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Abstract

In this paper, we study the existence of nontrivial solution for the

second-order three-point boundary value problem

( ) ( ) ( ) ( ),1,00,10,0, η′α==<<=+′′ uuututfu

where ( ) [ ]( ).,1,0;1,,1,0 RRCfR ×∈≠α∈α∈η  Under certain growth

conditions on the nonlinearity f and by using Leray-Schauder nonlinear

alternative, several sufficient conditions for the existence of nontrivial

solution are obtained.

1. Introduction

We are interested in the existence of nontrivial solution for the
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following three-point boundary value problem (BVP):

( )
( ) ( ) ( )




η′α==

<<=+′′

,1,00

,10,0,

uuu

tutfu
(1.1)

where ( ) [ ]( ) ( ).,,,1,0;1,,1,0 ∞+∞−=×∈≠α∈α∈η RRRCfR

The study of three-point BVP for certain nonlinear ordinary

differential equations was initiated by Gupta [4]. Since then, by applying

the Leray-Schauder continuation theorem, nonlinear alternative of

Leray-Schauder, coincidence degree theory, or Krasnosel’skii fixed point

theorem, many authors studied more general nonlinear three-point or

multi-point boundary value problems, for example, (see [2-6, 8-12]), and

references therein. But in the existing literature on the BVP (1.1) is few.

In a recent paper [7], Infante and Webb investigated the BVP (1.1) by the

fixed point index theory. The aim of this paper is to establish some simple

criterions of the existence of nontrivial solution for the BVP (1.1). Note

that we do not require any monotonicity and nonnegative on f.

2. Some Lemmas

A solution ( )tu  of BVP (1.1) is called nontrivial solution if ( ) .0≡/tu

Let [ ],1,0CE =  with sup norm [ ] ( )tyy t 1,0sup ∈=  for any .Ey ∈  In

arriving at our results, we need to state two preliminary results.

Lemma 2.1. Let .1≠α  Then for [ ],1,0Cy ∈  the following three-point

BVP:

( ) ,10,0 <<=+′′ ttyu

( ) ( ) ( ).1,00 η′α== uuu

has the unique solution

( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫
η

α−
α−−−−

α−
=

1

0 0 0
.

1
1

1

t
dssy

t
dssystdssys

t
tu

Proof. The proof of this lemma is easy, and we omit it.
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Define an integral operator EET →:  by

( ) ( ) ( )( ) ( ) ( )( )∫ ∫ −−−
α−

=
1

0 0
,,1

1

t
dssusfstdssusfs

t
tTu

 ( )( ) [ ]∫
η

∈
α−

α−
0

.1,0,,
1

tdssusft (2.1)

By Lemma 2.1, the BVP (1.1) has a solution ( )tuu =  if and only if u is a

fixed point of the operator T defined by (2.1) in E. So we only need to seek

a fixed point of T in E. By Ascoli-Arzela Theorem, we can prove that T is

a completely continuous operator.

Lemma 2.2 [1]. Let E be Banach space and Ω be a bounded open

subset of ETE →ΩΩ∈ :,0,  be a completely continuous operator. Then,

either there exists 1, >λΩ∂∈x  such that ( ) ,xxT λ=  or there exists a

fixed point .Ω∈∗x

3. Main Results

In this section, we present and prove our main results.

Theorem 3.1. Suppose ( ) 1,00, ≠α≡/tf  and there exist nonnegative

functions [ ]1,0, 1Lhk ∈  such that

( ) ( ) ( ),, thxtkxtf +≤  a.e. ( ) [ ] ,1,0, Rxt ×∈

( ) ( ) ( )∫ ∫
η

<
α−

α+−






α−
+

1

0 0
.1

1
1

1
1

1 dsskdssks

Then the BVP (1.1) has at least one nontrivial solution [ ].1,0Cu ∈∗

Proof. Let

( ) ( ) ( )∫ ∫
η

α−
α+−







α−
+=

1

0 0
,

1
1

1
1

1 dsskdssksA

( ) ( ) ( )∫ ∫
η

α−
α+−







α−
+=

1

0 0
.

1
1

1
1

1 dsshdsshsB
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Then .1<A  Since ( ) ,00, ≡/tf  there exists [ ] [ ]1,0, ⊂τσ  such that

( ) .00,min >τ≤≤σ tft  On the other hand, from ( ) ( ) ,0,tfth ≥  a.e. [ ],1,0∈t

we know that .0>B  Let ( ) [ ]{ }.:1,0,1 1 muCuABm <∈=Ω−= −

Suppose 1, >λΩ∂∈u  such that ,uTu λ=  then

( ) ( )tTuTuum
t 10

max
≤≤

==λ=λ

( ) ( )( ) ( ) ( )( )∫ ∫ −+−
α−

≤
≤≤≤≤

1

0 01010
,max,1

1
max

t

tt
dssusfstdssusfs

t

( )( )∫
η

≤≤ α−
α+

010
,

1
max dssusf

t
t

( ) ( )( ) ( )( )∫ ∫
η

α−
α+−







α−
+≤

1

0 0
,

1
,1

1
1

1 dssusfdssusfs

( ) ( ) ( ) ( ) ( ) 







α−

α+−






α−
+≤ ∫ ∫

η1

0 01
1

1
1

1 dssuskdssusks

( ) ( ) ( ) 







α−

α+−






α−
++ ∫ ∫

η1

0 01
1

1
1

1 dsshdsshs

.BAmBuA +=+≤

Therefore

( )
( ) ,11

1 1
=−+=

−
+=+≤λ

−
AA

AB

BA
m
BA

this contradicts .1>λ  By Lemma 2.2, T has a fixed point .Ω∈∗u  In

view of ( ) ,00, ≡/tf  the BVP (1.1) has a nontrivial solution [ ].1,0Cu ∈∗

This completes the proof.

Theorem 3.2. Suppose ( ) ,1,00, <α≡/tf  and there exist nonnegative

functions [ ]1,0, 1Lhk ∈  such that

( ) ( ) ( ),, thxtkxtf +≤  a.e. ( ) [ ] .1,0, Rxt ×∈

If one of the following conditions is fulfilled:
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(1) There exists constant 1>p  such that

( ) ( ) ( )
( )[ ]∫ =+













+ηα+α−

+α−
<

1

0 1

1
,111,

12

11
qpq

q
dssk

p

q

q
p

(2) There exists constant 1−>µ  such that

( ) ( ) ( ) ( )
( )

,
22

121
1

µ
µ+ηµ+α+α−

α−µ+µ+
≤ ssk  a.e. [ ],1,0∈s

[ ] ( ) ( ) ( ) ( )
( )

.0
22

121
:1,0

1
>













ηµ+α+α−
α−µ+µ+<∈ µ

µ+ ssksmes

(3) There exists constant 1−>µ  such that

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ,1

212
121 µ−

µ+α+µ+α−
α−µ+µ+

≤ ssk  a.e. [ ].1,0∈s

(4) ( )sk  satisfies

( ) ( )
,

22
12

ηα+α−
α−≤sk  a.e. [ ],1,0∈s

[ ] ( ) ( )
.0

22
12

:1,0 >








ηα+α−
α−<∈ sksmes

(5) ( )xtf ,  satisfies

[ ]
( ) ( )

.
22

12,
maxsuplim:

1,0 ηα+α−
α−<=Λ

∈∞→ x
xtf

tx

Then the BVP (1.1) has at least one nontrivial solution [ ].1,0Cu ∈∗

Proof. Let A be given in Theorem 3.1. In view of Theorem 3.1, we

only need to prove .1<A  Since ,1<α  we have

( ) ( ) ( )∫ ∫
η

α−
α

+−
α−
α−=

1

0 0
.

1
1

1
2

dsskdssksA

(1) By using the Hölder inequality, we have that

( ) ( )




















α−

α
+








−

α−
α−









≤ ∫∫∫

η q
q

q
q

p
p dsdssdsskA

1

0

11

0

11

0
1

1
1

1
2
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( )











α−

ηα
+







+α−
α−









≤ ∫ 11

1
1
2 1111

0

qqp
p

q
dssk

( ) ( )
( )[ ]

( )[ ]
( ) ( )

.1
11

12

12

11
1

1

1

1
=

+α−
+ηα+α−

⋅
+ηα+α−

+α−<
q

q

q

q

q

q

q

q

(2) In this case, we have that

( ) ( ) ( )
( )

( ) 







α−

α
+−

α−
α−

ηµ+α+α−
α−µ+µ+< ∫ ∫

η µµ
µ+

1

0 01 1
1

1
2

22

121
dssdsssA

( ) ( ) ( )
( ) ( ) ( ) ( )











µ+

η⋅
α−

α
+

µ+µ+
⋅

α−
α−

ηµ+α+α−
α−µ+µ+≤

µ+

µ+ 1121
1

1
2

22

121 1

1

( ) ( ) ( )
( )

( )
( ) ( ) ( ) .1

211
22

22

121 1

1
=

µ+µ+α−
ηµ+α+α−

⋅
ηµ+α+α−
α−µ+µ+=

µ+

µ+

(3) In this case, we have that

 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) 







−

α−
α

+−
α−
α−

µ+α+µ+α−
α−µ+µ+

≤ ∫ ∫
η µµ+1

0 0

1 1
1

1
1
2

212
121

dssdssA

( ) ( ) ( )
( ) ( ) ( )

( )( )












µ+
η−−⋅

α−
α+

µ+
⋅

α−
α−

µ+α+µ+α−
α−µ+µ+=

µ+

1
11

12
1

1
2

212
121 1

( ) ( ) ( )
( ) ( ) ( ) 





µ+⋅α−
α

+µ+⋅α−
α−

µ+α+µ+α−
α−µ+µ+<

1
1

12
1

1
2

212
121

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) .1

211
212

212
121 =

µ+µ+α−
µ+α+µ+α−

⋅
µ+α+µ+α−

α−µ+µ+=

(4) In this case, we have that

( ) ( ) 







α−

α
+−

α−
α−

ηα+α−
α−< ∫ ∫

η1

0 01
1

1
2

22
12

dsdssA

( )
( ) .1

112
2

22
12 =





α−
ηα

+
α−
α−

ηα+α−
α−=

(5) Let 
( )

.
22

12
2
1





 Λ−

ηα+α−
α−=ε  Then there exists 0>c  such that

( ) ( ) ( ) [ ] ( ).,\1,0,,
22

12
, ccRxtxxtf −×∈



 ε−

ηα+α−
α−≤
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Set ( ) ( ) [ ] [ ]{ },,1,0,:,max ccxtxtfM −×∈=  then

( ) ( ) ( ) [ ] .1,0,,
22

12
, RxtMxxtf ×∈+



 ε−

ηα+α−
α−≤

Set ( ) ( ) ( ) ,,
22

12
Mshsk =ε−

ηα+α−
α−=  then (4) holds. This completes

the proof.

Corollary 3.1. Suppose ( ) ,00, ≡/tf  ,1<α  and there exist two

nonnegative functions [ ]1,0, 1Lhk ∈  such that

( ) ( ) ( ),, thxtkxtf +≤  a.e. ( ) [ ] .1,0, Rxt ×∈

If one of the following conditions holds:

(1) There exists constant 1>p  such that

( ) ( ) ( )
( )∫ =+













+α+α−

+α−
<

1

0 1

1
.111,

12

11
qpq

q
dssk

p

q

q
p

(2) There exists constant 1−>µ  such that

( ) ( ) ( ) ( )
( ) ,
22
121 µ

µ+α+α−
α−µ+µ+≤ ssk  a.e. [ ],1,0∈s

[ ] ( ) ( ) ( ) ( )
( ) .0
22
121

:1,0 >








µ+α+α−
α−µ+µ+<∈ µssksmes

(3) ( )sk  satisfies

( ) ( )
,

22
12

α+α−
α−≤sk  a.e. [ ],1,0∈s

[ ] ( ) ( )
.0

22
12

:1,0 >








α+α−
α−<∈ sksmes

(4) ( )xtf ,  satisfies

[ ]
( ) ( )

.
22

12,
maxsuplim:

1,0 α+α−
α−<=Λ

∈∞→ x
xtf

tx

Then the BVP (1.1) has at least one nontrivial solution [ ].1,0Cu ∈∗
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Proof. In this case, we have that

( ) ( ) ( )∫ ∫
η

α−
α

+−
α−
α−=

1

0 01
1

1
2

dsskdssksA

( ) ( ) ( )∫ ∫α−
α

+−
α−
α−≤

1

0

1

0
.

1
1

1
2

dsskdssks

The remaining is same as Theorem 3.2. The proof is complete.

Corollary 3.2. Suppose ( ) ,00, ≡/tf  ,1<α  and there exist two

nonnegative functions [ ]1,0, 1Lhk ∈  such that

( ) ( ) ( ),, thxtkxtf +≤  a.e. ( ) [ ] .1,0, Rxt ×∈

If one of the following conditions holds:

(1) There exists constant 1>p  such that

( ) .111,
12

1
1

21

0

1

1
=+




















−

+
α+α−

α−<∫ + qp
qdssk

pq

q
p

(2) There exists constant 2−>µ  such that

( ) ( ) ( )
( ) ( )

( ) ,2
122

21
2

µ
µ+ −
−α+α−

µ+α−≤ ssk  a.e. [ ],1,0∈s

[ ] ( ) ( ) ( )
( ) ( )

( ) .02
122

21
:1,0

2
>













−
−α+α−

µ+α−<∈ µ
µ+ ssksmes

Then the BVP (1.1) has at least one nontrivial solution [ ].1,0Cu ∈∗

Proof. In this case, we have that

 ( ) ( ) ( )∫ ∫
η

α−
α

+−
α−
α−=

1

0 01
1

1
2

dsskdssksA

( ) ( ) ( )∫ ∫α−
α

+−
α−
α−≤

1

0

1

01
1

1
2

dsskdssks

( ) ( )∫ −
α−
α+α−

≤
1

0
.2

1
2

dssks
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(1) By using the Hölder inequality, we have that

 ( ) ( )∫ −
α−
α+α−

≤
1

0
2

1
2

dssksA

( ) ( )
q

q
p

p dssdssk
11

0

11

0
2

1
2









−








α−
α+α−

≤ ∫∫

.1
1

12

12

1
1

2
1

2
111

1
=





+
−⋅







−
+

α+α−
α−⋅

α−
α+α−

<
+

+

qqq

q q
q

(2) In this case, we have that

 ( ) ( )∫ −
α−
α+α−

≤
1

0
2

1
2

dssksA

( ) ( )
( ) ( )

( )∫ µ+
µ+ −
−α+α−

µ+α−⋅
α−
α+α−

<
1

0

1
2

2
122

21
1

2
dss

.1
2

12

12

2 2

2
=

µ+
−⋅

−
µ+=

µ+

µ+

The proof is complete.

Theorem 3.3. Suppose ( ) 1,00, >α≡/tf  and there exist nonnegative

functions [ ]1,0, 1Lhk ∈  such that

( ) ( ) ( ),, thxtkxtf +≤  a.e. ( ) [ ] .1,0, Rxt ×∈

If one of the following conditions holds:

(1) There exists constant 1>p  such that

( ) ( ) ( )
( ( )( ) )

.111,
11

111

0 1

1
=+













+η+α

+−α
<∫ qpq

q
dssk

p

q

q
p

(2) There exists constant 1−>µ  such that

( ) ( ) ( ) ( )
[ ( ) ]

,
21

121
1

µ
µ+ηµ++α
−αµ+µ+≤ ssk  a.e. [ ],1,0∈s

[ ] ( ) ( ) ( ) ( )
[ ( ) ]

.0
21

121
:1,0

1
>









ηµ++α
−αµ+µ+<∈ µ
µ+ ssksmes
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(3) There exists constant 1−>µ  such that

( ) ( ) ( ) ( )
( ) ( ) ,1

23
121 µ−

αµ+
−αµ+µ+≤ ssk  a.e. [ ].1,0∈s

(4) ( )sk  satisfies

( ) ( )
( ) ,

21
12
η+α

−α≤sk  a.e. [ ],1,0∈s

[ ] ( ) ( )
( ) .0

21
12

:1,0 >








η+α
−α<∈ sksmes

(5) ( )xtf ,  satisfies

[ ]
( ) ( )

( ) .
21
12,

maxsuplim:
1,0 η+α

−α<=Λ
∈∞→ x

xtf
tx

Then the BVP (1.1) has at least one nontrivial solution [ ].1,0Cu ∈∗

Proof. Let A be given in Theorem 3.1. In view of Theorem 3.1, we
only need to prove .1<A  Since ,1>α

( ) ( ) ( )∫ ∫
η

−α
α+−

−α
α=

1

0 01
1

1
dsskdssksA

( ) ( ) ( ) .1
1

1

0 0








+−

−α
α= ∫ ∫

η
dsskdssks

(1) By using the Hölder inequality, we have that

( ) ( )




















+








−








−α
α≤ ∫∫∫

η q
q

q
q

p
p dsdssdsskA

1

0

11

0

11

0
11

1

( )











η+







+







−α
α= ∫ q

qp
p

q
dssk 1

111

0 1
1

1

( ) ( )
( ( )( ) )

( )( )
( )

.1
1

11

11

11
1 1
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proof.

Corollary 3.3. Suppose ( ) ,00, ≡/tf  1>α  and there exist two
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nonnegative functions [ ]1,0, 1Lhk ∈  such that
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Then the BVP (1.1) has at least one nontrivial solution [ ].1,0Cu ∈∗

Proof. In this case, we have that
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The remaining is same as Theorem 3.3. This completes the proof.

Corollary 3.4. Suppose ( ) ,00, ≡/tf  1>α  and there exist two



w
w

w
.p

ph
m

j.c
om

… THREE-POINT BOUNDARY VALUE PROBLEM 343

nonnegative functions [ ]1,0, 1Lhk ∈  such that
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(2) In this case, we have that

( ) ( ) ( )
[ ( ) ]

( ) 







+−

ηµ++α
−αµ+µ+⋅−α

α< ∫ ∫
η µµ

µ+

1

0 01
1

21

121
1

dssdsssA

( ) ( )
( ) ( ) ( ) 








µ+

η+
µ+µ+ηµ++

µ+µ+
=

µ+

µ+ 121
1

21

21 1

1

( ) ( )
( )

( )
( ) ( ) .1

21
21

21

21 1

1
=

µ+µ+
ηµ++

⋅
ηµ++

µ+µ+
=

µ+

µ+

This completes the proof.
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