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Abstract 

Identification of patterns and choice of model in time series data is 
critical to facilitate forecasting. Two patterns that may be presented 
are trend and seasonality and the two competing models are the 
additive and multiplicative models. This paper uses the Buys Ballot 
table: (1) to provide an overview of recent developments in the 
identification and measure of trend and seasonality and choice of 
models in classical time series data analysis, and (2) to provide new 
insights into the development of new methodologies for effective 
identification of patterns and choice of models in classical time series 
data analysis when the trend is monotonous and the seasonal pattern is 
stable. 

1. Introduction 

There are two main goals of time series analysis: (1) identifying the 
nature of the phenomenon represented by the sequence of observations, and 
(2) forecasting (predicting future values of the time series variable). Both of 
these goals require that the pattern of observed time series data is identified 
and more or less formally described. 
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In time series analysis, it is assumed that the data consist of a systematic 
pattern (usually a set of identifiable components) and random noise (error). 
Most time series patterns can be described in terms of four basic classes       
of components: trend (denoted as ,)tT  seasonal (denoted as ,)tS  cyclical 

(denoted as )tC  and irregular (denoted as tI  or )te  components, where t 

stands for the particular point in time. These four classes of time series 
components may or may not coexist in real-life data. 

The trend represents a general systematic linear or (most often) nonlinear 
component that changes over time and does not repeat or at least does not 
repeat within the time range captured by out data. As long as the trend is 
monotonous (consistently increasing or decreasing), the identification of 
trend component is not very difficult. Trend analysis (methods for estimating 
the trend parameters) can be done by three important methods: (1) smoothing 
(Box and Jenkins [5], Velleman and Hoaglin [33], Makridakis et al. [25], 
Gardner [11] and Montgomery et al. [27]), (2) fitting a mathematical function 
(Chatfield [7] and Kendall and Ord [20]) and (3) differencing to make the 
series stationary in the ARIMA methodology (Box and Jenkins [5], Pankratz 
[30] and Wei [35]). Tests for trend are given in Kendall and Ord [20]. 
Correlation analysis can also be used to assess trend. If a time series contains 
a trend, then the values of the autocorrelations will not come to zero except 
for very large values of the lag (Chatfield [7]). Table 1 gives a summary of 
the common functions used to approximate trend. 

Many time series exhibit a variation which repeats itself in systematic 
intervals over time and this behaviour is known as seasonal dependency 
(seasonality). By seasonality, we mean periodic fluctuations. It is formally 
defined as correlational dependency of order k between each ith element of 
the series and the (i-k)th element (Kendall and Ord [20]) and measured by 
autocorrelation (a correlation between tX  and ;)ktX −  k is usually called the 

lag. Seasonality can be visually identified in the series as a pattern that 
repeats every k elements. The following graphical techniques can be used to 
detect seasonality: (1) a run sequence plot (Chambers et al. [6]), (2) a 
seasonal subseries plot (Cleveland [8]), (3) multiple box plots (Chambers et 
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al. [6]) and (4) the autocorrelation plot (Box and Jenkins [5]). Both the 
seasonal subseries plot and the box plot assume that the seasonal periods are 
known. In most cases, the seasonal periods are easy to find (4 for quarterly 
data, 12 for monthly data, etc). If there is significant seasonality, then the 
autocorrelation plot should show spikes at multiples of lags equal to the 
period, the seasonal lag (for quarterly data, we would expect to see 
significant spikes at lags 4, 8, 12, 16, and so on). Davey and Flores [10] 
proposed a method which adds statistical tests of seasonal indexes for the 
multiplicative model that helps identify seasonality with greater confidence. 
Tests for seasonality are also given in Kendall and Ord [20]. The seasonal 
component, ,tS  is associated with the property that ( ) ,1 jjsi SS =+−  =i  

....,2,1  

Apart from seasonal effects, some time series exhibit variation at a     
fixed period or at periods that are not fixed but which are predictable. The 
difference between a cyclical component and a seasonal component is that 
the latter occurs at regular (seasonal) intervals, while cyclical factors have 
usually a longer duration that varies from cycle to cycle. For short duration 
of data, the trend and cyclical components are customarily combined into a 
trend-cycle component, denoted as tM  (Chatfield [7]). 

After trend and seasonal effects have been removed from a set of data, 
we are left with a series of residuals, which may or may not be random. A 
visual examination of the run sequence plot may be enough to see that a 
series is random or not random. A variety of tests exist for randomness and 
they are described in Kendall and Ord [20]. If a time series is completely 
random, then its autocorrelations are zero for all lags. Tests based on the 
autocorrelation of the residuals are called portmanteau lack-of-fit tests in Box 
and Jenkins [5] and Ljung and Box [23]. 

In addition to identifying the patterns (the components), our two goals 
are better achieved if and only if the correct model is used for analysis.      
The specific functional relationship between these components can       
assume different forms. However, two straightforward possibilities are       
that they combine in an additive (additive seasonality) or a multiplicative 
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(multiplicative seasonality) fashion: additive model (when trend and cyclical 
components are combined) is 

 ,tttt eSMX ++=  (1.1) 

where ∑
=

=
s

j
jS

1
0  and ( ).,0~ 2

1σNet  

Multiplicative model (when trend and cyclical components are 
combined) is 

 ,tttt eSMX ∗∗=  (1.2) 

where ∑
=

=
s

j
j sS

1
 and ( ).,1~ 2

2σNet  

The run sequence plot (time plot) is used to choose between additive and 
multiplicative models. If the seasonal variation stays roughly the same size 
regardless of the mean level, then it is said to be additive, but if it increases 
in size in direct proportion to the mean level, then it is said to be 
multiplicative (Chatfield [7]). Multiplicative seasonality implies that the 
seasonal changes increase with the overall trend (i.e., the variance is 
correlated with then mean over the segments of the series). In the plot of the 
series, the distinguishing characteristic between these two types of seasonal 
components is that in the additive case, the series shows steady seasonal 
fluctuations, regardless of the overall level of the series; in the multiplicative 
case, the size of the seasonal fluctuations varies, depending on the overall 
level of the series. 

The purpose of classical decomposition method is to isolate those 
components, that is, to decompose the series into trend effect, seasonal 
effects, and remaining variability. The traditional method of time series 
decomposition for the deterministic trend/seasonal (DTDS) model, based on 
(i) fitting a trend curve to the entire series by some method and detrending 
the series (ii) using the detrended series to estimate the seasonal indices          
is time consuming and complex (Chatfield [7], Kendall and Ord [20] and      
Wei [35]). 
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This paper proposes a methodology to do three things: (1) improve on 
the traditional method of time series decomposition by showing that trend 
estimation is different for additive and multiplicative models while seasonal 
estimates can be done without first detrending the series, (2) improve the 
degree of confidence in the characterization of seasonality in a time series by 
performing statistical tests on the seasonal indices and (3) improve the degree 
of confidence in the choice between additive or multiplicative models by 
performing statistical tests. 

Table 1. Tests needed for choosing an appropriate curve to fit the given data 

S/No. Curve name 
Mathematical form of the 

curve 
Property to be tested for tXy =  

1 Straight line btaXt +=  The first differences of given    
y’s are nearly constant 

2 Parabola 2ctbtaXt ++=  
The second differences of given 

y’s are nearly constant 

3 Cubic 32 dtctbtaXt +++=
The third differences of given   

y’s are nearly constant 

4 
Polynomial of 

order p 

2
210 tataaXt ++=  

p
pta++  

The pth differences of given     
y’s are nearly constant 

5 Exponential bt
t aeX =  

The first differences of [ ] s’log y  

are nearly constant 

6 
Exponential 

parabola 
2ctbt

t aeX +=  
The second differences of 
[ ] s’log y  are nearly constant 

7 
Modified 

exponential 
cabX t

t +=  
The first differences of y change 

by a constant percentage 

8 Gompertz tc
t abX =  

The first differences of [ ] s’log y  

change by a constant percentage 

9 Logistic tt
bc

aX
+

=
1

 
The first differences of s’1







y  

change by a constant percentage 

Note. tX  stands for the observed value of the time series at time t. 
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2. Buys Ballot Table and its Uses 

A seasonal time series data is conventionally arranged into m rows and          
s columns. By arranging a seasonal series of length n into m rows and s 
columns, as shown in Table 2, the rows represent the periods/years while the 
columns are the seasons. This two-dimensional arrangement of a series is 
referred to as the Buys Ballot table (see Wold [36] and Iwueze and Nwogu 
[15]). 

Table 2. Buys Ballot table 
Columns 

Row 
1 2 … j … s .iT  .iX  .ˆ iσ  

1 1X  2X  … jX  … sX  .1T  .1X  .1σ̂  

2 1+sX  2+sX  … jsX +  … sX2  .2T  .2X  .2σ̂  

3 12 +sX  22 +sX  … jsX +2  … sX3  .3T  .3X  .3σ̂  

… … … … … … … … … … 

i ( ) 11 +− siX  ( ) 21 +− siX  … ( ) jsiX +−1 … ( ) ssiX +−1 .iT  .iX  .ˆ iσ  

… … … … … … … … … … 

m ( ) 11 +− smX  ( ) 21 +− smX  … ( ) jsmX +−1 … msX  .mT  .mX  .ˆ mσ  

jT.  1.T  2.T  … jT.  … sT.  ..T    

jX.  1.X  2.X  … jX.  … sX.   ..X   

j.σ̂  1.σ̂  2.σ̂  … j.σ̂  … s.σ̂    ..σ̂  

=.iT  Total for ith period/year 

=.T  Sum of all observations 

=jX .  Average for jth season 

=σ i.ˆ  Standard deviation for ith period/year 

=σ..ˆ  Overall observation standard deviation 

=s  Number of seasons per period/years 
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=jT.  Total for jth season 

=.iX  Average for ith period/year 

=..X  Overall observation average 

=σ j.ˆ  Standard deviation for jth season 

=m  Number of period/years 

== msn  Number of observations. 

Chatfield [7] suggested the use of the Buys Ballot table for inspecting 
time series data for the presence of trend and seasonal effects. In addition to 
the inspection for the presence of trend and seasonal effects, Iwueze and 
Nwogu [15], Iwueze and Ohakwe [17] and Iwueze and Nwogu [16] proposed 
a Buys Ballot Estimation Procedure for the estimation of trend parameters 
and seasonal indices. Fomby [12] presented various graphs suggested by the 
Buys Ballot table for inspecting time series data for the presence of seasonal 
effects. Fomby [13] in his study of Stable Seasonal Pattern (SSP) models 
gave an adaptation of Friedman’s two-way analysis of variance by ranks test 
for seasonality in time series data. Iwueze et al. [18] gave five (5) uses of the 
Buys Ballot table in time series analysis. Iwueze et al. [19] and Nwogu et al. 
[28] provided the best linear unbiased estimates of the Buys Ballot estimates. 

All the above methods wrongly assume that the periodic/yearly averages 
,.iX  mi ...,,2,1=  for both additive and multiplicative models are functions 

of the periods/years that reveal the basic trend in the data but will             
have nothing to say about seasonality. This wrong assumption on the 
periodic/yearly averages has lead to the use of the same formulae for           
the estimation of trend parameters in additive and multiplicative models.     
To overcome this problem, we have introduced the computation of 
periodic/yearly sample variances and seasonal sample variances into the 
Buys Ballot table. In contrast, the seasonal averages ,. jX  sj ...,,2,1=  

reveal an interesting seasonal pattern because they are functions of the trend 
parameters and the seasonal indices. 
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3. Row, Column and Overall Averages and Variances of the 
Buys Ballot Table for Selected Trend Curves 

The summaries of the row, column and overall averages and variances 
are shown in Tables 3.1 through 3.3 for the selected trending curves under 
the additive and multiplicative models. As the tables show, the row, column 
and overall averages and variances are not the same for the two models. 

(a) (i) For the additive model, the row averages mimic the shape of the 
trending series and do not contain the seasonal component and (ii) for the 
multiplicative model, the row averages also mimic the shape of the trending 
series but contain the seasonal component. 

(b) The column averages mimic the shape of the trending series and 
contain the seasonal component for both additive and multiplicative models. 

(c) The row variances contain both the trending parameters and the 
seasonal component for both additive and multiplicative models. 

(d) Just like the row averages, (i) for the additive model, the column 
variances mimic the shape of the trending series and do not contain the 
seasonal component and (ii) for the multiplicative model, the column 
variances also mimic the shape of the trending series but contain the seasonal 
component. 

These characteristics are what could be used for (i) choice of the 
appropriate model for decomposition, (ii) assessment and estimation of trend 
and (iii) assessment and estimation of seasonality. 
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Table 3.1a. Summary of totals and averages of a series when trend-cycle 
components are linear: ( )btaMt +=  

Linear trend-cycle component: msntbtaMt ==+= ...,,2,1,  Totals and 
averages Additive model Multiplicative model 

.iT   ( ) ( ) ,12
2 ibssbsas +−−    ( ) ( )∑

=

++−
s

j
j ibsSjbsbsa

1

2  

jT.   ( ) jmSmbjsnmbma ++−+ 2
  ( ) jSbjsnbam





 +−+ 2  

..T   




 ++ 2

)1(nnbna    ( )












+−+ ∑
=

s

j
jSjs

bsnban
1

2  

.iX   ( )ibssba +




 −− 2

1    ibsjSss
ba

s

j
j )(

1

2 +












−− ∑

=

 

jX .   ( ) ,2 jSbjsnba ++−+    ( ) jSbjsnba




 +−+ 2  

..X   2
)1( ++ nba    ( ) ∑

=

+−+
s

j
jSjs

bsnba
1

2  
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Table 3.1b. Summary of sample variances of a series when trend-cycle 
components are linear: ( )btaMt +=  

 

Table 3.2a. Summary of totals and averages of a series when trend-cycle 

components are quadratic: ( )2ctbtaMt ++=  

Quadratic trend-cycle component: msntctbtaMt ==++= ...,,2,1,2  Totals and 
averages Additive model Multiplicative model 

.iT  
( ) ( ) ( )121612 −−+−− sscssbsas  

( )[ ] ( ) 232 1 icsiscbs +−−+  

( ) 





 +−+−− s

CCscsCsbas 2
1

2
1

2 2  

( ) ( ) 23
1

22 2 icsiCss
cbs +



 −−+  

jT.  
( ) ( )( )snsncmsnbmam −−+−+ 262

( )[ ] jmSmcjjsncbm ++−++ 2  

( ) ( )( )

( )[ ]
jS

mcjjsncbm

snsncmsnbmam













+−++

−−+−+
2

262  
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..T  ( ) ( ) ( )121612 +++++ nncnnbnan




 +−+ s

Csnbnan 1
2  

( ) ( ) ( ) 



 +−+−−+ s

C
s

Csnsnsncn 21
6
2  

.iX  
( ) ( ) ( )121612 −−+−− sscsba  

( )[ ] ( ) 221 icsiscbs +−−+  

( ) 





 +−+−− s

CCscCss
ba 2

1
2

1
2 2  

( ) ( ) 22
1

22 icsiCss
cbs +



 −−+  

jX .  
( ) ( ) ( )snsncsnba −−+−+ 262  

( )[ ] jScjjsncb ++−++ 2  

( ) ( ) ( )

( )[ ]
jS

cjjsncb

snsncsnba













+−++

−−+−+
2

262  

..X  ( ) ( ) ( )121612 +++++ nncnba  




 +−+ s

Csnba 1
2  

( ) ( ) ( ) 



 +−+−−+ s

C
s

Csnsnsnc 21
6
2  

Table 3.2b. Summary of sample variances of a series when trend-cycle 

components are quadratic: ( )2ctbtaMt ++=  
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Table 3.3a. Summary of totals and averages of a series when trend-cycle 

components are exponential: ( )ct
t beM =  

Exponential trend-cycle component: ,ct
t beM =  

msnt == ...,,2,1  
Totals and 
averages 

Additive model Multiplicative model 

.iT         
( )

csi
c

cs
e

e
eeb 









−
−−

1

1
          csi

s

j
j

cj
cs eSe

e
b














∑
=1

 

jT.  j
cj

cs

cn
mSe

e
eb +









−
−

1
1           j

cj
cs

cn
Se

e
eb 









−
−

1
1  

..T         








−
−

c

cn
c

e
ebe

1
1           ∑

=









−
−

s

j
j

cj
cs

cn
Se

e
eb

11
1  

.iX        
( )

csi
c

cs
e

e
ee

s
b










−
−−

1

1
          csi

s

j
j

cj
cs eSe

se
b














∑
=1

 

jX .       j
cj

cs

cn
Se

e
e

m
b +









−
−

1
1          j

cj
cs

cn
Se

e
e

m
b










−
−

1
1  

..X       








−
−

c

cnc

e
e

n
be

1
1  ∑

=









−
−

s

j
j

cj
cs

cn
Se

e
e

n
b

11
1  
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Table 3.3b. Summary of sample variances of a series when trend-cycle 

components are exponential: ( )ct
t beM =  

 

4. Choice between Additive and Multiplicative Models 

Decomposition methods require that the model structure (additive or 
multiplicative) is known and more or less formally described. From Tables 
3.1 through 3.3, it is clear that the column variances, which depend only on 
the trend parameters for the additive model, will aid the choice of model. 

(a) Linear trend component 

For the purposes of selection of appropriate model for decomposition,     
an analyst only needs to compare the seasonal/column variances. If 
seasonal/column variances are the same (see Tables 3.1b), then the 
appropriate model is additive. However, if seasonal/column variances vary, 
then: (i) the appropriate model is multiplicative and (ii) the series contains 
seasonal effects. 
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Therefore, the problem of selection of appropriate model for 
decomposition when trend component is linear reduces to that of testing the 
null hypothesis: 

 2
.

2
2.

2
1.0 : sH σ==σ=σ  (4.1) 

against the alternative hypothesis 

 ,: 2
.

2
.1 jjH ′σ≠σ  for at least one .jj ′≠  (4.2) 

Available tests that can be used to assess equality of variances of two or 
more samples are the F-test (Snedecor and Cochran [32]), the Bartlett’s 
(Bartlett [2]) test, Levene’s (Levene [22]) test, Box-Anderson (Box and 
Anderson [4]) test and Jacknife (Layard [21], O’Brien [29] and Sharma [31]) 
tests. The F-test and Bartlett’s test are sensitive to departures from normality 
while Levene’s test, as an alternative to the Bartlett test, is less sensitive to 
departures from normality. Box-Andersen test is a variation of Bartlett’s       
test (Miller [26]). There are nonparametric tests that do not rely on the 
assumption that the variables have a normal distribution. The squared ranks 
(nonparametric) test can be used to assess equality of variances across two or 
more independent random samples which have been measured using a scale 
that is at least interval (Conover [9]). Other nonparametric tests for constant 
variance include those by Wang and Zhou [34], Allingham and Rayner [1] 
and Beersma and Buishand [3]. Outside the normality assumptions of the 
parametric tests, all parametric and nonparametric tests assume the 
following: (i) random samples, (ii) independence within samples, (iii) mutual 
independence between samples and (iv) measurement scale is at least 
interval. The assumptions of random samples, independence within samples 
and mutual independence between samples are typically violated for a time 
series. Hence, parametric and nonparametric tests of equality of the column 
variances ought to be compared in terms of robustness (methods with good 
performance when there are small departures from assumptions) and power 
(the probability that the test will reject the null hypothesis when the null 
hypothesis, ,0H  is false (i.e., the probability of not committing a Type II 

error)) in simulation experiments. 
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(b) Quadratic trend component 

Here, the row average is quadratic in i (equation (4.3)) while the column 
variance is quadratic in j (equation (4.5)). The values of a, b and c can be 
estimated from equation (4.3) and equation (4.5): 

 ( ) ( ) ( ) ( )[ ] ( ) 221121612 icsiscbssscsbaXi +−−+−−+−−=  (4.3) 

,2
210 ii α+α+α=  (4.4) 

( ) [( ) ( ) ( ) ]222
. 15301182180

ˆ bbcsncsnsnsnn
j +−+−−+=σ  

( ) [( ) ] ( ) 2
2

2
33 jcsnnjbccsnsnn








 +++−++  (4.5) 

.2
210 jj β+β+β=  (4.6) 

We have to devise a suitable test for equality of the values of a, b and c 
obtained from equations (4.3) and (4.5). 

(c) Exponential trend component 

Here, the row average is exponential in i (equation (4.7)) while the 
column variance is exponential in j (equation (4.8)). The values of b and c 
can be estimated from equation (4.7) and equation (4.8): 

( )
,

1
10

1
.

icsi
c

cs
i ee

e
ee

s
bX θ

−
θ=









−
−=  (4.7) 

 .
1
11

1
1

1
ˆ 10

2
2

2

22
2
.

jcj
cs

cn

cs

cn
j ee

e
e

me
e

m
b φφ=





















−
−−









−
−

−
=σ  (4.8) 

We have to devise a suitable test for equality of the values of b and c 
obtained from equations (4.7) and (4.8). 
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5. Test for Seasonality in Additive Model 

For all trending curves shown in Table 4, we note the following: 

(1) ... XX j −  contains the parameters of the trending curve and the 

seasonal component at season j. 

(2) ( )∑
=

=−
s

j
j XX

1
... .0  Hence, 

(3) ( )
2

..
ˆ

XX j −
σ  depends on the trending parameters. 

(4) Because of (1) and (2), a time series data should be detrended before 
test for seasonality. 

Table 4. Properties of ( )... XX j −  
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6. Estimates of Trend Parameters and Seasonal Indices from Row, 
Column and Overall Averages and Variances 

Using the expressions in Tables 3.1 through 3.3, the estimates of trend 
parameters and seasonal indices given in Tables 5.1 through 5.3 are derived, 
respectively, for the three selected trending curves. 

Table 5.1. Estimates of parameters of linear trend-cycle components and 
seasonal indices 

Model 
Parameter 

Additive model Multiplicative model 

a 




 −+′ 2

1ˆ sba  





 −+′ s

Csba 1ˆ  

b 
s
b′  s

b′  

jS  ( )







+−+− jsnbaX j 22

ˆ
ˆ.

12
)(ˆ

ˆˆ
snnb

S j
j +

σ
=  

Note. (1) ,a′  b′  and c′  are estimates derived from the regression 
equations of row averages on row number. 

(2) Additive and multiplicative models give different estimates. 

Table 5.2. Estimates of parameters of quadratic trend-cycle component and 
seasonal indices 

Model 
Parameter 

Additive model Multiplicative model 

a cssbsa ˆ
6

)12()1(ˆ
2

1ˆ 




 −−−





 −+′ 








+−−








−+′

s
CCsc

s
Csba 2

1
21

ˆˆ2ˆ
ˆˆˆ  

b  )1(ˆ
ˆˆ −+
′

= sc
s
bb     [ ( )]1

221 Cscb
s

−+′  

c  2
ˆ

s
cc ′

=     2
ˆ

s
cc ′

=  
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jS   jjj dXS −= .
ˆ     jjj dXS .

ˆ =  

jd  ( ) ( ) ( )
6

2ˆ
2
ˆ

ˆ snsncsnba −−
+−+  

( ) 2ˆ)(ˆˆ jcjsncb +−++  

   ( ) ( ) ( )
6

2ˆ
2
ˆ

ˆ snsncsnba −−
+−+  

   ( ) 2ˆ)(ˆˆ jcjsncb +−++  

Note. (1) ∑
=

=
s

j
jSjC

1
1 ,ˆˆ  ∑

=
=

s

j
jSjC

1

2
2 .ˆˆ  

(2) ,a′  b′  and c′  are estimates derived from the regression equations of 
row averages on row number. 

(3) Additive and multiplicative models give different estimates. 

Table 5.3. Estimates of parameters of exponential trend-cycle component 
and seasonal indices 

Model 
Parameter 

Additive model Multiplicative model 

b 








−
−′

−

−

sc

c

e
esb ˆ

ˆ

1
1ˆ  ∑

=

=
′

=
s

j
j

jc
sc

SeC
C
sebb

1

ˆ
3

3

ˆ
ˆˆ,ˆ

ˆˆ  

c 
s
c′ˆ  s

cc ′
=

ˆˆ  

jS  jc
c

sc
j e

e
e

m
bX ˆ

ˆ

ˆ
.

1
1ˆ










−
−−

( )

( )














=








=

−−

=

−−∑

sjeS
X
X

j

eX

Xs

cjj

s

j

cj
j

...,,2,1,ˆ

1,

ˆ1
1

1.

.

1

ˆ1
.

1.

 

Note. (1) ,a′  b′  and c′  are estimates derived from the regression 
equations of row averages on row number. 

(2) Additive and multiplicative models give different estimates. 



Framework for Choice of Models and Detection of Seasonal Effect … 63 

7. Concluding Remarks 

The Buys Ballot table is very useful for diagnosing the presence or 
absence of trend and seasonal effects in time series. It is also useful for the 
estimation of trend parameters and seasonal indices in time series. It helps in 
determining the model structure: additive or multiplicative model. The Buys 
Ballot procedures discussed in this paper are easy to understand and easy to 
apply. 

It does have its drawbacks, however. First, the Buys Ballot procedure 
does not have an explicit way of taking into account cycles, missing values 
and outliers that might be presented in the data. The Buys Ballot procedure         
as developed is for data that has stable seasonal pattern and will perform 
poorly in the presence of seasonal patterns that are not stable over time. 

Appendix 

Overall sample variance for quadratic trend. 

(a) Additive model 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )


















+++−++−
+

++−
+

−−−

−
=σ

36
65761

180
18121

180
1182

1
ˆ

22

222
2

2
..

ssnnsnssn

ssssnsnsn

n
nc  

( ) ( )
12

1
6

1 22 ++++ nnbnbcn  

( ) ( )[ ] .221
1

21
2













+−++
−

+ ∑
=

s

j
j cCCsncbSns

n  

(b) Multiplicative model 

( ) ( ) ( )


 −−

−
−=σ 180

1182
1

ˆ
222

2 snsnc
n

snn  
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
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