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Abstract 

Thomson introduced the notion of full covers and proved that every 
full cover of a closed interval [ ]ba,  contains a partition of [ ]., ba  The 

partitions extracted from full covers played an important role in the 
work of Botsko, Klaimon, Zangara and Marafino to simplify and unify 
proofs of several theorems in real analysis. 

In this research, we continue our project and develop the techniques 
given by Zangara and Marafino to show how the concept of δ -fine 
tagged partitions can be used in place of partitions extracted from full 
covers. 

1. Introduction 

Botsko [2, 3], Klaimon [5] as well as Zangara and Marafino [9] showed 
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how the concept of full covers could be used to simplify and unify the         
proofs of many theorems in real analysis. First formulated by Pierre Cousin, 
Thomson’s Lemma ensures that any full cover C  of a closed interval [ ]ba,  

contains a partition of [ ],, ba  i.e., there is a partition of [ ]ba,  all of whose 

closed subintervals belong to .C  It seems to us that partitions extracted from 
full covers are the keys to the results of Botsko, Klaimon, Zangara and 
Marafino, prompting us to seek easy-to-get partitions to replace partitions 
coming from full covers. It is δ-fine tagged partitions that we shall use to 
reprove almost all of the theorems discussed in [9]. We also discuss functions 
of bounded variation. 

Indeed, this paper is a continuation of the authors’ project [7] to use 
δ-fine tagged partitions in real analysis. 

Henceforth, we assume that R∈ba,  with .ba <  

By a gauge on [ ],, ba  we mean a strictly positive real-valued function 

[ ] .,: +→δ Rba  A tagged partition P  of the closed interval [ ]ba,  is a 
finite collection of ordered pairs 

[ ]( ){ },...,,1:,, 1 mixxt iii =−  

where bxxxa m =<<<= L10  and each it  is in [ ].,1 ii xx −  

Given a gauge δ  on [ ],, ba  a tagged partition P  of [ ]ba,  is said to be 
δ -fine if 

[ ] ( ) ( )] [iiiiii ttttxx δ+δ−⊆− ,,1  

for all { }....,,1 mi ∈  

The following lemma ensures the existence of a δ -fine tagged partition 
of [ ]ba,  for a given gauge δ  on [ ]., ba  

Lemma 1.1 (Cousin’s Lemma). [1, Theorem 5.5.5]. For every gauge δ  
on [ ],, ba  there exists a δ -fine tagged partition of [ ]., ba  

2. More Use of δ -fine Tagged Partitions 

We will now apply δ-fine tagged partitions to prove some well-known 
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theorems in a fashion similar to Zangara and Marafino’s proofs. Furthermore, 
we also show that if a function f is “of locally bounded variation” on [ ],, ba  

then f is of bounded variation on the whole interval [ ]., ba  

Theorem 2.1. Let ( )xfD  ( ( ))xfDlyrespective ,  denote the lower 

derivative (respectively, the upper derivative) of f at [ ]., bax ∈  

(1) If ( ) 0≥xfD  everywhere on [ ],, ba  then f is increasing on [ ]., ba  

(2) If ( ) 0≤xfD  everywhere on [ ],, ba  then f is decreasing on [ ]., ba  

Proof. (1) Assume that ( ) 0≥xfD  everywhere on [ ]., ba  Let ∈dc,  

[ ]ba,  with dc <  and let 0>ε  be given. Define a gauge δ  on [ ]dc,  as 

follows: Let [ ]., dcx ∈  Since ( ) ,ε−>xfD  there exists a 0>δx  such that 

( ) ( ) ε−>
−
−

xs
xfsf  

provided that ] [ [ ]dcxxs xx ,, Iδ+δ−∈  and .xs ≠  We, thus, obtain that 

( ) ( ) ( )uvufvf −ε−≥−  

provided that ] [ [ ]dcxxvu xx ,,, Iδ+δ−∈  and .vxu ≤≤  Define ( )xδ  

.: xδ=  

Now, let [ ]( ){ }mixxt iii ...,,1:,,: 1 == −P  be a δ -fine tagged partition 

of [ ]., dc  Since 

( ) ( ) ( )11 −− −ε−≥− iiii xxxfxf  

for each { },...,,1 mi ∈  it follows that 

( ) ( ) ( ) ( )( )∑
=

−−=−
m

i
ii xfxfcfdf

1
1  

( )∑
=

−−ε−≥
m

i
ii xx

1
1  

( ).cd −ε−=  

Since 0>ε  is arbitrary, we get ( ) ( ) .0≥− cfdf  
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(2) Similar to the proof of (1). � 

Theorem 2.2 (Lebesgue Number Lemma). Let J  be an open cover of 

[ ]., ba  There exists a number 0>η  such that if B is any nonempty subset of 

[ ]ba,  with diameter less than ,η  then there exists a set J∈J  such that 

.BJ ⊇  

Proof. For each [ ],, bax ∈  there exists an open set xJ  in J  containing 

x; hence there must be a 0>δx  such that ] [ ., xxx Jxx ⊆δ+δ−  Define a 

gauge δ  on [ ]ba,  by ( ) xx δ=δ 2
1  for all [ ]., bax ∈  

Let [ ]( ){ }mixxt iii ...,,1:,,: 1 == −P  be a δ -fine tagged partition of 

[ ]., ba  We choose ( ){ }....,,1:min miti =δ=η  Let B be any nonempty 

subset of [ ]ba,  with diameter less than .η  Then B intersects [ ]jj xx ,1−  for 

some { }....,,1 mj ∈  We choose ;: jtJJ =  thus, ] [ ⊆δ+δ−⊆ jj tjtj ttB ,  

,JJ jt =  as required. � 

The Intermediate Value Theorem [4, Theorem 2] and Rolle’s Theorem 
[7, Theorem 2.4] were proved by using the notion of δ -fine tagged 
partitions. Because the Mean Value Theorem can be proved via Rolle’s 
Theorem, we deduce that the Mean Value Theorem is a result of the use of 
δ-fine tagged partitions. In 2004, Olsen [6] gave a proof of Darboux’s 
Theorem or the Intermediate Value Theorem for Derivatives, by applying the 
Intermediate Value Theorem and the Mean Value Theorem to avoid the 
( )δε, -argument, which is fairly accessible to many beginning undergraduate 

students in real analysis. That is, Darboux’s Theorem is a consequence of 
applications of δ -fine tagged partitions. We state Darboux’s Theorem here 
and one can find the proof of Darboux’s Theorem in [6, p. 714]. 

Theorem 2.3 (Darboux’s Theorem). If f is the derivative of some 
function g on an open interval containing [ ],, ba  and if 0y  lies between 

( )af  and ( ),bf  then there exists an 0x  in ] [ba,  such that ( ) .00 yxf =  
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Recently, Zangara and Marafino [9, p. 300] proved Darboux’s Theorem 
via the notion of full covers, but we prefer Olsen’s advantageous strategy. 

In order to present the proof of Baire’s Theorem, we need the following 
definition. 

Definition 2.4. A function [ ] R→baf ,:  is said to be upper 

semicontinuous (respectively, lower semicontinuous) at [ ]bax ,∈  if 

( ) ( )xfsfxs ≤→suplim  ( ) ( )( ).inflimly,respective xfsfxs ≥→  

The function f is said to be upper semicontinuous on [ ]ba,  ( ly,respective  

lower semicontinuous on [ ])ba,  if f is upper semicontinuous (respectively, 

lower semicontinuous) at every [ ]., bax ∈  

Theorem 2.5 (Baire’s Theorem). (1) Suppose that f is upper 
semicontinuous and bounded above on [ ]., ba  Then there exists a sequence 

of continuous functions nH  such that ( ) ( )xfxHn ↓  for all [ ]., bax ∈  

(2) Suppose that f is lower semicontinuous and bounded below on [ ]., ba  

Then there exists a sequence of continuous functions nh  such that 

( ) ( )xfxhn ↑  for all [ ]., bax ∈  

Proof. (1) Let M be an upper bound of f on [ ]., ba  

For each ,0>ε  we will construct a continuous function [ ] R→∗
ε baH ,:  

that approximates f in a sense to be clarified below. Let 0>ε  be given. 
Define a gauge δ  on [ ]ba,  as follows: Let [ ]bax ,∈  be fixed. Since f         

is upper semicontinuous at x, there is a 



 ε∈δ 2,0x  such that for each 

[ ],, bas ∈  if ] [,, xx xxs δ+δ−∈  then ( ) ( ) .ε+< xfsf  Define ( ) .xx δ=δ  

Let [ ]( ){ }mixxt iii ...,,1:,,: 1 == −P  be a δ -fine tagged partition of 

[ ]., ba  For each { },...,,1 mi ∈  let ( ) ε+≡Φ ii tf  be a constant function 

defined on [ ].,: 1 iii xxI −=  Note that, for each { },...,,1 mi ∈  ( ) ( )ssf iΦ<  
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for all .iIs ∈  If ,21 Φ>Φ  then connect the horizontal graph of 1Φ  to that 

of 2Φ  by the line segment ,21PP  where 1P  coincides with the end point of 

the graph of 1Φ  and 2P  lies 31  of the distance on the graph of .2Φ  If 

,21 Φ<Φ  then connect the horizontal graph of 1Φ  to that of 2Φ  by the line 

segment ,21PP  where 1P  is 32  of the distance on the graph of 1Φ  and 2P  

coincides with the initial point of the graph of .2Φ  If ,21 Φ=Φ  then we 

have nothing to do. Doing this for each { },...,,2,1 mi ∈  we can construct a 

continuous function ∗
εH  on [ ]ba,  with the property ( ) ( )xHxf ∗

ε<  for all 

[ ]., bax ∈  (See Figure 1.) 

 

Figure 1. Construction of .∗εH  

Explicitly, ∗
εH  approximates f in the following sense: Given any 

[ ];,0 bas ∈  then iIs ∈0  for some i, and either the point ( ( ))00, sHs ∗
ε  will 

be on a horizontal step of ∗
εH  or it will be on a line segment connecting two 

consecutive horizontal steps. In either case, it is evident that 

( ) ( ) ,sup
2

0
0

ε+≤
ε<−

∗
ε sfsH

ss
 

since all iI  are of length less than .ε  

We now construct the desired sequence .nH  Define { },,inf: 11 MHH ∗=  

{ },,inf: 122 1 HHH ∗
−=  { },,inf 233 1 HHH ∗

−=  and so on. Let [ ]bax ,∈  be 
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given. The sequence ( )xHn  converges, since it is decreasing and bounded 

below by ( ).xf  Moreover, ( ) ( ).lim xfxHnn ≥+∞→  Since the inequality 

( ) ( ) nsfxH

nxs
n

1sup
2

+≤
<−

 

holds for all ,N∈n  it follows that ( ) ( ) ( ).suplimlim xfsfxH xsnn ≤≤ →∞→  

Hence ( ) ( ).xfxHn ↓  

(2) Similar to the proof of (1). � 

Definition 2.6. A family Ω  of functions is said to be uniformly bounded 
on [ ]ba,  if there is a constant 0>M  such that ( ) Mxf ≤  for all ∈x  

[ ]ba,  and all .Ω∈f  

Definition 2.7. A family Ω  of functions is said to be equicontinuous      
at [ ]bax ,∈  if for each ,0>ε  there exists a ( ) 0, >εδ x  such that for all 

[ ],, bas ∈  if ( ),, xxs εδ<−  then ( ) ( ) ε<− xfsf  for all .Ω∈f  

Theorem 2.8 (Ascoli’s Theorem). Let Ω  be a family of functions such 
that Ω  is uniformly bounded on [ ]ba,  and equicontinuous at every point of 

[ ]., ba  Then every sequence nf  in Ω  has a subsequence that converges 

uniformly on [ ]., ba  

Proof. We shall divide the proof into 3 steps as follows: 

Step 1. For any 0>ε  and any [ ],, bax ∈  there is a ( ) 0, >εδ x  such that 

for all [ ],,, badc ∈  if [ ] ( ) ( )] [,,,,, xxxxdcx εδ+εδ−⊆∈  then every 

sequence nh  in Ω  has a subsequence ( )
+∞
=1kknh  such that 

 ( )( ) ( )( ) ε<− shsh jnin  (1) 

for all [ ]dcs ,∈  and all ., N∈ji  

Proof of Step 1. Let 0>ε  be arbitrary and let [ ]bax ,∈  be fixed. 
Since Ω  is equicontinuous at x, there exists a ( ) 0, >εδ x  such that for all 

[ ],, bas ∈  if ( ),, xxs εδ<−  then 
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( ) ( ) 3
ε<− xfsf  

for all .Ω∈f  Let [ ]badc ,, ∈  be such that [ ] ] ( ),,, xxdcx εδ−⊆∈  

( ) [xx ,εδ+  and let nh  be any sequence in .Ω  Since the sequence ( )xhn  

is bounded, it has a Cauchy subsequence ( )( )xh kn  such that 

( )( ) ( )( ) 3
ε<− xhxh jnin  

for all ., N∈ji  Hence, if [ ]dcs ,∈  and ,, N∈ji  then 

( )( ) ( )( )shsh jnin −  

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )shxhxhxhxhsh jnjnjnininin −+−+−≤  

333
ε+ε+ε<  

,ε=  

as required. � 

Step 2. For any ,0>ε  every sequence ng  in Ω  has a subsequence 

( )
+∞
=ε 1, kkng  such that 

 ( )( ) ( )( ) ε<− εε sgsg jnin ,,  (2) 

for all [ ]bas ,∈  and all ., N∈ji  

Proof of Step 2. Let 0>ε  be given. Define a gauge δ  on [ ]ba,  as 

follows: Let [ ]bax ,∈  be fixed. By Step 1, there is a ( ) 0, >εδ x  such       

that the condition (1) holds. Define ( ) ( ) .0, >εδ=δ xx  Now, let =:P  

[ ]( ){ }mixxt iii ...,,1:,, 1 =−  be a δ-fine tagged partition of [ ]ba,  and let 

ng  be any sequence in .Ω  Since 

[ ] ( ) ( )] [,,,,, 1111101 ttttxxt εδ+εδ−⊆∈  
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it follows from Step 1 that there is a subsequence ( )kng 1  of ng  such that 

 ( )( ) ( )( ) ε<− sgsg jnin 11  (3) 

for all [ ]10, xxs ∈  and all ., N∈ji  Again, since 

[ ] ( ) ( )] [,,,,, 2222212 ttttxxt εδ+εδ−⊆∈  

it follows from Step 1 that the sequence ( )kng 1  has a subsequence ( )kng 2  

such that 

 ( )( ) ( )( ) ε<− sgsg jnin 22  (4) 

for all [ ]21, xxs ∈  and all ., N∈ji  It is readily seen that ( )kng 2  is a 

subsequence of ng  such that 

 ( )( ) ( )( ) ε<− sgsg jnin 22  (5) 

for all [ ] [ ]2110 ,, xxxxs U∈  and all ., N∈ji  Continuing this process for m 

steps, we eventually obtain the required subsequence ( ) ( )knkn mgg =ε :,  

of .ng  � 

Step 3. Every sequence nf  in Ω  has a subsequence that converges 

uniformly on [ ]., ba  

Proof of Step 3. Let nf  be any sequence in .Ω  Applying Step 2 with 

nn fg =  and ,1=ε  we obtain a subsequence ( )knf ,1  of nf  such that 

 ( )( ) ( )( ) 1,1,1 <− sfsf jnin  (6) 

for all [ ]bas ,∈  and all ., N∈ji  Applying Step 2 again with =ng  

( )1,1 +knf  and ,2 1−=ε  we obtain a subsequence ( )kn
f

,2 1−  of ( )1,1 +knf  

such that 

 ( )( ) ( )( ) 1
,2,2

211
−<− −− sfsf

jnin
 (7) 
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for all [ ]bas ,∈  and all ., N∈ji  Observe that ( )kn
f

,2 1−  is also a 

subsequence of nf  and that ( ) ( ) ( ).1,12,11,2 1 nnn >≥−  Continuing this 

process inductively, we conclude that there is a family { ( ) }N∈+∞
=− l

l
:1,1 kkn

f  

of subsequences of nf  such that 

 (i) (( ) ) ( )1,1,1 11 −− >+ ll nn  for all ,N∈l  and 

(ii) ( )( ) ( )( ) 1
,, 11

−<− −− l
ll

sfsf
jnin

 for all [ ]bas ,∈  and all .,, N∈jil  

Let 0>ε  be arbitrary. Choose N∈m  so that .1 ε<−m  The subsequence 

( )
+∞
=− 1,1 kkmn

f  of nf  satisfies the property that 

 ( )( ) ( )( ) ε<<− −
−−

1
,, 11 msfsf

jmnimn
 (8) 

for all [ ]bas ,∈  and all ., N∈ji  Therefore, ( )
+∞
=− 1,1 kkmn

f  converges 

uniformly on [ ]., ba  

This completes the proof of Ascoli’s Theorem. � 

Definition 2.9. Let [ ] R→baf ,:  be a function. For each partition =P  

{ }mxx ...,,0  of [ ]ba,  with ,10 bxxxa m =<<<= L  let 

( ) ( ) ( )∑
=

−−=
m

i
ii xfxfPfV

1
1 .:,  

The variation of f on [ ]ba,  is defined by 

( ) ( ) [ ]{ } [ ].,0,ofpartitionais:,sup: ∞+∈= baPPfVfVar  

Definition 2.10. Let [ ] .,: R→baf  Then f is said to be of bounded 

variation on [ ]ba,  if ( ) .+∞<fVar  
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In general, the function f is said to be of bounded variation on a 
nondegenerate closed subinterval [ ]dc,  of [ ]ba,  if [ ]dcf ,|  is of bounded 

variation on [ ]., dc  

Lemma 2.11. If f is of bounded variation on [ ],, ba  then f is of bounded 

variation on any nondegenerate closed subinterval of [ ]., ba  

Proof. Assume that f is of bounded variation on [ ]., ba  Let [ ]dc,  be any 

nondegenerate closed subinterval of [ ]ba,  and let { }mcd xxP ...,,0=  be any 

partition of [ ]., dc  Put { };, baPP cdab U=  hence abP  is a partition of [ ]., ba  

We, thus, have 

( [ ] ) ( ) ( )∑
=

−−=|
m

i
iicddc xfxfPfV

1
1, ,  

( ) ( ) ( ) ( ) ( ) ( )∑
=

− −+−+−≤
m

i
mii xfbfxfxfafxf

1
10  

( )abPfV ,=  

( ).fVar≤  

As a result, ( [ ]) ( ) ., +∞<≤| fVarfVar dc  Therefore, f is of bounded 

variation on [ ]., dc  � 

Definition 2.12. A function [ ] R→baf ,:  is said to be of locally 

bounded variation at a point [ ]bax ,∈  if there exists a number 0>δx  

such that f is of bounded variation on [ ] [ ].,, baxx xx Iδ+δ−  

Theorem 2.13. If f is of locally bounded variation at every point on 
[ ],, ba  then f is of bounded variation on the whole interval [ ]., ba  

Proof. Define a gauge δ  on [ ]ba,  as follows: Let [ ]bax ,∈  be     

given. Then there exists a 0>δx  such that f is of bounded variation on 

[ ] [ ].,, baxx xx Iδ+δ−  We define ( ) .xx δ=δ  
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Let [ ]( ){ }mixxt iii ...,,1:,,: 1 == −P  be a δ -fine tagged partition of 

[ ]., ba  By Lemma 2.11, f is of bounded variation on [ ]ii xx ,1−  for all ∈i  

{ }....,,1 m  

To show f is of bounded variation on [ ],, ba  let { }nyyP ...,,0=  be any 

partition of [ ]., ba  Then put { } { },...,,...,,:´ 00 nm yyxxP U=  so Ṕ  is a 

partition of [ ]ba,  containing all partition points mxxx ...,,, 10  of the δ -fine 

tagged partition .P  For each { },...,,1 mi∈  let [ ].,´:´ 1 iii xxPP −= I  It follows 

that, for each { } iPmi ´,...,,1∈  is a partition of [ ],,1 ii xx −  and that 

( ) ( )PfVPfV ´,, ≤  

( [ ] )∑
=

−
|=

m

i
ixx PfV ii

1
, ´,1  

( [ ])∑
=

−
|≤

m

i
xx iifVar

1
, ,1  

so ( ) ( [ ])∑ = +∞<|≤
−

m
i xx iifVarfVar 1 , .1  This completes the proof. � 
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