f(x,) is a Cauchy sequence in R).

Second since Ep is the associated normed space of Ep , by Proposition
n n

Cs
Cs

2.4, we get Esn = é’;n. Hence, E’Bn =

1 n

— *
Ep,:

n 1

Third since p, < Pp41. the continuity of a functional f with respect to

*

Pn+1- U

P, implies its continuity with respectto pp,;. Hence, Ié’f,n cE

Definition 4.2 (Uniformly convex countably seminormed space). A

countable seminormed space E is said to be uniformly convex if épn is

uniformly convex for all n, i.e., if for each n, Ve > 0, 35,(¢) > 0 such that
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if X, yeEp with Xl =1=[¥lp, and [X-V[; ze then 1-

X+y
2

> 5.
Pn

Definition 4.3 (Uniformly smooth countably seminormed space). A

countable seminormed space E is said to be uniformly smooth if épn is
uniformly smooth for all n, i.e., if for each n whenever given ¢ > 0, there
exists 8, > 0 such that if X, y e Ep with [ X5 =1and [ V|5 <3,
then

%+ ¥, +1%x=Vlg, <2+l Vg,

Example 4.4. Let X = Qz. Define X = Q2 x@z x@2 x--- and

seminorms on X* by p;j(z) =]z | = x? +y2, where 7 = (4, 25, 73, ...)
e X and z, = (X, Yn) € Q% (X*, {p;, i € N}) is a countably seminormed
space.

Define X} ={(z"):(z") is p; Cauchy sequence}, where z" =

(z', 23, 23, ..) € X and aseminormon X by p;((z")) = r]IH)nOO pi(z"M).

To show that (X*, {p;,i e N}) is a uniformly convex (smooth)
seminormed space, we must prove that )7?)‘;/ ﬂ ker p; with the seminorm

ieN

ﬁi[(z”)+ () ker ﬁijz P ((z")) is uniformly convex (smooth) or its
ieN

associated normed space X /ker pj with || (z") + ker B lo; = Pi ((z™)) is

uniformly convex (smooth). In the associated normed space, two elements

(z") and (2"), where 2" = (7', 23, 23, ..) and (2] , 2}, 25, ...) belong to

the same equivalence class if both (z') and (zZ{') are p; Cauchy sequences
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(i.e., it is a Cauchy sequence in the ith coordinate) and the p; limit of the
difference between (z]') and (2]') is convergent to zero. Thus, the associated
normed space is R? with the norm || (x, y)| = /x? + y2, which is uniformly
convex (smooth).

Example 4.5. For R? with two norms |(x, V), = Vx% +y? and

| (%, )], = max{| x|, | Y[}, (R% | ],) is uniformly convex but (R?, | ||.,)

is not uniformly convex.

Define (1(R?) = {(zn): z, e R?, vneN, Dllznll, < oo} and po((z,))
n=1

= ill Zn o0 Pul(za)) =2l and pi((z)) = i [0 Vi=2,3, ...
n=1

(/Y(R?), pg) is not a uniformly convex normed space. In fact, for & = 1

and z = ((1, 0), (0, 0), (0, 0), ...), Z =((0, 0), (-1, 0), (O, 0), ....).

Clearly, pg(z)=1=pg(2), po(z—2) =2 >¢. However, po(%(z+z‘))
=1

So there is no & > 0 satisfying po(%(z + z‘)) =1-5. (FA(R?), {pi,

i =0,1 2 ..}) isacountably normed space (see Remark 1.3). (/4(R?), P1)

is a uniformly convex seminormed space. (¢X(R?), p;) is not a uniformly
convex seminormed space, Vi = 2, 3, ....

Therefore, (El(Rz), {pj,1=0,1 2, ..}) is not a uniformly convex
seminormed space.

In the following, we extend some theorems in [4] to the case of
countably seminormed spaces.
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Proposition 4.6. A countably seminormed linear space E is uniformly
convex if and only if for each n, we have 5Ep (¢) > 0 forall ¢ € (0, 2],
n

Proof. Assume that (Ep, , | |5, is uniformly convex for all n. Then, for

each n, given ¢ > 0, there exists 3, > 0 such that 6, <1- Xty for

Pn
every X and ¥ in E,  such that | Xlg, =1=1¥lg, and [x-¥[5 <e

Therefore, BEP (e) = 8, > 0 forall n.
n

Conversely, assume that for each n, SEp () >0 forall ¢ e (0, 2]. Fix
n
e < (0, 2] andtake X, ¥ in Ep with [ X||; =1=]¥[; and [X-7];

X+y
2

X+y

and therefore 5

<1-38,

> g, then 0<85pn(8)31— B
Pn

Pn
with §,, = SEpn (¢), which does not depend on X or ¥. Then (Ej , ||.||5n)

is uniformly convex for all n and hence the countably normed space E is
uniformly convex. O

Theorem 4.7. A countably seminormed space E is uniformly smooth if
and only if

pEpn (t) _

lim 0, vn.

t—0"
Proof. Assume that (Ep , | ||5n) is uniformly smooth for each n and if

IK+ 5, +1%-Vl5
2

e > 0, then there exists &, > 0 such that

€ = . = . _ _ .
§|| y||ﬁn for every X, y in E,  with ||x||pn =1 and | y||ﬁn = §,,. This

implies that for each n, we have PE, (1) < %t for every t < 3.
n
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Conversely, for each n, given ¢ > 0, suppose that there exists &, > 0

PE _
such that pt—”<% for every t < §,. Let X, y be in Ep, such that
| Y||ﬁn =1and | 7||bn = 8,. Thenwith t = || 37||5n, we have | X + 37||bn +
[X=Ylp, <2+¢[ Vg, Then (Ep,: | ) is uniformly smooth for all n

and hence the countably normed space E is uniformly smooth. O

Now, we prove one of the fundamental links between the Lindenstrauss
duality formulas.

Proposition 4.8. Let E be a countably seminormed space. For each
Banach space E, , we have: for every t>0, XeE, , | ¥||bn =1 and

x" e Ep with | x" ||, =1, then
e s
PE,, ()= Sup{—2 SE;n (e):0<e< 2}.

Proof. Let © > 0 and let x", y* e Ey with | x™ |, =] y* |, =1. For

any n >0, from the definition of | |, in Ep , there exist Xy, Vo € Ep

with || Xg ”ﬁn = Yo ”ﬁn = 1 such that

I X +y [, =n < (R, X+ y ), X =y [, = < (Fo. X =y,

Using these two inequalities together with the fact that in Banach spaces, we

have [ X |5 = sup{| (X, x"), [ <] x" [, =1}, then
X4y g+ ol X =y ] -2
< (X, X+ Y ) + (Yo, X =y ) -2+l +1)

= <YO + ’Cyo, X*>n + <Y0 — ’Cyo, y*>n -2+ T](1+ T)
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<% +tYoln+ 1% —tYo [, —2+nl+1)
<supf <+ 1Yy + X =Y 5 =250 R lg =Vl =1+ n@+)
= ZpEpn (t)+n@+1).
If 0<e<|x"—y"|, <2 thenwe have

* *
X +Yy

18 _ o= _n _
5 pEpn(r) 2(1+r)£1

n
which implies that

L -1 _
S e, (-3 L+ D) <5g, (6)

Since n is arbitrary, we conclude that

€
A E < =% ] l
5 ~PE, (1) < SEpn (), Ve € (0, 2]

= Sup{T—ZS - SE;n (e):e e (0, 2]} < PE,. (7).

On the other hand, let X, ¥ bein E, with | )_(”ﬁn = || 7||En =1 and

let © > 0. By Hahn-Banach theorem, there exist xg, yg € Ep  with | xg ||,

=] yo [, =1 such that
K1Y X0)g =X+ 1Y [50 (R=1¥, ¥o)y =1 X =1 |15, -
Then
[ X+ 79 |5 +1X =Y 5 =2 =(X+1, x5), + (X =17, o), — 2
= (%, X0 + Yo)n + {¥. X0 — Yo)y — 2

<%0+ Yo Iy + (¥ X0 = o)y [- 2
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Hence, if we define gg =] (¥, X5 — Yo), |, then 0 <eg <[ x3 - ¥ |, < 2

and

1%+ Y, +1X =Yg, 16+ Y6 Iy + 9. X6 = Yobn | _
2 N 2

:m_o_{l_n %+ 6 ||nJ

2

1

1€p
< —=—90_—

SSup{T—Z‘S—BE; (6):0<e< 2}.
n

Therefore,

TE
= < R " : < i
pEpn (t) s sup{ ) 8Epn (8) O<e 2} O

The following result gives or determines some duality property between
uniform convexity and uniform smoothness.

Theorem 4.9. Let E be a countably seminormed space. Then

E is uniformly smooth < Esn is uniformly convex for all n.

Proof. We will prove both directions by contradiction.
13 ” C* H H
=" Assume that (EIDnO - ||n0) is not uniformly convex for some n.

Therefore, S (gg) = 0 for some gq e (0, 2]. Using previous proposition,
Png
we get for any t > 0,
PE,, (¥ pe. (1)

€ .
0<0 <0 hence lim
2 T T

which shows that E is not uniformly smooth.
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“<" Assume that E is not uniformly smooth. Then

pe. (1)
Ing : lim —

# 0,
t—0" t

this means that there exists € > 0 such that for every & > 0, we can find tg
with 0 <ty <& and PE, (ts) > tse. Consequently, one can choose a
no

£
2

sequence (ty,) suchthat 0 < t, <1, 1, > 0 and PE, (th) = &ty < = 1Tpy-
no

Using previous proposition, for every n, there exists ¢, € (0, 2] such that

€
=15 < — 0=+ (&),
2" 2 Epno "
which implies
T
_ <N —
0< SE;nO (en) < 2 (en —¢),

in particular, & < g, and S (en) — 0. Recalling the fact that o is a
Png

nondecreasing function, we get 3. (e) < O (e,) — 0. Therefore, E*
Png Png

is not uniformly convex. O
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