

Far East Journal of Electronics and Communications
© 2014 Pushpa Publishing House, Allahabad, India
Published Online: September 2014
Available online at http://pphmj.com/journals/fjec.htm
Volume 13, Number 1, 2014, Pages 41-58

Received: May 3, 2014; Revised: July 7, 2014; Accepted: July 21, 2014
Keywords and phrases: network processor, packet processing, microengine, dynamic
reconfiguration, M/M/c queue, IXP2400 NP.

QUEUING SYSTEM FOR DYNAMICALLY
RECONFIGURABLE NETWORK PROCESSOR

A. Satheesh, D. Kumar, P. Dharmalingam and T. K. S. Lakshmipriya

Department of Computer Science and Engineering
Periyar Maniammai University
Vallam-613403, Thanjavur, Tamil Nadu, India
e-mail: asatheesh@pmu.edu

Department of Electronics and Communication Engineering
Periyar Maniammai University
Vallam-613403, Thanjavur, Tamil Nadu, India
e-mail: kumar_durai@pmu.edu

Department of Mathematics
Periyar Maniammai University
Vallam-613403, Thanjavur, Tamil Nadu, India
e-mail: dharmap4@gmail.com

Department of Printing Technology
Avinashilingam University
Coimbatore, Tamil Nadu, India
e-mail: tkslp.dr@gmail.com

Abstract

Network processor (NP) is a programmable processor used for packet
processing in network applications. Today, many vendors are offering
different models of NPs for various applications. The major difference

A. Satheesh, D. Kumar, P. Dharmalingam and T. K. S. Lakshmipriya 42

amongst them is the capabilities of NPs in terms of the number of
microengines (MEs). The main objective of this work is to optimize
the usage of MEs during network traffic fluctuation by dynamic
reconfiguration. In this paper, packet queue length, which is a function
of traffic fluctuation, is used to determine the number of MEs in use at
a given point of time. Turning the MEs ON/OFF is done dynamically,
when the packet queue length increases/decreases by k. This paper also
proposes a new queuing system for this scenario, i.e., dynamically
reconfigurable NPs during fluctuating traffic. Intel IXP2400 NP has
been adopted for validating the queuing model for different traffic
fluctuations. The simulation results closely matched with the analytical
results.

1. Introduction

Multicore programmable network processors (NPs) had been being
widely used in high-speed network routers, switches and various other
network components [3]. In the fast-growing internet traffic, the present
routers enabled new network protocols and are also flexible for different
network traffic. However, the designers are required to pay utmost attention
to both performance and flexibility of the router. The latest NP architecture
is proficient enough to achieve such a high performance with equal
flexibility through multiple microengines (MEs), which were processed
either independently or in shared parallel operations. The programmable NPs
have facilitated new applications of high performance rates at lower costs [4].
The major challenges for the NP designers were to design a low-power NP.
In the NP architecture, the major power hungry component is the ME. In the
previous work [1], the present authors had modeled a framework for self-
configuring IXP2400 NP. The objective of that work was to transform the
IXP2400 NP into a self-configurable environment. Self-configuration was
the process of automatically altering the functionality of network system
or network element. This automatic configuration described the way
sophisticated networks could re-adjust themselves in the event of network
traffic or service requirement, enabling the network processor to continue
operation. The IXP2400 NP consists of eight MEs for packet processing.

Queuing System for Dynamically Reconfigurable Network Processor 43

This work involved the optimization of the usage of MEs based on network
fluctuations at reduced energy consumption by NP. The control plane
constantly monitored the traffic arrival rate in the system and based on the
workload, the MEs were switched on/off without any packet loss. In this
paper, a new queuing model developed for the above previous work [1]
of dynamically reconfigurable NP is also discussed. We have used Intel
IXP2400 NP architecture as stated earlier. The internal architecture of MEs is
shown in Figure 1.

Figure 1. Architecture of IXP2400 NP microengine.

The Arithmetic Logic Unit (ALU), a shifter and numerous storage units
are combined together to constitute the data path. The executable instructions
are kept in control store. The Static Random Access Memory (SRAM)
and Dynamic Random Access Memory (DRAM) utilize XFER (Transfer
Registers) for transaction. For high-speed data storage, GPRs (General
Purpose Registers) and XFERs along with local memory could be employed.
Two adjacent MEs directly communicate in the data path with the help of
128 next-neighbor registers (not shown in Figure 1). Since the GPRs and the
next-neighbor register are structurally same, they are treated alike in the
simulation [6].

A. Satheesh, D. Kumar, P. Dharmalingam and T. K. S. Lakshmipriya 44

In general, queuing theory considers a fixed number of servers [7, 8]
and the performance metrics are queue length and waiting time. However,
considering the fact that queuing system wherein the number of severs
might change depending on the queue length, this paper assumes a queuing
model with single server, namely, the ME. A new queuing model has been
proposed, which allows optimized MEs usage by deploying additional
ME only when required. This has resulted in a minimum number of
MEs, sufficient to offer the required performance with high probability of
optimizing the resource provisioning level.

As the k packets arrive, the queue size increases and reaches a certain
point. If th1+k packet arrives, then an additional ME is deployed. If more

packets arrive, and the queue size increases to 2k, then the third ME is
deployed and so on. Such a queuing model is shown in Figure 2, which is the
block diagram of queuing model for IXP2400 NP.

Figure 2. Queuing model for dynamic adaptive load sharing network
processor.

M/M/c queuing model has been applied for calculating throughput (the
number of packets processed per time unit), average response time (average
time spent by the packet inside NP), and resource utilization (percentage of
time, the MEs were busy processing the packets).

Queuing System for Dynamically Reconfigurable Network Processor 45

Intel IXP2400 network processor could operate in an environment with
maximum network traffic of OC-48/4.1Gbps data rates [15]. Such a system is
capable of transferring 400 packets in 3.278ms. Typical service rate is 54ns
when four threads in each of the eight MEs are operational [2]. The MEs run
at 600MHz, and execute each of the pipeline stages of the IP forwarding
application. The MEs take 176 cycles for processing a single packet with the
minimum size of 46 bytes [15]. Processing one packet is completed in 0.176
milliseconds.

In this paper, as a first level study, the arrival and departure rates
(λ and µ) followed Poisson distribution. However, the packet processing
revealed exponential distribution patterns. The queue service discipline was
first-come-first served.

It was assumed that ,cn ≥ where n and c were the number of packets
received and the number of servers used by the system.

The formula for identifying the traffic intensity, ρ was

 .
µ
λ=ρ c (1)

When the system is with low level traffic (queue length was k), the
queuing model is M/M/1. Then the traffic rate is slowly increased beyond
the threshold values (queue length to 2k), so that the system automatically
switched on one additional ME for packet processing. Consequently, the
system is in M/M/2 state. In the third case, the traffic rate was increased
beyond the moderate level, then the system immediately switched on all the
six MEs in it for packet processing, moving to M/M/6 state.

This paper is organized as follows:

• Section 2 - overviews of related works.

• Section 3 - a new queuing model with a variable number of servers
for dynamically reconfigurable NP.

• Section 4 - the simulation results of dynamically reconfigurable
IXP2400 NP.

• Finally, Section 5 gives the conclusion of the present study.

A. Satheesh, D. Kumar, P. Dharmalingam and T. K. S. Lakshmipriya 46

2. Related Works

The various performance aspects of NP systems were investigated by
many studies. These investigations mainly focused on analytical model, real
time experiments or simulations.

Thiele et al. in [9] described an analytic model of the NPs design space.
However, the model was based on a high level of abstraction, where the
goal was to quickly identify the interesting architectures, which might be
subjected to a more detailed evaluation using simulation. The final output
was three architectures, representing cost versus performance tradeoffs.

Spalink et al. in [10] presented a model for building a software-based
router using IXP1200 NP. Those works focused mainly on the queuing
disciplines, which included port mapping, packet scheduling and queue
contention. Many studies had been carried out with reference prototype
architecture and IXP1200 NP. At the outset, those studies were focused on
the queuing discipline of IXP1200 NP and discussed further technical details
about where and how to queue packets. However, a study on dimensioning
the queues in an NP system based on real world and synthetically generated
traces, was not revealed in any of the literature surveyed.

Solovjev et al. [11, 12] in their paper had worked in the same line as that
of the present paper. They had considered birth-death process with a system
of parameters { }nλ and { }nµ arrival intensity and service rate, respectively.

The arrival rate was fixed with arbitrary service rate. In [12], Mazalov and
Gurtov chose the example of Dallas-Fort Worth International Airport data. In
that work, if the queue size exceeded every k customer, then one more
additional counter could be opened. The number of servers was infinite
depending upon the customer arrival rate and the service counter could be
opened at n numbers as required.

LakshmiPriya and Parthasarathi [13] have proposed an architecture for
a grid of network processors that could offer in-network services using
active network technology. The concept had been demonstrated for the media
streaming application.

Queuing System for Dynamically Reconfigurable Network Processor 47

In continuation with their work on exploring the capabilities of the
network processor, LakshmiPriya and Parthasarathi [14] have proposed
a network processor framework for application aware networks, which
incorporated concepts such as self-configuration and active network
technology in NPs, in order to form a coordinated framework in the network.

3. Queuing Model for Dynamic Reconfigurable NP

As mentioned earlier, the arrival and departure rates (λ and µ) followed
Poisson distribution. However, the packet processing revealed exponential
distribution patterns. The queue service discipline was first-come-first
served. It was assumed that ,cn ≥ where n and c were the number of

packets received and the number of servers used by the system. It was again
assumed that c is a random variable that could take natural values only.

It was assumed that each microengine (ME) processed maximum k
packets (queue length k). If the queue length increased to more than k, then
the system would deploy the code to another ME would switch on. That
would continue for the queue length of every 2k, 3k, etc. The common queue
length at a time t is denoted as ().tx If the system as c active MEs, then the

following conditions hold at time t:

() () kctxck ≤<− 1 for some natural c. Let (),tPi ...,1,0=i be the

probability that i packets were in queue at a given time t. Kolmogorov
equations for this model were written as follows:

() () () () () (),1 11 tPctPtPctP kckckckc +− µ++λ+µ+λ−=′

() (()) () () ()tPctPctP jkcjkcjkc 11 11 ++−++ µ++µ++λ−=′

with () 01 =− tP for .1...,,1...,,1,0 −== kjc

The above set of equations may be regarded as a particular case of the
system of equations related to birth-death process:

() () () () ().1111 tPtPtPtP llllllll ++−− µ+µ+λ−λ=′

A. Satheesh, D. Kumar, P. Dharmalingam and T. K. S. Lakshmipriya 48

For ...,,1,0=l where ,001 =µ=λ −l ,λ=λl =µ= + jkcl ...,,2,1

() .1 µ+c

For 1...,,1...,,1,0 −== kjc and µ=µ ckc for,2,1=c

The necessary and sufficient conditions for such a process to have steady
state were

 ∑ ∑∞

=

∞

=
∞=

θλ
∞<θ

0 0
,1,

l l ll
l (2)

where

.1,,1
1

10
0 ≥

µµ
λλ

=θ=θ − l
l

l
l

Here, the values lθ took the form

() ()
...,,0;...,,1,

1!
==

+
ρ=θ

+

+ cki
cc ik

ikc
ikc

where
µ
λ=ρ was the system load. It was easy to see that the condition (2)

for the existence of steady-state holds, since the series

∑∑ ∑ ∑
∞

= =

∞

= =
+

+
ρ

 ρ=θ
0 1 0 1

1!
c

k

i c

k

i

ikc
ikc cc

converges and

,1!111

0 1 0 1
∑∑ ∑ ∑
∞

= =

∞

= =+
∞=

ρ
+

ρλ
=

θλ
c

k

i c

k

i

ik

cikc

nc

.112!

+π

= cOce

nn
n

It was obtained that a system of equations for the state (() =tPi

)const=iP contains several groups of similar recurrent equations.

Queuing System for Dynamically Reconfigurable Network Processor 49

The first group of k equations:

() .1...,,1,1, 1101 −=ρ−ρ+=ρ= −+ kiPPPPP iii

The second set of equations:

.1...,,1,221,22
1

1111 −=ρ−

 ρ+=ρ−ρ+= −++++−+ kiPPPPPP ikikikkkk

The general formula for :iP

() ()

....,1,0,...,,1,
1!

0 ==
+

ρ=
+

+ ckiP
cc

P ik

ikc
ikc (3)

It was found that 0P from the condition

∑
∞

=

=
0

.1
i

iP

From (3), it was derived:

∑∑
∞

= =
+ =+

0 1
0 1

c

k

i
ikcPP

or

() ()
.1

1!
1

0 1
0 =

+
ρρ+ ∑∑

∞

= =

+

c

k

i
ik

ikc

cc
P

On simplifying,

()

()
.

!
1

1

1

1
0

−∞

=

−

ρ−
ρ−ρρ+= ∑

j
k

kkkj

jj
jP

Now we can calculate all the sjP and consequently all the main

characteristics of the queuing system.

A. Satheesh, D. Kumar, P. Dharmalingam and T. K. S. Lakshmipriya 50

The average number of MEs in the system was an important factor

{ } ()∑∑
∞

= =
++=

0 1
.1

c

k

i
ikcPccE

On simplifying,

{ } ()∑ ∑
∞

= =
++=

0 1
1

c

k

i
ikcPcCE

() ()∑∑
∞

= =
−

+

+
ρ=

0 1
011!c

k

i
ik

ikc
P

cc

() ()∑∑
∞

= =
−

−+

+
ρρ=

0 1
01

1

1!c

k

i
ik

ikc
P

cc

ρ= ∑∑

∞

=

−

=
+

0

1

0c

k

i
ikcP

−+ρ= ∑∑ ∑ ∑

∞

= =

∞

=

∞

=
++

0 1 0 0c

k

i c c
kkckcikc PPP

() .1
0 0

10 ρ=

+−−ρ= ∑ ∑

∞

=

∞

=
+

c c
kcck PPP

From the above, it could be easily established that the average number of
MEs given k, was equal to the load of the system. However, it was found that
the variance of c is dependent on k. First, it was concluded that

{ } ()∑ ∑
∞

= =
++=

0 1

22 1
c

k

i
ikcPcCE

()∑ ∑
∞

= =
++

++=

0
0

2
1

21
c

k

i
ikckc PPPc

Queuing System for Dynamically Reconfigurable Network Processor 51

()
() () () ()∑ ∑

∞

= =

++

+
ρ+

+
ρ+=

0
0

2

1
2

1!1!
1

c

k

i
ik

ikc

ik

kc
P

cccc
c

()
() () () ()∑ ∑∑

∞

=

∞

= =
−

−++

+
ρρ+

+

ρ+
=

0 0 2
02

2
20

12

1!1!
1

c c

k

i
ik

ikc

ik

kc
P

cccn
Pc

()
()∑ ∑∑

∞

=

∞

=

−

=
+

+
ρ++ρ=

0 0

2

0

2
0

1

!
1

c c

k

i
ikck

kc
PP

c
c

()
()

()∑ ∑
∞

=

∞

=
+

+

−−ρ++ρ=

0 0
1

2
0

1
11

!
1

c c
ckk

kc
PP

c
c

()
()

()

() ()∑
∞

=
−

−++

+
ρρ−+ρ+ρ=

0
01

11
2

1
2

1!!
1

c
kk

ck

k

kc
P

ccc
c

()
()

()

() ()
0

1 0
1

111
2

1!!
1 P

ccc
c

c c
kk

ck

k

kc

+
ρ−+ρ+ρ+ρ= ∑ ∑

∞

=

∞

=
−

+++

()
()

()()
() ()

0
1 0

1
1

0
2

1!
1

!
1 P

cc
c

c
cP

c c
kk

ck

k
kc

+
+ρ−+ρ+ρ+ρ= ∑ ∑

∞

=

∞

=

+
+

()∑
∞

=

+

 −+ρ+ρ+ρ=
1

0
1

0
2

!
1

c
k

kc

c
ccPP

()∑
∞

=

+ρ+ρ+ρ=
1

1
00

2

!c
k

kc

c
PP

()
() ()

0
1 1

11
0

2

!!
1 P

c
c

c
cP

c c
k

kc

k

kc

 ⋅ρ−+ρ+ρ+ρ= ∑ ∑
∞

=

∞

=

++

A. Satheesh, D. Kumar, P. Dharmalingam and T. K. S. Lakshmipriya 52

()∑
∞

=

+ρ+ρ+ρ=
1

0
1

0
2

!c
k

kc
P

c
P

()∑
∞

=

+ρ+ρ=
0

0
1

2 .
!c

k

kc
P

c

The variances of the number of active MEs were found to be

{ } { } { }() ,22 cEcEcVar −=

{ } ∑
∞

=

 ρρ=
0

0 .!
c

kc

cPcVar

The relationship showed that the variance was a decreasing function of c. It
was an important characteristic in practice, since it showed the variance of
the necessary number of MEs around the mean value. The larger variance
indicated the requirement of additional MEs for packet processing at a point
of time.

The other important characteristics such as average queue length,
average waiting time in the queue were useful for deciding the optimum c.

As the average number of packets in the system is less than ,ρk then

{ } () ()∑∑∑
∞

=
+

∞

= =
+ ρ≤−−ρ=+=

00 1
.

c
ikc

c

k

i
ikc kPikkPikcqE

It was required to find an upper bound on the mean waiting time. It was
important that the number of active MEs could change depending on the
current queue length. Then, during the packet processing, the number of
active MEs would gradually decrease and then expected waiting time for the
packet would be

() () () .1
2
11111

 +++

µ
+

µ+
=

µ
++

µ−
+

µ
+

µ+ c
k

c
ik

c
k

c
k

c
i

Queuing System for Dynamically Reconfigurable Network Processor 53

The maximum waiting time for the packets in the queue for processing
was given by

{ } ()∑∑
∞

= =
+

µ
+

µ+
=

0 1
,1

c

k

i
ikcc Psk

c
itE

which was an upper bound for waiting time, where .1
2
11 nsc +++=

4. Implementation

Earlier the same authors of this paper [1] had implemented the dynamic
reconfiguration technique in real time environment. They had used ENP2611
chipset for Intel IXP2400 NP. Intel IXP2400 Developers Workbench a
simulation tool, which helped to execute the ME code, and obtained the
performance measures for the application program. Microcode assembly
language for ME implementation and embedded C programming for X-scale
implementation had been used to implement the system. The packets arrival
was assumed to follow Poisson distribution.

Figure 3 shows that when the traffic got increased from low to medium,
the minimum resource would not be able to manage the workload, so the
queue length got increased. Once again, heavy traffic was injected into the
NP when maximum resource is dynamically provisioned to handle the
network traffic. Thus, the MEs are allocated based on the network traffic, the
queue did not overflow, and resources were well-utilized. The arrival rate of
the system was 400 packets per milliseconds, the queue size was 10 and it
used three MEs (one ME for ingress, one ME for egress and one ME for
packet processing). The queue length was increased from 10 to 20 when an
additional ME was deployed for packet processing. At another instant, when
the arrival rate was increased from 400 to 500 packets per milliseconds, the
queue length increased by more than 20, and hence the system deployed all
eight MEs.

A. Satheesh, D. Kumar, P. Dharmalingam and T. K. S. Lakshmipriya 54

Similarly, the simulation parameters were set as, 250MHz the MEs clock
frequency, MEs took 4ns to execute single instruction and each packet was
executed in 25 instructions inside an ME. These parameters were based on
IXP2400 NP architecture. Therefore, each packet needed 100ns for
instruction execution. The values of 10, 60 and 100 were the access latencies
for Static Random Access Memory (SRAM) and Dynamic Random Access
Memory (DRAM). For every 100 packets, the averages of interarrival time
were calculated. It varied from 400ns to 1400ns. The traffic intensity was
periodically changing high and low. For the simulation, it was chosen that
the parameters 400=λ and .54=µ

A queuing simulation using C language was developed. The settings
used were: arrival rate of 400packets/ms, the number of servers was eight
and the inputs were, the arrival rate (λ) was 400ms, the service rate (µ) was
54ns. The NP architecture was IXP2400. So the default number of MEs was
8. The k values varied from 1 to 30. Figures 4-6 show the simulation results
for the queuing system using dynamically reconfigurable queue simulation.
This simulation was developed by using C language. Figure 4 shows the
necessary number of MEs versus the parameter k (maximum queue length
per ME). Figure 5 shows the average waiting time in milliseconds versus the
parameter k. Figure 6 shows the reconfiguration time in milliseconds versus
the parameter k. As seen in the figures, if the parameter k was fixed as 18 (the
maximum queue length per ME), then the IXP2400 NP used only one
number of active MEs. Then the average waiting time in the queue for a
packet would be 0.14ms and the reconfiguration time would be 0.11ms. This
result satisfied the following two conditions:

 (i) The average number of active MEs would be equal to traffic intensity
(ρ). Here, the result of traffic intensity (ρ) was 0.93 and the output of average
number of active MEs was 0.93.

(ii) The average number of packets in the system was less than kρ. In the
output, the average number of packets in the system was 7. This value was
less than kρ.

Queuing System for Dynamically Reconfigurable Network Processor 55

Figure 3. Workload, queue length and the number of MEs used in dynamic
reconfiguration.

Figure 4. The necessary number of MEs versus the parameter k (maximum
queue length per server).

A. Satheesh, D. Kumar, P. Dharmalingam and T. K. S. Lakshmipriya 56

Figure 5. Average waiting time in milliseconds (ms) versus the parameter k
(maximum queue length per server).

Figure 6. Reconfiguration time in milliseconds (ms) versus the parameter k
(maximum queue length per server).

Queuing System for Dynamically Reconfigurable Network Processor 57

5. Conclusion

In the proposed dynamically reconfigurable queuing system, the number
of MEs would dynamically adjust based on the queue length. This paper
analyzed the dynamically reconfigurable queuing model in IXP2400NP
using Kolmogorov differential equations and obtained upper bounds on the
number of MEs, queue length, average waiting time and reconfiguration
time.

This proposed system could model the dynamic reconfiguration queuing
system used in IXP2400 NP. The simulation model showed a close match
with analytic results using real world data. This model permitted energy
saving by optimizing the number of MEs while providing an acceptable
waiting time for the packet processing with high probability.

In this paper, a particular queuing mechanism in IXP2400 NP has been
considered. It allowed to simplify the problem and formulate it using just one
parameter k, the queue segment length. This had led to find a solution
analytically in closed form for the application of result in practice. The work
presented in this paper is a first level model, which has to be subsequently
refined by including more parameters.

References

 [1] A. Satheesh, S. Krishnaveni and S. Ponkarthick, Self-configurable environment
for the Intel IXP2400 network processor, International Journal of Computers and
Applications 31(4) (2009), 268-273.

 [2] Jing Fu, Olof Hagsand and Gunnar Karlsson, Queueing behavior and packet
delays in network processor systems, Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, 2007, MASCOTS’07, 15th
International Symposium on October 24-26, 2007, pp. 217-224.

 [3] Charlie Wiseman, Jonathan Turner, Michela Becchi, Patrick Crowley, John
Dehart, Mart Haitjema, Shakir James, Fred Kuhns, Jing Lu, Jyoti Parwatikar,
Ritun Patney, Michael Wilson, Ken Wong and David Zar, A remotely accessible
network processor-based router for network experimentation, ANCS’08,
November 6-7, 2008, pp. 20-29.

A. Satheesh, D. Kumar, P. Dharmalingam and T. K. S. Lakshmipriya 58

 [4] Matthias Gries, Chidamber Kulkarni, Christian Sauer and Kurt Keutzer,
Comparing analytical modeling with simulation for network processors: a
case study, Presented at the Proceedings of the Conference on 2003 Design,
Automation and Test in Europe Conference and Exposition, Munich, Germany,
March 3-7, 2003, pp. 20256-20261.

 [5] Christoforos Kachris and Stamatis Vassiliadis, A dynamically reconfigurable
queue scheduler, Proceedings of the 2006 International Conference on Field
Programmable Logic and Applications (FPL), Madrid, Spain, August 28-30, 2006,
pp. 1-4.

 [6] Intel, Intel ixp2xxx network processors hardware reference manual, Intel
Corporation, 2005.

 [7] R. Hassin and M. Haviv, To Queue or Not to Queue: Equilibrium Behaviour in
Queueing Systems, Springer, 2002.

 [8] L. Kleinrock, Queueing Systems, Volume I: Theory, Wiley Interscience, 1975.

 [9] L. Thiele, S. Chakraborty and M. Gries, Design space exploration of network
processor architectures, Proc. of 1st Workshop on Network Processors, held in
conjunction with the 8th International Symposium on High-performance Computer
Architecture, Cambridge, MA, Vol. 1, 2002, pp. 30-41.

 [10] T. Spalink, S. Karlin, L. Peterson and Y. Gottlieb, Building a robust software-
based router using network processors, Proc. of the 18th ACM Symposium on
Operating Systems Principles (SODP), Banff, Alberta, Canada, October 2001,
pp. 216-229.

 [11] A. D. Solovjev, A problem of optimal queuing, Technical Cybernetics 5 (1970),
40-49.

 [12] Vladimir V. Mazalov and Andrei Gurtov, Queuing system with on-demand
number of servers, Mathematica Applicanda 40(2) (2012), 1-12.

 [13] T. K. S. LakshmiPriya and Ranjani Parthasarathi, Architecture for an active
network infrastructure grid - the iSEGrid, The International Workshop on Active
Networks - IWAN05, France, LNCS 4388, 2009, pp. 38-52.

 [14] T. K. S. LakshmiPriya and Ranjani Parthasarathi, Coordinated support for
application-aware networks, Special issue on new technologies, mobility and
security, Ubiquitous Computing and Communication Journal Volume: NTMS –
Special Issue, 2008.

 [15] Intel IXP2400 Network Processor: Flexible, high performance solution for access
and edge applications, 2003. Available from:
http://www.intel.com/design/network/papers/ixp2400.htm.

