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Abstract 

It is well known that a normed space E is a uniformly convex (smooth) 

normed space if and only if its dual ∗E  is uniformly smooth (convex). 
We extend these geometric properties to seminormed spaces and then 
introduce definitions of uniformly convex (smooth) countably 
seminormed spaces. A new vision of the completion of countably 
seminormed space was helpful in our task. We get some fundamental 
links between Lindenstrauss duality formulas. A duality property 
between uniform convexity and uniform smoothness of countably 
seminormed space is also given. 

1. Definitions and Examples 

Definition 1.1 (Countably seminormed space) [5, 3]. A linear space E 
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equipped with a total countable family of seminorms { }N∈npn ,  is said        

to be a countably seminormed space. Totality ( )( )θ=⇒∀= xnxpn ,0  

guarantees that E is Hausdorff. A complete countably seminormed space is 
called a Fréchet space. If E is equipped with one seminorm p, then ( )pE,  is 

called a seminormed space. If p is a norm, then ( )pE,  is a normed space. 

Remarks [5, 7]. (1) Without loss of generality (by  taking the equivalent 

system of seminorms ( ) ( )),max
1

xpxp i
n

in =
=  one can assume that the sequence 

of seminorms { }...,2,1; =npn  is increasing, i.e., ( ) ( ) ≤≤≤ xpxp 21  

( ) ,≤npn  .Ex ∈∀  

(2) Any countably seminormed space is metrizable and its metric d can 

be defined by ( ) ( )
( )∑

∞

=
−+

−
=

1
.12

1,
i i

i
i yxp

yxpyxd  

Definition 1.2 (Compatible norms) [7]. Two norms 1⋅  and 2⋅  in a 

linear space E are said to be compatible if, whenever a sequence { }nx  in E is 

Cauchy with respect to both norms and converges to a limit Ex ∈  with 
respect to one of them, it also converges to the same limit x with respect to 
the other norm. 

Remark 1.3 [7, 3]. If only one of the seminorms, say ,0np  is a norm, 

then by adding this norm to each of the seminorms, we will get an equivalent 
system of increasing norms and if these norms are pairwise compatible, then 
E is, in fact, a countably normed space. 

The following examples are Fréchet spaces [3]. 

(1) The space ∞R  of all sequences { }ia  of real numbers is equipped with 

{ }( ) ∑
=

=
=

ni

i
iin aap

1
 for .N∈n  
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(2) The space [ ]ba,∞C  of smooth functions (infinitely differentiable on 

] [ba,  and continuous at the ends of the interval) is equipped with 

( ) ( )∑
=

=

=
ni

i

i

x
n xfDfp

0
sup  for .N∈n  

(3) X is a compact manifold and V is a vector bundle over X. Let 
( )VX ,C  be the vector space of smooth sections of the bundle over X. 

Choose Riemannian metrics and connections on the bundles TX and V and      

let fDi  denote the ith covariant derivative of a section f of V. ( )VX ,C  is 

equipped with 

( ) ( )∑
=

=

=
ni

i

i

x
n xfDfp

0
sup  for .N∈n  

Example 1.4 [4]. For ,1 ∞<< p  the space ∩
pq

qp

>

+ =:0  is a countably 

normed space. In fact, one can easily see that ∩
n

pp n=+0  for any choice 

of a monotonic decreasing sequence { }np  converging to p. np  is Banach for 

every n, it is clear now that the countably normed space 0+p  is complete. 

Notation. Let L be a subspace of a topological linear space E. We may 
write Lx +  to denote the equivalence class x̂  belonging to the factor space 

.LE  So we can write .ˆ LELxxx ∈+=∈  

Definition 1.5 (Normed space associated with seminormed space) [5]. 
For a seminormed space ( ),, pE  there is a normed space pE ker  with the 

norm ( )xppx p =+ ker  called the associated normed space with the 

seminormed space ( )., pE  

Definition 1.6 (Uniformly convex normed space) [8]. A normed linear 
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space E is called uniformly convex if for any ( ],2,0∈ε  there exists a =δ  

( ) 0>εδ  such that if Eyx ∈,  with ,1=x  1=y  and ,ε≥− yx  

then ( ) .12
1 δ−≤+ yx  

Definition 1.7 (Modulus of convexity) [8]. Let E be a normed linear 
space with .2dim ≥E  The modulus of convexity of E is the function :Eδ  

( ] [ ]1,02,0 →  defined by 

( ) .;1,1:21inf:
⎭
⎬
⎫

⎩
⎨
⎧ ε≥−≤≤+−=εδ yxyxyx

E  

Definition 1.8 (Uniformly smooth normed space) [8]. A normed linear 
space E is said to be uniformly smooth if whenever given 0>ε  there exists 

0>δ  such that if 1=x  and ,δ≤y  then 

.2 yyxyx ε+<−++  

Definition 1.9 (Modulus of smoothness) [8]. Let E be a normed linear 
space with .2dim ≥E  The modulus of smoothness of E is the function 

[ ) [ )∞→∞ρ ,0,0:E  defined by 

( )
⎭
⎬
⎫

⎩
⎨
⎧ τ==−

−−+
=τρ yxyxyx

E ;1:12sup:  

.1:12sup
⎭
⎬
⎫

⎩
⎨
⎧ ==−

τ−+τ+
= yxyxyx  

Definition 1.10 [5]. A linear functional f on a countably seminormed 
space E is continuous if there is a seminorm 0np  on E and a constant 0>c  

such that for all ,Ex ∈  

( ) ( ).0 xcpxf n≤  

Definition 1.11 [5]. The space of all linear continuous functionals on a 

countably seminormed space E is called the dual of E and is denoted by .∗E  
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We suggest the following definitions: 

Definition 1.12 (Uniformly convex seminormed space). We call a 
seminormed linear space ( )pE,  uniformly convex if for any ( ],2,0∈ε  there 

exists a ( ) 0>εδ=δ  such that if Eyx ∈,  with ( ) ,1=xp  ( ) 1=yp  and 

( ) ,ε≥− yxp  then ( ) .12
1 δ−≤⎟

⎠
⎞⎜

⎝
⎛ + yxp  

Definition 1.13 (Uniformly smooth seminormed space). We call a 
seminormed linear space ( )pE,  uniformly smooth if whenever given 0>ε  

there exists 0>δ  such that if ( ) 1=xp  and ( ) ,δ≤yp  then 

( ) ( ) ( ).2 ypyxpyxp ε+<−++  

2. Technical Lemmas 

Since the norm in the associated normed space is defined by the 
seminorm, so the following proposition is easy to prove. 

Proposition 2.1. (1) A seminormed space ( )pE,  is uniformly convex if 

and only if its associated normed space is uniformly convex. This gives an 
equivalent definition of a uniformly convex seminormed space. 

(2) A seminormed space ( )pE,  is uniformly smooth if and only if its 

associated normed space is uniformly smooth. This gives an equivalent 
definition of a uniformly smooth seminormed space. 

(3) A seminormed space ( )pE,  is complete if and only if its associated 

normed space is complete. 

Proof. (1) “⇒” Let ( )pE,  be a uniformly convex seminormed space. 

Then we prove that ( )ppE ,ker  is a uniformly convex normed space. Let 

0>ε  be given and ,kerˆ,ˆ pEyx ∈  1ˆˆ == yx  such that .ˆˆ ε≥− yx  

Then there exist Eyx ∈,  such that ,kerˆ pxx +=  ,kerˆ pyy +=  ( ) =xp  

( ) 1=yp  and ( ) .ε≥− yxp  Since ( )pE,  is uniformly convex according to 
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Definition 1.12, there exists ( ) 0>εδ  such that ( ) .12
1 δ−≤⎟

⎠
⎞⎜

⎝
⎛ + yxp  So 

( ) .1ˆˆ
2
1 δ−≤+ yx  

“⇐” Let ( )ppE ,ker  be a uniformly convex normed space. Then we 

prove that ( )pE,  is a uniformly convex seminormed space. Let 0>ε  be 

given and ,, Eyx ∈  ( ) ( ) 1== ypxp  such that ( ) .ε≥− yxp  Then there 

exist ,kerˆ pxx +=  ,kerkerˆ pEpyy ∈+=  1ˆˆ == yx  and .ˆˆ ε≥− yx  

(2) “⇒” Let ( )pE,  a be uniformly smooth seminormed space. Then we 

prove that ( )ppE ,ker  is a smooth convex normed space. Let 0>ε  be 

given and ,kerˆ,ˆ pEyx ∈  1ˆ =x  such that .ˆ2ˆˆˆˆ yyxyx ε+<−++  

Then there exist Eyx ∈,  such that ,kerˆ pxx +=  ,kerˆ pyy +=  ( ) 1=xp  

and ( ) ( ) ( ).2 ypyxpyxp ε+<−++  Since ( )pE,  is uniformly convex 

according to Definition 1.13, there exists ( ) 0>εδ  such that ( ) .δ≤yp  So 

.ˆ δ≤y  

“⇐” Let ( )ppE ,ker  be a uniformly smooth normed space. Then we 

prove that ( )pE,  is a uniformly smooth seminormed space. Let 0>ε  be 

given and ,, Eyx ∈  ( ) 1=xp  such that ( ) ( ) ( ).2 ypyxpyxp ε+<−++  

Then there exist ,kerˆ pxx +=  ,kerkerˆ pEpyy ∈+=  1ˆ =x  and 

.ˆ2ˆˆˆˆ yyxyx ε+<−++  

(3) “⇒” Let ( )pE,  be complete. Then we prove that ( )ppE ,ker  is 

also complete. In fact, let { }nx̂  be a Cauchy sequence in ( ),,ker ppE  

where { }.kerˆ pxx nn +=  Then ( ) 0ˆˆ →−=− mnpmn xxPxx  as mn,  

.∞→  Hence, { }nx  is a Cauchy sequence in ( )., pE  Since ( )pE,  is complete, 

there exists an element Ex ∈0  such that ( ) 00 →− xxp n  as .∞→n  Hence, 

pEpxx kerkerˆ 00 ∈+=  is the limit of the Cauchy sequence { }.ˆnx  
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“⇐” by the same previous way. ~ 

Example 2.2. Let Q  be the set of all rational numbers. 2Q  with the 

following norm ( ) 22, yxyxz +==  is uniformly convex. 

Define {( ) ( )nn zz :2 =Q  is a Cauchy sequence in }2Q  and a seminorm 

on 2Q  by ( )( ) .lim nnn zzp
∞→

=  Since the associated normed space of 

( )p,2Q  is 2R  with the norm ( ) 22, yxyx +=  and it is uniformly 

convex (smooth), ( )p,2Q  is a uniformly convex (smooth) seminormed 

space. 

Remark 2.3. The dual of a seminormed space ( )pE,  is a normed space. 

In fact, for every ( ) ,, ∗∈ pEf  define ( )
( ) ,sup

ker xp
xff

px∉
=  which is 

norm. Since if ,0=f  then ( ) 0=xf  for all px ker∉  and ( ) 0=xf  

for all px ker∈  because ( ) ( ),xcpxf ≤  so ( ) 0=xf  for all ,Ex ∈  f is 

the zero functional. 

It is easy to prove ff λ=λ  for all R∈λ  and fgf ≤+  

.g+  

An interesting fact is the following: 

Proposition 2.4. The dual of a seminormed space ( )pE,  is 

isomorphically isometric to the dual of its associated normed space 
( ).,ker ppE  

Proof. For any linear continuous functional ( ) ,, ∗∈ pEf  we define 

( )∗∈ ppEf ,kerˆ  by ( ) ( ),kerˆ xfpxf =+  then f̂  is well defined, 

linear and continuous. In fact, if ,kerker pypx +=+  then ,ker pyx ∈−  

so ( ) ( ) ( ) .0=−≤− yxcpyfxf  
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On the other hand, for ( ) ,,kerˆ ∗∈ ppEf  we define ( )∗∈ pEf ,  by 

( ) ( ),kerˆ pxfxf +=  then f is well defined, linear and continuous. 

To show the isometry, we have for any ( )∗∈ pEf ,  and ∈f̂  

( ) ,,ker ∗
ppE  

 ( ) ( )
( ) .supˆ

ˆˆ
supˆ

ker0ˆ
fxp

xf
x

xff
pxpx

===
∉≠

 ~ 

Corollary 2.5. A seminormed space ( )pE,  is uniformly convex (smooth) 

if and only if its dual ( )∗pE,  is uniformly smooth (convex). 

3. Completion of Countably Seminormed Space 

In 1998, Merkle [2] introduced the completion of countably seminormed 
space. We quoted his work and changed some notations to be suitable to 
prove our work. 

For fixed seminorm ,np  one can define a seminorm np  on the space 

{{ } { } }sequenceCauchyis: niip pxxE
n
=  

as follows: 

({ } ) ( ).lim iniiin xpxp
∞→∈ =N  

This limit exists, because ( ){ } N∈iin xp  is a Cauchy sequence in .R  

By standard arguments, one can prove that ( )np pE n ,  is the completion 

of the countably seminormed space E if equipped with only the seminorm 
.np  

In fact, defining a map npEE →π :  by ( ) ( )...,,, xxxx =π  gives a 1-1 
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isometrical and isomorphical mapping of E (as a seminormed space with 
)np  onto a dense linear subspace of the space ( )., np pE

n
 

Since for any ,Ex ∈  ( ) ( ),1 xpxp nn +≤  ,N∈∀n  every 1+np  Cauchy 

sequence is np  Cauchy sequence. 

So 

( ) .11 ppnp EEEE n ⊂⊂⊂⊂⊂ +  

Therefore, ∩
N∈n

pn
E  is a countably seminormed space with 

( ) ( ) ( ) ∩
N∈

∈∀≤≤≤≤
n

pn n
Exxpxpxp ,,21  

but it is not, in general, a Hausdorff space because ({ } ) 0=∈Niin xp  for all 

N∈n  does not necessarily imply that { } N∈iix  is the zero sequence. In fact, 

∩
N∈n

npker  may not be the zero sequence. 

On the factor space ,ker∩ ∩
N N∈ ∈n i

ip pE
n

 we define 

( ) { } { }( ).kerˆˆˆ in
i

iiinn xppxpxp =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

∈
∈ ∩

N
N  

Assume ∩
N∈

=
i

ipp pEE
nn

.kerˆ  In this case, ∩
N∈n

pn
Ê  equipped with the 

seminorms ( ) ( ) ( ) ,ˆˆˆˆˆˆ 21 ≤≤≤≤ xpxpxp n  ∩
N∈

∈∀
n

pn
Ex ˆˆ  is a countably 

seminormed Hausdorff space. 

Defining 
npEE ˆ:ˆ →π  such that ( ) { } ∩

N∈
+=π

i
ipxxxx ,ker...,,,ˆ  we 

see that E is isomorphically isometric to a linear dense subset of ,ˆ
npE  i.e., 

.ˆˆˆ
11 ppp EEEE nn ⊂⊂⊂⊂⊂ +  
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Proposition 3.1 [2]. Let E be a countably seminormed space. Then 

∩
N∈n

pn
Ê  is a complete space. Moreover, there is an isometric and 

isomorphic, 1-1 mapping π̂  of E onto a dense subspace of ∩
N∈n

pn
E .ˆ  E is 

complete if and only if 

( ) .ˆˆ ∩
N∈

=π
n

pn
EE  

We may write ∩
N∈

=
n

pn
EE .ˆ  

Proof. Elements of ∩
N∈n

pn
Ê  are equivalence classes of sequences that 

are np -Cauchy for all n. 

For any two Cauchy sequences { }nx  and { }ny  (in the sense of all )np  in 

E, let ∩
N∈

∈
n

pn
Eyx ˆˆ,ˆ  be the two equivalence classes containing the two 

sequences { }nx  and { },ny  respectively. 

One can write { } ∩
N∈

+=
i

in pxx kerˆ  and { } ∩
N∈

+=
i

in pyy .kerˆ  

We define the metric 

( ) ( )
( )∑

∞

=
−+

−
=

1
ˆˆˆ1

ˆˆˆ

2
1ˆ,ˆˆ

i i
i

i yxp
yxpyxd  

( )
( ) .12

1

1
∑
∞

=
−+

−
=

i nni
nni

i yxp
yxp  

In fact, if ( ) ,0ˆ,ˆˆ =yxd  then ( ) 0=− nni yxp  for all i, hence { } { }nn yx −  

∩
N∈

∈
i

ipker  and so the sequences { }nx  and { }ny  belong to the same 

equivalence class in ,ˆ∩
N∈n

pn
E  i.e., .ˆˆ yx =  
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To show that ∩
N∈n

pn
Ê  is complete, let { }kx̂  be a Cauchy sequence in 

∩
N∈n

pn
E .ˆ  We have 

( ) ( ) 0,limˆ,ˆˆ →=
∞→

n
k

n
jnkj xxdxxd  as ., ∞→kj  

For each k, let us choose a Cauchy sequence { } N∈n
n
kx  in E that belongs 

to the equivalence class .ˆkx  So we choose kn  such that ( ) kxxd kn
k

m
k

1, <  if 

.knm ≥  

Now let us define 0x̂  to be the equivalence class that contains the 

sequence 

( )....,...,,, 21
21

kn
k

nn xxx  

For ( ),,max kj nnm ≥  we get 

( ) ( ) ( ) ( )kjkj n
k

m
k

m
k

m
j

m
j

n
j

n
k

n
j xxdxxdxxdxxd ,,,, ++≤  

( ).,11 m
k

m
j xxdkj ++≤  

Letting ∞→kj,  and so ,jn  kn  and ,∞→m  we get 

( ) 0, →kj n
k

n
j xxd  as ., ∞→kj  

So ( )...,...,,, 21
21

kn
k

nn xxx  is a Cauchy sequence in E (in the sense of all )np  

and 0x̂  is in ∩
N∈n

pn
E .ˆ  

For any fixed j, k with ,knj >  we have 

( ) ( ) ( ) ( ).,1,,, jkjkkj n
j

n
k

n
j

n
k

n
k

j
k

n
j

j
k xxdkxxdxxdxxd +≤+≤  
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Letting ,, ∞→kj  we get ( ) ( ) .0,limlimˆ,ˆˆlim 0 ==
∞→∞→∞→

jn
j

j
kjk

k
k

xxdxxd  Then 

∩
N∈n

pn
Ê  is complete. ~ 

Defining a mapping ∩
N∈

→π
n

pn
EE ˆ:ˆ  such that 

( ) ( ) ∩
N∈

+=π
i

ipxxxx ,ker...,,,ˆ  

we prove that ( )Eπ̂  is a dense subspace in ∩
N∈n

pn
E .ˆ  

Since 

( ( ) ( )) ( )
( ) ( )∑

∞

=

=
−+

−
=ππ

1
,,12

1ˆ,ˆˆ
i i

i
i yxdyxp

yxpyxd  

so π̂  is an isometry and a 1-1 mapping. 

Let { } ∩ ∩
N N∈ ∈

∈+
n n

pin n
Epx .ˆker  Then { }nx  is a d-Cauchy sequence 

in E, so ( ){ } N∈π nnxˆ  is a d̂ -Cauchy sequence in ( ),ˆ Eπ  and as ,∞→n  we 

get 

( ) { } ,0ker,ˆˆ →⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+π

∈
∩
Ni

inn pxxd  

hence ( )Eπ̂  is dense in ∩
N∈n

pn
E .ˆ  

Now we show that ( ) ∩
N∈

=π
n

pn
EE ˆˆ  is a necessary and sufficient 

condition for completeness of E. 

In fact, if ( ) ∩
N∈

=π
n

pn
EE ,ˆˆ  then knowing that ∩

N∈n
pn

Ê  is complete, 

we see that ( )Eπ̂  also is complete and hence also is E. 
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On the other hand, if E is complete, then we show that ⊂
∈
∩
Nn

pn
Ê  

( ).ˆ Eπ  For any { } ∩ ∩
N N∈ ∈

∈+=
i n

pin n
Epxy ,ˆker  we get ( ){ } yx nn →π ∈Nˆ  

in the metric .d̂  By completeness of E, there is Ez ∈  such that .zxn →  

Since π̂  is an isometry, uniqueness of limits implies that ( ) ∈π= zy ˆ  

( ).ˆ Eπ   

4. The Dual of a Countably Seminormed Space 

Each complete seminormed space npÊ  has a dual, which is a Banach 

space denoted by ∗
npÊ  (by Proposition 2.4, the dual of npÊ  is the dual of its 

associated Banach space ( ),,ˆ
nn ppE  where ).ker npp pEE

nn
=  

Proposition 4.1. The dual of a countably seminormed space E is given 

by ∪ ∪
∞

=

∞

=

∗∗∗ ==
1 1

ˆ
n n

pp nn
EEE  and we have the following inclusions: 

.ˆˆˆ
11

∗∗∗∗ ⊂⊂⊂⊂⊂
+

EEEE
nn ppp  

Moreover, for ,ˆ∗∈ npEf  we have .1+≥ nn ff  

Proof. First we prove that ∪
∞

=

∗∗ =
1

.ˆ
n

pn
EE  For any ,ˆˆ ∗∈

npEf  the 

functional defined by ( ) ( )xfxf ˆˆ=  for any Ex ∈  and ( ) += ...,,,ˆ xxxx  

∩
N∈

∈
i

pi n
Ep ˆker  is well defined, linear and continuous with respect to the 

seminorm .np  In fact, 

( ) ( ) ( ) ( ).ˆˆˆˆ xcpxpcxfxf nn =≤=  
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Since np  is one of the seminorms generating the topology on E, ∗∈ Ef  

(Definition 1.11). 

On the other hand, for any ,∗∈ Ef  there exist a seminorm 0np  on E and 

a constant 0>c  such that for all ,Ex ∈  ( ) ( ).
0

xcpxf n≤  Since ( )
0

, npE  

is isomorphically isometric to 

( ) ,ˆ,:ker...,,,ˆˆ
0 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈+==
∈

n
i

iw pExpxxxxW ∩
N

 

we can define ∗∈Wf ˆ~  by ( ) ( ).ˆ~ xfxf w =  

Since Ŵ  is dense in ,ˆ
0npE  defining ∗∈

0
ˆˆ

npEf  by 

( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

∈
∞→

∈
∈ ∩∩

NN
N

i
innnni

inn pxxxfpxf ker...,,,~limkerˆ  

( ),lim n
n

xf
∞→

=  

f̂  is well defined, linear and continuous (because  ( )nx  is a Cauchy sequence 

and f is continuous functional, so ( )nxf  is a Cauchy sequence in ).R  

Second since npE  is the associated normed space of ,ˆ
npE  by Proposition 

2.4, we get .ˆ∗∗ = nn pp EE  Hence, ∪ ∪
∞

=

∞

=

∗∗ =
1 1

.ˆ
n n

pp nn
EE  

Third since ,ˆˆ 1+≤ nn pp  the continuity of a functional f with respect to 

np̂  implies its continuity with respect to .ˆ 1+np  Hence, .ˆˆ
1

∗∗
+

⊂ nn pp EE  ~ 

Definition 4.2 (Uniformly convex countably seminormed space). A 

countable seminormed space E is said to be uniformly convex if npÊ  is 

uniformly convex for all n, i.e., if for each n, ,0>ε∀  ( ) 0>εδ∃ n  such that 
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if 
npEyx ∈,  with 

nn pp yx == 1  and ,ε≥−
npyx  then −1  

.2 n
pn

yx δ≥+  

Definition 4.3 (Uniformly smooth countably seminormed space). A 

countable seminormed space E is said to be uniformly smooth if npÊ  is 

uniformly smooth for all n, i.e., if for each n whenever given ,0>ε  there 

exists 0>δn  such that if npEyx ∈,  with 1=
npx  and ,npn

y δ≤  

then 

.2
nnn ppp yyxyx ε+<−++  

Example 4.4. Let .2Q=X  Define ×××=∞ 222 QQQX  and 

seminorms on ∞X  by ( ) ,22
iiii yxzzp +==  where ( )...,,, 321 zzzz =  

∞∈ X  and ( ) ., 2Q∈= nnn yxz  ( { })N∈∞ ipX i ,,  is a countably seminormed 

space. 

Define {( ) ( )nn
p zzX

i
:=∞  is ip  Cauchy },sequence  where =nz  

( ) ∞∈ Xzzz nnn ...,,, 321  and a seminorm on ∞
ipX  by (( )) ( ).lim n

in
n

i zpzp
∞→

=  

To show that ( { })N∈∞ ipX i ,,  is a uniformly convex (smooth) 

seminormed space, we must prove that ∩
N∈

∞

i
ip pX

i
ker  with the seminorm 

( ) (( ))n
i

i
i

n
i zppzp =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

∈
∩
N

kerˆ  is uniformly convex (smooth) or its 

associated normed space ip pX i ker∞  with ( ) (( ))n
ipi

n zppz
i
=+ ker  is 

uniformly convex (smooth). In the associated normed space, two elements 

( )nz  and ( ) ,nz̀  where ( )...,,, 321
nnnn zzzz =  and ( )...,,, 321

nnn zzz ̀̀̀  belong to 

the same equivalence class if both ( )n
iz  and ( )n

iz̀  are ip  Cauchy sequences 
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(i.e., it is a Cauchy sequence in the ith coordinate) and the ip  limit of the 

difference between ( )n
iz  and ( )n

iz̀  is convergent to zero. Thus, the associated 

normed space is 2R  with the norm ( ) ,, 22 yxyx +=  which is uniformly 

convex (smooth). 

Example 4.5. For 2R  with two norms ( ) 22
2, yxyx +=  and 

( ) { },,max, yxyx =∞  ( )2
2,R  is uniformly convex but ( )∞,2R  

is not uniformly convex. 

Define ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

∞<∈∀∈= ∑
∞

=1
2

221 ,,:
n

nnn znzz NRR  and ( )( )nzp0  

∑
∞

=
=

1
2,

n
nz  ( )( ) 211 zzp n =  and ( )( ) ,∞= ini zzp  ....,3,2=∀i  

( ( ) )0
21 , pR  is not a uniformly convex normed space. In fact, for 1=ε  

and ( ) ( ) ( )( ),...,0,0,0,0,0,1=z  ( ) ( ) ( )( )....,0,0,0,1,0,0 −=z̀  

Clearly, ( ) ( ) ,1 00 z̀pzp ==  ( ) .20 ε>=− z̀zp  However, ( ) ⎟
⎠
⎞⎜

⎝
⎛ + z̀zp 2

1
0  

.1=  

So there is no 0>δ  satisfying ( ) .12
1

0 δ−=⎟
⎠
⎞⎜

⎝
⎛ + z̀zp  ( ( ) { ,,21

ipR  

})...,2,1,0=i  is a countably normed space (see Remark 1.3). ( ( ) )1
21 , pR  

is a uniformly convex seminormed space. ( ( ) )ip,21 R  is not a uniformly 

convex seminormed space, ....,3,2=∀i  

Therefore, ( ( ) { })...,2,1,0,,21 =ipiR  is not a uniformly convex 

seminormed space. 

In the following, we extend some theorems in [4] to the case of 
countably seminormed spaces. 
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Proposition 4.6. A countably seminormed linear space E is uniformly 
convex if and only if for each n, we have ( ) 0>εδ

npE  for all ( ].2,0∈ε  

Proof. Assume that ( )
nn ppE ,  is uniformly convex for all n. Then, for 

each n, given ,0>ε  there exists 0>δn  such that 
np

n
yx

21 +−≤δ  for 

every x  and y  in npE  such that 
nn pp yx == 1  and .ε≤−

npyx  

Therefore, ( ) 0>δ≥εδ nE np
 for all n. 

Conversely, assume that for each n, ( ) 0>εδ
npE  for all ( ].2,0∈ε  Fix 

( ]2,0∈ε  and take ,x  y  in npE  with 
nn pp yx == 1  and 

npyx −  

,ε≥  then ( )
nnp p

E
yx

210 +−≤εδ<  and therefore n
pn

yx δ−≤+ 12  

with ( ),εδ=δ
npEn  which does not depend on x  or .y  Then ( )

nn ppE ⋅,  

is uniformly convex for all n and hence the countably normed space E is 
uniformly convex. ~ 

Theorem 4.7. A countably seminormed space E is uniformly smooth if 
and only if 

( )
.,0lim

0
nt

tE

t

np ∀=
ρ

+→
 

Proof. Assume that ( )
nn ppE ,  is uniformly smooth for each n and if 

,0>ε  then there exists 0>δn  such that <−
−++

12
nn pp yxyx

 

npy2
ε  for every ,x  y  in npE  with 1=

npx  and .npn
y δ=  This 

implies that for each n, we have ( ) tt
npE 2

ε<ρ  for every .nt δ<  
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Conversely, for each n, given ,0>ε  suppose that there exists 0>δn  

such that 
( )

2
ε<

ρ

t

t
npE

 for every .nt δ<  Let ,x  y  be in npE  such that 

1=
npx  and .npn

y δ=  Then with ,
npyt =  we have ++

npyx  

.2
nn pp yyx ε+<−  Then ( )

nn ppE ,  is uniformly smooth for all n 

and hence the countably normed space E is uniformly smooth. ~ 

Now, we prove one of the fundamental links between the Lindenstrauss 
duality formulas. 

Proposition 4.8. Let E be a countably seminormed space. For each 
Banach space ,npE  we have: for every ,0>τ  ,npEx ∈  1=

npx  and 

∗∗ ∈ npEx  with ,1=∗
nx  then 

( ) ( ) .20:2sup
⎭
⎬
⎫

⎩
⎨
⎧ ≤ε<εδ−τε=τρ ∗

npnp EE  

Proof. Let 0>τ  and let ∗∗∗ ∈ npEyx ,  with .1== ∗∗
nn yx  For 

any ,0>η  from the definition of n  in ,∗
npE  there exist npEyx ∈00,  

with 100 ==
nn pp yx  such that 

.,,, 00 nnnn yxyyxyxxyx ∗∗∗∗∗∗∗∗ −≤η−−+≤η−+  

Using these two inequalities together with the fact that in Banach spaces, we 

have { },1:,sup == ∗∗
nnp xxxx

n
 then 

2−−τ++ ∗∗∗∗
nn yxyx  

( )τ+η+−−τ++≤ ∗∗∗∗ 12,, 00 ii yxyyxx  

( )τ+η+−τ−+τ+= ∗∗ 12,, 0000 nn yyxxyx  
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( )τ+η+−τ−+τ+≤ 120000 nn yxyx  

{ } ( )τ+η+==−τ−+τ+≤ 11:2sup
nnnn pppp yxyxyx  

( ) ( ).12 τ+η+τρ=
npE  

If ,20 ≤−≤ε< ∗∗
nyx  then we have 

( ) ( ) ,21122
n

E
yx

np

∗∗ +−≤τ+η−τρ−τε  

which implies that 

( ) ( ) ( ).122 εδ≤τ+η−τρ−τε
∗

npnp EE  

Since η  is arbitrary, we conclude that 

( ) ( ) ( ]2,0,2 ∈ε∀εδ≤τρ−τε
∗

npnp EE  

( ) ( ] ( ).2,0:2sup τρ≤
⎭
⎬
⎫

⎩
⎨
⎧ ∈εεδ−τε⇒ ∗

npnp EE  

On the other hand, let ,x  y  be in npE  with 1==
nn pp yx  and 

let .0>τ  By Hahn-Banach theorem, there exist ∗∗∗ ∈ npEyx 00,  with nx∗0  

10 == ∗
ny  such that 

.,,, 00 nn pnpn yxyyxyxxyx τ−=τ−τ+=τ+ ∗∗  

Then 

2,,2 00 −τ−+τ+=−τ−+τ+ ∗∗
nnpp yyxxyxyxyx

nn
 

2,, 0000 −−τ++= ∗∗∗∗
nn yxyyxx  

.2, 0000 −−τ++≤ ∗∗∗∗
nn yxyyx  
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Hence, if we define ,,: 000 nyxy ∗∗ −=ε  then 20 000 ≤−≤ε< ∗∗
nyx  

and 

12
,

12
0000 −

−τ++
≤−

τ−+τ+ ∗∗∗∗
nnpp yxyyxyxyx

nn  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
−−

τε
=

∗∗

212
000 nyx

 

( )0
0

2 εδ−
τε

≤ ∗
npE

 

( ) .20:2sup
⎭
⎬
⎫

⎩
⎨
⎧ ≤ε<εδ−τε≤ ∗

npE
 

Therefore, 

 ( ) ( ) .20:2sup
⎭
⎬
⎫

⎩
⎨
⎧ ≤ε<εδ−τε≤ρ ∗

npnp EE t  ~ 

The following result gives or determines some duality property between 
uniform convexity and uniform smoothness. 

Theorem 4.9. Let E be a countably seminormed space. Then 

E is uniformly smooth ∗⇔ npE  is uniformly convex for all n. 

Proof. We will prove both directions by contradiction. 

“⇒” Assume that ( )
00

, npnE ⋅∗  is not uniformly convex for some .0n  

Therefore, ( ) 00
0

=εδ ∗
npE

 for some ( ].2,00 ∈ε  Using previous proposition, 

we get for any ,0>τ  

( )

τ

τρ
≤

ε
< 0

20 0 npE
 hence 

( )
,0lim 0 ≠

τ

τρ

τ

npE
 

which shows that E is not uniformly smooth. 
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“⇐” Assume that E is not uniformly smooth. Then 

( )
,0lim: 0

0
0 ≠

ρ
∃

+→ t

t
n npE

t
 

this means that there exists 0>ε  such that for every ,0>δ  we can find δt  

with δ<< δt0  and ( ) .
0

ε≥ρ δδ tt
npE  Consequently, one can choose a 

sequence ( )nτ  such that ,10 <τ< n  0→τn  and ( ) .20
nnnE np
τε<ετ≥τρ  

Using previous proposition, for every n, there exists ( ]2,0∈εn  such that 

( ),22
0

nE
nn

n
np

εδ−
ετ

≤τε ∗  

which implies 

( ) ( ),20
0

ε−ε
τ

≤εδ< ∗ n
n

nE np
 

in particular, nε<ε  and ( ) .0
0

→εδ ∗ nE np
 Recalling the fact that ∗δ

E
 is a 

nondecreasing function, we get ( ) ( ) .0
00

→εδ≤εδ ∗∗ nEE npnp
 Therefore, ∗E  

is not uniformly convex. ~ 
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