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Abstract

In this paper, we study the existence of nontrivial solution for the
second-order three-point boundary value problem
U+ f(t,u)=0, 0<t <1, w0)=0, ul)=ou'(n),

where n€(0,1),a € R, a #1; f € C([0, 1] x R, R). Under certain growth

conditions on the nonlinearity f and by using Leray-Schauder nonlinear
alternative, several sufficient conditions for the existence of nontrivial

solution are obtained.

1. Introduction

We are interested in the existence of nontrivial solution for the
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following three-point boundary value problem (BVP):

{u” +f(t,u)=0, 0<t<1, @)

u(0) = 0, u(l) = auw'(n),
where n e (0,1, a e R,a#1; f € C([0,1]x R, R), R = (—, + ).

The study of three-point BVP for certain nonlinear ordinary
differential equations was initiated by Gupta [4]. Since then, by applying
the Leray-Schauder continuation theorem, nonlinear alternative of
Leray-Schauder, coincidence degree theory, or Krasnosel’skii fixed point
theorem, many authors studied more general nonlinear three-point or
multi-point boundary value problems, for example, (see [2-6, 8-12]), and
references therein. But in the existing literature on the BVP (1.1) is few.
In a recent paper [7], Infante and Webb investigated the BVP (1.1) by the
fixed point index theory. The aim of this paper is to establish some simple
criterions of the existence of nontrivial solution for the BVP (1.1). Note

that we do not require any monotonicity and nonnegative on f.
2. Some Lemmas

A solution u(t) of BVP (1.1) is called nontrivial solution if u(t) # 0.
Let E = C[0, 1], with sup norm |y | = supso 1] ¥(t)| for any ye E. In

arriving at our results, we need to state two preliminary results.

Lemma 2.1. Let o # 1. Then for y € C[0, 1], the following three-point
BVP:

u'+yE)=0, 0<t<1,
u(0) = 0, u(l) = au'(n).

has the unique solution
n=—t["a das— [ ds— -2 " y(5)d
ut) = o5 [ = 9)y)ds = [ €= 9)y(s)as - 125 [ Tye)as

Proof. The proof of this lemma is easy, and we omit it.
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Define an integral operator T : E — E by

Tu(t) = ﬁj: (1= 8)f(s, uls))ds - fot t - 8)f(s, u(s))ds

o J.On f(s, u(s))ds, t €0, 1]. 2.1)

1-a

By Lemma 2.1, the BVP (1.1) has a solution u = u(t) if and only if u is a

fixed point of the operator 7T defined by (2.1) in E. So we only need to seek
a fixed point of T'in E. By Ascoli-Arzela Theorem, we can prove that T is
a completely continuous operator.

Lemma 2.2 [1]. Let E be Banach space and Q be a bounded open

subset of E, 0 Q, T : Q — E be a completely continuous operator. Then,

either there exists x € 0Q, A >1 such that T(x) = Ax, or there exists a

fixed point x* € Q.
3. Main Results

In this section, we present and prove our main results.
Theorem 38.1. Suppose f(t, 0) # 0, o # 1 and there exist nonnegative

functions k, h € L0, 1] such that

[ f@ x)| < k)| x|+ h), ae ¢ x)e [0,1]x R,

(1+

Then the BVP (1.1) has at least one nontrivial solution u* e C[0, 1].

1
1-o

o
1-o

m;a _ 8)k(s)ds +

UO“ k(s)ds < 1.

Proof. Let

A:(1+ i—a

. m;a _ $)k(s)ds +

o U; k(s)ds,

B:(1+

I_IOCDJ.:(l—S)h(S)ds+

o ‘ J.(:] h(s)ds.

1-o
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Then A <1. Since f(t,0)# 0, there exists [o, t] c [0,1] such that
ming ;<] f(¢, 0)| > 0. On the other hand, from A(¢) > | f(¢, 0)|, a.e. t €[0, 1],

we know that B> 0. Let m = Bl - A) %, @ = {u e C[0, 1]: [uw| < m}
Suppose u € 0Q, A > 1 such that Tu = Au, then

wm = M| = | Tu] = max| (1) )|

t
1-o

< max
0<t<1

[ L= 76 utoplas + max [ ¢ - 9] G5 uts) s

ol

+ max
1-o

0<t<1

S(1+
s[(u
+K1+

<A|u||+B=Am+B.

In| f(s, u(s))|ds
0

1
1-o

o ‘ | ;| F(s, uls))|ds

1-o

Dfol@ —5)| f(s, u(s))|ds +

1
1-o

o ‘ f :k(s)l u(s) |ds}

1-o

i ?oc U; h(s)ds}

‘)I:(l — 8)k(s)| u(s)|ds +

1
1-o

D [ 01 (1 — s)h(s)ds +

Therefore

r<A+B oA B _aia-a)-1,

m B(l-A)!

this contradicts A >1. By Lemma 2.2, T has a fixed point z" € Q. In
view of f(t, 0) # 0, the BVP (1.1) has a nontrivial solution z* e C|0, 1].
This completes the proof.

Theorem 3.2. Suppose f(t, 0) £ 0, o < 1, and there exist nonnegative

functions k, h € L0, 1] such that
| f@t, x)| < k()| x|+ h(t), ae (t x)e [0,1]xR.

If one of the following conditions is fulfilled.:
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(1) There exists constant p > 1 such that

p
JAlkp(S)ds<{ (l_a)(1+Q)1/q 1 } , l+l:1,
0 2 arlalma o] P a

(2) There exists constant u > —1 such that

L LW
k<)£2—a+|oc|(2+u)n1+“ , a.e. se [0, 1],

mes{se [0, 1]: k(s) < I+ W@+ W= o) s“}>0.
’ 2-o+|o|@+pn't

(8) There exists constant u > —1 such that

@ wl-a) o
i m el e s 01

(4) k(s) satisfies

k(s) < G

21 - o)

m, a.e. S e [0, 1],

k(s) <
mes{s € [0,1]: k(s) < %} > 0.
(5) f(¢, x) satisfies

2(1 - a)
2-o+2oaln’

f(t x)

X

<

A = lim sup max
| x |0 1€ [0,1]

Then the BVP (1.1) has at least one nontrivial solution u* e CJ0, 1].

Proof. Let A be given in Theorem 3.1. In view of Theorem 3.1, we

only need to prove A < 1. Since o < 1, we have

2

A= 1 :g f;(l - 8)k(s)ds + %J.On k(s)ds.

(1) By using the Holder inequality, we have that

1/ 1/ 1/
A< Uol kp(s)ds} p{f — Z Uol a- s)qu} ! + 1|f‘(|x Uon 1qu} q}
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1 UP[o (1 W7 |a|nte
p n
SUok (s)ds} {1—a(l+qj * 1—0c:|

(-0)@+"  2-a+|a|ln@+ql? _
2-a+|almt+g?  @-o)@+q)

(2) In this case, we have that

Ao QrmeE+rwe-o) { f(l s)stds + lf suds}

2—a+|a|@+unttt |1

. @rwE+wa-a) [2 o 1 , Lol nlw}

C2-o+|a|@+untth| 1o Trwew 1w Grw
Q+wE+wWe-a) 2-at|ef@+pn'™

2-a+|al@+um™  Q-0)T+W)E+p)

(3) In this case, we have that

A+ @2+p)1-0) o s+|°‘| _olds
“@- (x)(1+u)+|oc|(2+u)[1 oc.[(l & I(l )“d}

O +we+wi-a) [2-0 1 lo| 1-(-n)t
S 2-a)ltpwt]al@+n) 1—oc'2+u+1—oc' 1+u

T+we+wl-o) 2-o0 1 o | 1
< (2—0()(1+u)+|0c|(2+u){1—0c'2+u+1—oc'1+pt}

_ +wetwi-o)  @-o)@+w+|afE+p)
C-o)Q+w+af@+pn)  Q-o)T+u)@2+n)

(4) In this case, we have that

201 - o) n
A< 5T oc+2(|x mL_ J.(l s)ds+| (lxj.ods}

2(1 - o) ln[ 2 - +|oc|n}=1‘

T2-o+ Zan20-o)
() Let € = 1 M — A |. Then there exists ¢ > 0 such that
2|2-0+2aln

£t %) < [%—a} x| & x) 0, 1]x R\ (= ¢, o).
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Set M = max{| f(¢, x)| : (¢, x) € [0, 1] x [-¢, ]}, then

21 - o)
|f(t,x)|s|:m 8}|x|+M,(t,x)E[0,1]XR.
Set k(s) = _2-o) g, h(s)= M, then (4) holds. This completes
2-a+2an 7 ’ ‘
the proof.

Corollary 38.1. Suppose f(t,0)#0, o <1, and there exist two
nonnegative functions k, h e L}[0, 1] such that
| f@, x)| < k()| x|+ hk), ae ¢ x)e [0,1]x R.
If one of the following conditions holds:

(1) There exists constant p > 1 such that

1 _ /g P
I kP (s)ds < 1-a)d+q) 77| 1.1 =1.
0 2—oc+|a|(1+q)q p q

(2) There exists constant w > —1 such that

+pE+wa-o)
k(s) < T a+[a|C 1) s, a.e. se [0, 1],

: C+mW)@+p)(-o)
mes{se[o,l].k(s)< 2_t+|a7(2+;; s“}>0.

(3) k(s) satisfies

2(1 - a)

< A3
k<s)_2—oc+2|oc|’

a.e. se [0, 1],

mes{s e [0,1]: k(s) < %} > 0.
4) f@, x) satisfies

21 - o)
2-a+2al

. x)| _

A = lim sup max po

| x |>e t€l0,1]

Then the BVP (1.1) has at least one nontrivial solution u* € C[0, 1].
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Proof. In this case, we have that

A= f —o jol (1 = 5)k(s)ds + %ﬁ k(s)ds

< f:g f; (1 - s)k(s)ds + 1| ?(lx J.: k(s)ds.

The remaining is same as Theorem 3.2. The proof is complete.

Corollary 8.2. Suppose f(t,0)#0, o<1, and there exist two

nonnegative functions k, h € LM0, 1] such that
|t x)| < E(t)] x|+ hl2), ae. (& x)e [0,1]x R.

If one of the following conditions holds:

(1) There exists constant p > 1 such that

1 _ 1/q 1P
Ikp(s)ds< 2-a 1+g ,l+l=1.
0 1-o+|allolte _q b q

(2) There exists constant u > —2 such that

s (1-a)2+p) Cof qe s
()5(2_a+|a|)(22+u_1)(2 ¥, ae. se[0,1],

mes<s N S (1-()()(24—!.1) —S!‘/l
{ e [0, 1] k(s) < (2—a+|a|)(22+“—1)(2 ) }>0.

Then the BVP (1.1) has at least one nontrivial solution u” € C|0, 1].

Proof. In this case, we have that

A- f 2 j; (1= s)k(s)ds + %j; k(s)ds

< f & jol (1 = s)k(s)ds + % f : k(s)ds

2-a+|a| !
STJO (2 — 5)k(s)ds.
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(1) By using the Holder inequality, we have that

_ 1
A< 20‘—+|°‘|J' @ - 5)k(s)ds
1-a 0

2-o+|ol|f! 1P B 1/a
< —[-[0 kP (s)ds} [-[0 2 s)qu}

1-o

1
_2-0+la| _2-a 1+gq 1/q_21+‘1—1/q_1
1-o 1-a+|al|ol*e _4 l+gq -

(2) In this case, we have that

A< 2_++oc|a|,"; (2 - s)k(s)ds
2-atlal _ Q-a)@rw) [y iy,
ST 1-a (2—oc+|oc|)(22+“—1)-“0(2 )d

2+p 221

22t _1  2+p

The proof is complete.
Theorem 3.3. Suppose f(t, 0) # 0, oo > 1 and there exist nonnegative
functions k, h € L0, 1] such that

|t x)| < k()| x|+ h(t), ae (t x)e [0,1]xR.

If one of the following conditions holds:

(1) There exists constant p > 1 such that

Ilkp(s)ds <|: (a—l)(1+q)11/q }P, l+l:1
0 all+ 1 +q))] P g

(2) There exists constant w > —1 such that

< FWeCrye-1 v
H(e) < oft + @+ T <o

mes{se [0, 1]: k(s) < (1+M)(2+M)((x_1)s“} > 0.
’ afl + (2 +pm'*]
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(3) There exists constant uw > —1 such that

k(s) < (1 + “)(2 +“)(a _1)

3B+ 20)a 1 -s), ae sel0,1].
(4) k(s) satisfies
k(s) < %, a.e. s [0, 1],

mes{s e [0,1]: k(s) < %} > 0.

(5) f(¢, x) satisfies

f(t, x)

X

2(a — 1)

A = lim sup max a1 2n)

|x |0 te[0,1]

<

Then the BVP (1.1) has at least one nontrivial solution u” € C|0, 1].

Proof. Let A be given in Theorem 3.1. In view of Theorem 3.1, we
only need to prove A < 1. Since a > 1,

A= ao_‘l j:a — s)k(s)ds +

o T L:l k(s)ds

o —

o
T a-1

{ f 01(1 ~ s)k(s)ds + f ;‘ k(s)ds}.

(1) By using the Holder inequality, we have that

1/p 1/q 1/q
A< Oc(i I U.ol kP (s)ds} {[J.Ol (1-s) ds} + D‘(? 19 ds} }
1 1/p 1 1/q
- [ e Kﬂ) ' ”l/q}

e (@-10+9" 1+ma+q)”t _
1o+ +g)) @+l

(2) In this case, we have that

A< . L+ )@+ p)(e-1) Ul(l—s)s“ds+ Ins“ds}
0 0

=1 afl+(@+pn't]

1.
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_ (1+M)(2+H){ 1 +n““}
1+ @+t [@+p)@2+p) L1+p

Q+wE+p) 1+E+pn'™
1+@2+pnit C+p)E2+p) -

(3) In this case, we have that

A< OLO_L - L+ “()3(24_4'25))50( -1 U;(l -s)1 -s)lds+ L? - s)“ds}

_+pw@+p | 1 +1—(1—n)““
a 3+ 2u 2+ 1+p

<(1+u)(2+u)[ 1 1 }

3+ 2u 2+u 1+p

:(1+u)(2+u)' 3+ 2u 1
3+2p T+p@+p)

(4) In this case, we have that

2@ -1) | (1 n
A< o a(1a+ 2n)UO(1-s)ds+.|'0 ds}

2(c—1)

1
(5) Let € = E{m—

A}. Then there exists ¢ > 0 such that
2(a = 1)

£t x)| < [m- g}| x|, (¢, x) € [0, 1]x R\ (= ¢, ©).

Set M = max{| f(t, x)| : (¢, x) € [0, 1] x [-¢, c]}, then

2(a —1)
|f(t,x)|£|:m 8:||.’X:|+M,(t,x)€[0,1]><R.
Set k(s) = 2a-1) g, h(s) = M, then (4) holds. This completes the
al+2n) 7 ’
proof.

Corollary 3.3. Suppose f(t,0)# 0, o >1 and there exist two
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nonnegative functions k, h e L}[0, 1] such that
| f(¢, x)| < k()| x|+ h(t), ae. (¢ x)e[0,1]xR.

If one of the following conditions holds.

(1) There exists constant p > 1 such that

Ilkp(s)ds < {(a ~1)L+g) T, 1.1 _q
0 al+(1+q)/? ] P g

(2) There exists constant w > —1 such that

k(s) < @+ M)O((?SZM:)(O( -1 s*, a.e. s €0, 1],

mes{s e [0, 1]: k(s) < (+ M)OE?S-:MJ)(OC all) s“} > 0.

(3) k(s) satisfies

k(s) < %, a.e. se [0, 1],

mes{s € [0, 1]: k(s) < 2(0‘;0_( 1)} > 0.

(4) f(¢, x) satisfies

- 2(&—1)‘

A =: lim sup max
3a

| x | >0 t€[0,1]

f(t, x)

Then the BVP (1.1) has at least one nontrivial solution u* e C[0, 1].

Proof. In this case, we have that

o

A=oc—1

j : (L~ $)k(s)ds + j 0“ k(s)ds

o

ol

S U;(l - s)k(s)ds + '[; k(s)ds}.

o

The remaining is same as Theorem 3.3. This completes the proof.

Corollary 3.4. Suppose [(t,0)# 0, o >1 and there exist two
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nonnegative functions k, h e L}[0, 1] such that
| f(t, x)| < k()| x|+ (), ae. (& x) e [0,1]x R.
If one of following conditions holds.

(1) There exists constant p > 1 such that

1 3 1/q P
I EP(s)ds < | < 1(“—(]] , 1.1
0 a (ol*te _q P q

(2) There exists constant u > —2 such that

k(s) < 2+p(a-1)

22 1) (2 -9, ae. s e]0,1],

mesis € [0, 1] : k(s) < ww > 0.
a2 —1)
Then the BVP (1.1) has at least one nontrivial solution u* € C[0, 1].

Proof. In this case, we have that

o

1
a=_% jo (1= s)k(s)ds +

O_C 1 J;\ k(s)ds

o

(04

1 1
<% “0 (1 = s)k(s)ds + IO k(s)ds}

o

=% j: 2 — 5)k(s)ds.

(1) By using the Holder inequality, we have that

. j; @ - s)k(s)ds

1/p 1/q
< OCO_C 1 [J.; kp(s)ds} [J.: @2- s)qu}

1
Lo a1 1+q Y1 (21 1 /q_l
1 a ol+tq _q 1+q -

A<
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(2) In this case, we have that

o ,(1"'“)(2"‘“)(0‘_1) ! _ s)sMds nsu s:|
A T s @] Uo(l )d+J'0 d

(1+p)(2+n { 1 n““}

= +
1+ @+ [@+p)@+p) L1+p

Crw@+p) 1+E@+pn™™
1+(2+p)nt™ T+p2+p)

This completes the proof.
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