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Abstract

Integrable coupling of the well-known Kaup Newell hierarchy is

obtained by constructing a higher loop algebra and using a relation of

direct sum between two subalgebras. As a reduction case, an integrable

coupling of a generalized MKdV equation is presented.

1. Introduction

Integrable couplings are an interesting aspect in the field of soliton
theory. A central and very important topic in the study of integrable
system is to search for integrable models as many as possible and such
that they be associated with certain evolution equations with physical
meaning. It originates from an investigation on centerless Virasoro
symmetry algebras of integrable systems or soliton equations [1]. Let
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be a known integrable system. Then the following system
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is called integrable coupling from (1), if (2) is also integrable, and
contains explicitly derivatives. The reference [3] consists of a theory for
constructing integrable coupling of soliton equations by using various
perturbations around solutions of perturbed soliton equations. Actually,
two approaches have been developed for searching integrable couplings
[1-4]: The common characteristics of above methods are that isospectral
problem gives rise to the integrable couplings for only one equation.
Recently, Tu [5] proposed a new method which is based on the analysis of
loop algebra. It is called as the Tu model. His key idea is to construct a
loop algebra. In this paper, a direct method is proposed by considering an
isospectral problem. Integrable couplings for the corresponding equation

hierarchy can be obtained by constructing a suitable loop algebra .
~
G  In

what follows, integrable coupling for Kaup Newell hierarchy will be
established by means of an example illustrating our method.

2. Integrable Coupling for Kaup Newell Hierarchy

Consider the basis of the loop algebra 1
~
A as follows:
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Then the Kaup Newell hierarchy is derived from it as
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Let the loop algebra G
~

 possess two subalgebras 1
~
G  and 2

~
G  which

satisfy the following:

1
~
G  is isomorphic to 1

~
A  and

[ ] 221
~~

,
~

GGG ⊂ (4)

from which a corresponding isospectral problem is established and the
derived integrable equation hierarchy becomes integrable coupling for

Kaup Newell hierarchy. Set G to be a linear space with basis { ,,, 321 eee
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The commutation relations are defined as
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constants (or functions). Then we have the Jacobi identity
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which consists of loop algebra .
~
G  Let the subalgebras 1

~
G  and 2

~
G  of the

loop algebra G
~

 have for bases ( ) ( ) ( ){ }nenene 321 ,,  and ( ) ( ){ },, 54 nene

respectively. It is easy to find that 1
~
G  and 2

~
G  satisfy (4).

Consider a linear problem as follows:

[ ]

[ ]





Ψ=Ψ

=λΨ=Ψ

,,

,0,,

V

U

t

tx
(5)

where ∑ = ΨΨ=Ψ 5
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puuuu =  λ is a spectral parameter. Then the compatibility

condition in (5) reads as
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In terms of Jacobi identity, the compatibility condition of (12) reduces

to the zero curvature equation
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Solving the stationary zero curvature equation [ ],, VUVx =  gives

rise to the recursion relations as follows:
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Denote
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Then zero curvature equation can be written as
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A direct calculation gives that the terms on the left-hand side in (8)

are of degree ( ) ,0≥deg  while the terms on the right-hand side are of

degree ( ) .1≤deg  Therefore, both sides of (8) are of degrees 0 and 1. It is

easy to see that for ( ) ,n
nn VV ∆+λ= +  taking ,0,2 =∆= nmn  a direct

calculation provides that
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Thus, the zero curvature equation
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xt VUVU (9)
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leads to the following Lax integrable system
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where J is the Hamiltonian operator.

From (7), a recurrence operator is given by
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Since the hierarchy (11) is derived from the zero-curvature equation (9),

it is integrable. From the comparison of the construction of J and L with

that in (3), we find that (11) is integrable coupling for Kaup Newell

hierarchy (3). Of course, (11) is also a type of expanding integrable model

of (3).

In particular, taking ,3=n  (8) and (10) lead to the reduction of (11)

as follows:
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where
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It is easy to find that (12) is reduced to the integrable coupling for the
generalized MKdV equation when ,1, 21 == uuu
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