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Abstract 

In this work, we explicitly set up extended calculi on the 3Z -graded 

quantum superplane using approach of [2]. 

1. Introduction 

Noncommutative geometry has started to play an important role in 
different fields of mathematics and mathematical physics over the past 
decade. The basic structure giving a direction to the noncommutative 
geometry is a differential calculus on an associative algebra. The 
noncommutative differential geometry of quantum groups was introduced in 
[17]. In this approach, the differential calculus on the group is deduced    
from the properties of the group and it involves functions on the group, 
differentials, differential forms and derivatives. The other approach, initiated 
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in [16], followed Manin’s emphasis [11] on the quantum spaces as the 
primary objects. Differential forms are defined in terms of noncommuting 
coordinates, and the differential and algebraic properties of quantum groups 
acting on these spaces are obtained from the properties of the spaces. 

In [12], Manin extended the notation of quantum space to that of 
quantum superspace, called also quantum superplane, of which the defining 
quadratic relations remain invariant under linear transformations. These 
endomorphisms constitute the quantum supergroup. From a wary 
mathematical point of view, the quantum superplane appears in this approach 
as a comodule over the corresponding quantum supergroup. The quantum 
(super)space has been then visualized by many as a paradigm for the general 
program of quantum deformed physics. There have been many attempts to 
generalize 2Z -graded constructions to the 3Z -graded case lately [1, 3, 4,              

7-10]. Chung [4] studied the 3Z -graded quantum space that generalizes the 

2Z -graded space called a superspace, using the methods of Wess and 

Zumino [16]. Çelik [3] studied the noncommutative geometry of the 3Z -

graded superplane. Let us shortly investigate a general 3Z -graded algebraic 

structure. 

The cyclic group 3Z  can be represented in the complex plane by means 

of the cubic roots of unity ( ),123
2

−==
π

iej
i

 

13 =j    and   012 =++ jj    or   ( ) .1 2 jj =+  

One can define the 3Z -graded commutator [ ]BA,  as 

[ ] ,,
3

BAjABBA ab
Z −=  

where ( ) aAgrad =  and ( ) .bBgrad =  If A and B are j-commutative, then 

we have 

.BAjAB ab=  
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2. Review of Calculus on the 3Z -graded Quantum Superplane 

Elementary properties of differential geometry of the 3Z -graded 

quantum superplane are described in [3]. We state briefly the properties, we 
will need in this work. 

2.1. The algebra of functions on the 3Z -graded quantum superplane 

It is well-known that the 2Z -graded quantum plane or quantum 

superplane is defined as an associative algebra whose even coordinate x and 
odd coordinate θ  satisfy the relations 

,0, 2 =θθ=θ xqx  

where q is a non-zero complex deformation parameter. One of the possible 
ways to generalize the quantum superplane is to increase the power of 
nilpotency of its odd generator. This fact gives the motivation for the 
following definition. 

Definition 2.1. Let ( )11|
qO C  be the algebra with the generators x and θ  

satisfying the relations 

 ,0, 3 =θθ=θ xqx  (2.1) 

where the coordinate x with respect to the 3Z -grading is of grade 0 and the 

coordinate θ  with respect to the 3Z -grading is of grade 1. We call ( )11|
qO C  

the algebra of functions on the 3Z -graded quantum superplane .11|
qC  

Definition 2.2. Let ( )11|Λ qC  be the algebra with the generators ϕ  and y 

satisfying the relations 

 ,0, 3 =ϕϕ=ϕ jyqy  (2.2) 

where the coordinate ϕ  with respect to the 3Z -grading is of grade 1 and the 
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coordinate y with respect to the 3Z -grading is of grade 2. We call ( )11|Λ qC  

the quantum exterior algebra of the 3Z -graded quantum superplane .11|
qC  

Obviously, in the classical case ,1=q  the algebra ( )11
1
|CO  is the              

3Z -graded polynomial algebra in two commuting indeterminates and the 

algebra ( )11|Λ jC  is the exterior algebra of .11|C  

2.2. The Hopf algebra A  

Let A  be the algebra ( ).11|
qO C  If we extend the algebra A  by adding 

the inverse of x which obeys 

,1 11 xxxx −− ==  

then we know that the algebra A  is a 3Z -graded Hopf algebra [3]: 

Theorem 2.3. The algebra A  is a graded Hopf algebra with the 
following co-structures: the coproduct AAA ⊗→∆ :  is defined by 

 ( ) ( ) ., θ⊗+⊗θ=θ∆⊗=∆ xxxxx  (2.3) 

The counit CA →ε :  is given by 

 ( ) ( ) .0,1 =θε=ε x  (2.4) 

The coinverse AA →:S  is defined by 

 ( ) ( ) ., 111 −−− θ−=θ= xxSxxS  (2.5) 

Note that 

( ) ( ) .,111 111 −−− ⊗=∆⊗=∆ xxx  

Here, the multiplication in AA ⊗  is defined with the rule 

 ( ) ( ) ( ) ( ) .BDACjDCBA CgradBgrad ⊗=⊗⊗  (2.6) 
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2.3. Review of a differential calculus on 3Z -graded quantum superplane 

The quantum superplane underlies a noncommutative differential 

calculus on a smooth manifold with exterior differential d  satisfying .02 =d  
So the above mentioned generalization of the superplane raise a natural 
question of possible generalization of differential calculus to one with 

exterior differential d  satisfying .03 =d  From an algebraic point of view,     
a sufficient algebraic structure underlying a differential calculus is the   
notion of the 3Z -graded differential algebra. Therefore, we can generalize      

a differential calculus with the help of an appropriate generalization of              

3Z -graded differential algebra. 

Notice that linear operator d  applied to x produces a 1-form whose          

3Z -grade is 1 by definition. Similarly, application of d  to θ  produces a            

1-form whose 3Z -grade is 2. We will denote the obtained quantities by ,xd  

and ,θd  respectively. When the linear operator d  is applied to xd  (or twice 

by iteration to x), it will produce a new entity we will call a 1-form of grade 

2, denoted by x2d  and applied to θd  produces a 1-form of grade 0, modulo 

3, denoted by .2θd  Finally, we require that .03 =d  

A differential calculus on an arbitrary algebra X  is an X -bimodule Γ  
with a C -linear exterior differential operator Γ→X:d  such that 

 (i) d  satisfies the Leibniz rule ( ) ( ) gfgfgf ddd ⋅+⋅=⋅  for any 

,, X∈gf  

(ii) Γ  is the linear span of elements of the form cba ⋅⋅ d  with 
.,, X∈cba  

Natural generalization of a usual calculus leads to the following 
definition: Let X  be a quantum space for a Hopf algebra H  and Γ→Γτ :  
is the linear map of grade zero which gives 

 ( ) ( ) ., X∈∀=τ aaja agrad  (2.7) 
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Definition 2.4. We consider a map A⊗Γ→Γφ :L  such that 

 ( ) .∆⊗τ=φ ddL  (2.8) 

Then we have 

 ( ) ( ) ., θ⊗+⊗θ=θφ⊗=φ ddddd xxjxxx LL  (2.9) 

We now define a map L∆  as follows: 

 ( ) ( ) ( ) ( ) ( ),22112211 abbaabba LLL ∆φ+φ∆=⋅+⋅∆ dddd  (2.10) 

for all X∈ia  and .Γ∈iad  

Definition 2.5. A differential calculus over the algebra Γ on the quantum 
space X  with left coaction XHX ⊗→ϕ :  is called left covariant with 

respect to H  if there exists a left coaction Γ⊗→Γ∆ H:L  of H  on Γ 

satisfying equation (2.10) and such that ( ) ( ) ( )aaL ϕ⊗τ=∆ dd  for all .X∈a  

A noncommutative differential calculus on the 3Z -graded quantum 

superplane was given in [3]. 

Theorem 2.6. The commutation relations for the differential calculus Γ  
on the 3Z -graded quantum superplane take the following explicit form: 

(1) the commutation relations with the coordinates of the first order 
differentials 

,2 xxjxx ⋅=⋅ dd  

( ) ,12 θ⋅−+⋅θ=θ⋅ xjxqx ddd  

,1 θ⋅=⋅θ − xjqx dd  

,θ⋅θ=θ⋅θ dd j  (2.11) 

(2) the commutation relations between the first order differentials have 
the form 

 ( ) ,0:, 3 ==∧∧∧θ=θ∧ xxxxxjqx dddddddd  (2.12) 
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(3) the commutation relations with the coordinates of the second order 
differentials have the form 

,222 xxjxx ⋅=⋅ dd  

( ) ,1 2222 θ⋅−+⋅θ=θ⋅ xjxqx ddd  

,212 θ⋅=⋅θ − xqx dd  

,22 θ⋅θ=θ⋅θ dd  (2.13) 

(4) the commutation relations between the first order differentials and 
the second order differentials have the form 

,22 xxjxx dddd ∧=∧  

( ) ,2222 θ∧−+∧θ=θ∧ dddddd xjjxqx  

,2212 θ∧=∧θ − dddd xjqx  

,22 θ∧θ=θ∧θ dddd  (2.14) 

(5) the commutation relations between the second order differentials 
have the form 

 ,22222 xjqx dddd ∧θ=θ∧  (2.15) 

(6) the relations of the coordinates with their partial derivatives: 

( ) ,11 22
θ∂θ−+∂+=∂ jxjx xx  

,21
xx jq ∂θ=θ∂ −  

,θθ ∂=∂ qxx  

,1 2
θθ ∂θ+=θ∂ j  (2.16) 

(7) the relations of partial derivatives: 

 .0, 3 =∂∂∂=∂∂ θθθ xx jq  (2.17) 
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Definition 2.7. If f is a differentiable function of x and ,θ  then the first 
order differential of f is defined as 

( ) .fxf x θ∂θ+∂= ddd  

Now, we need some useful relations which will be necessary to construct 

3Z  extended calculi. 

Proposition 2.8. The relations between partial derivatives and first 
order differentials are 

,xx xjx ∂=∂ dd  

,1
xx q ∂θ=θ∂ − dd  

,2
θθ ∂=∂ xjqx dd  

 ( ) .22
xxjjj ∂−+∂θ=θ∂ θθ ddd  (2.18) 

Proof. For completing the proof, we will assume the following form: 

,21 θ∂θ+∂=∂ ddd FxFx xx  

,43 θ∂+∂θ=θ∂ xFF xx ddd  

,65 xFxFx ∂θ+∂=∂ θθ ddd  

.87 xxFF ∂+∂θ=θ∂ θθ ddd  

Applying x∂  and θ∂  to the relations (2.11), we obtain 

,0,,0, 4
1

321 ==== − FqFFjF  

( ).,,0, 2
8

2
76

2
5 jjFjFFjqF −====  

Proposition 2.9. The relations between partial derivatives and second 
order differentials are 

,22
xx xjx ∂=∂ dd  

,212
xx q ∂θ=θ∂ − dd  
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,22
θθ ∂=∂ xqx dd  

 ( ) .1 2222
xxj ∂−+∂θ=θ∂ θθ ddd  (2.19) 

Proof. In order to complete the proof, we will assume the following 
form: 

,2
2

2
1

2
θ∂θ+∂=∂ ddd ExEx xx  

,2
4

2
3

2
θ∂+∂θ=θ∂ xEE xx ddd  

,2
6

2
5

2
xExEx ∂θ+∂=∂ θθ ddd  

.2
8

2
7

2
xxEE ∂+∂θ=θ∂ θθ ddd  

Applying x∂  and θ∂  to the relations (2.13), (2.14) and (2.15), we obtain 

,0,,0, 4
1

321 ==== − EqEEjE  

( ).1,1,0, 2
8765 jEEEqE −====  

Proposition 2.10. The relations between exterior derivative and first 
order differentials are 

 ( ) ( ) ( ) ( )dddddddd θ=θ= 2, jxjx  (2.20) 

and the relations between exterior derivative and second order differentials 
are 

 ( ) ( ) ( ) ( )dddddddd θ=θ= 22222 ,xjx  (2.21) 

and the relations between exterior derivative and partial derivatives are 

 ., 2
θθ ∂=∂∂=∂ dddd jj xx  (2.22) 

Proof. If we apply the exterior differential d  to xd  and use the relations 
(2.18), then we get 
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( ) ( ) xxx x ddddd θ∂θ+∂=  

xxx x dddd θ∂θ+∂=  

θ∂θ+∂= xjqxxj x dddd 2  

θ∂θ+∂= dddd xjxxj x  

( )yx yxxj ∂+∂= ddd  

( ) .ddxj=  

Accordingly, if we apply it to the second order differentials and partial 
derivatives (by using (2.19) and (2.18)), then other relations can be found in 
the similar manner. 

3. Extended Calculi on the 3Z -graded Quantum Superplane 

There is a relationship of the exterior derivative with the Lie derivative 
and to describe this relation, we introduce a new operator: the inner 
derivation. Hence the differential calculi on 3Z -graded quantum superplane 

can be extended into a large calculi. We call this new calculus the Cartan 
calculi. The connection of the inner derivation, denoted by ,ai  and the Lie 

derivative, denoted by ,aL  is given by the Cartan formula: 

.aaa ii dd +=L  

This and other formulae are explained in [5, 13-15]. 

The exterior derivative and the Lie derivative are set to cover the idea of 
a derivative in different ways. These differences can be hasped together by 
introducing the idea of an antiderivation which is called an inner derivation. 

3.1. Inner derivations 

Let us begin with some information about the inner derivations. 
Generally, for a smooth vector field X on a manifold the inner derivation, 
denoted by ,Xi  is a linear operator which maps k-forms to ( )1−k -forms. If 

we define the inner derivation Xi  on the set of all differential forms on a 
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manifold, then we know that Xi  is an antiderivation: 

( ) ( ) ( ),β∧α+β∧α=β∧α X
k

XX j iii  

where α  and β  are both differential forms. The inner derivation Xi  acts on 

0- and 1-forms as follows: 

( ) ( ) ( ).,0 fXff XX == dii  

In order to obtain the commutation rules of the coordinates with inner 
derivations and the other relations, we will use the approach of [2]. 

Proposition 3.1. The commutation relations of the inner derivations with 
the partial derivatives are 

,xxxx j ii ∂=∂  

( ) ,22
θθθ ∂−+∂=∂ iii xxx jjjq  

,1
θ

−
θ ∂=∂ ii xx q  

.2
θθθθ ∂=∂ ii j  (3.1) 

Proof. If we assume that the commutation relations of the inner 
derivations with the partial derivatives x∂  and θ∂  are in the following form: 

,21 θθ∂+∂=∂ iii BB xxxx  

,43 θθθ ∂+∂=∂ iii xxx BB  

,65 xxx BB iii θθθ ∂+∂=∂  

,87 xxBB iii ∂+∂=∂ θθθθ  

then the proof reduces to find the coefficients ( ).81 ≤≤ kBk  To find them, 

if we apply xi  and θi  to the relations (2.11), then we obtain 

,,,0, 2
4

2
321 jjBjqBBjB −====  

.0,,0, 8
2

76
1

5 ==== − BjBBqB  
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We now wish to find the commutation relations between the coordinates 
x, θ  and the inner derivations associated with them. 

Proposition 3.2. (a) The commutation relations of the inner derivations 
with x and θ  are 

( ) ,122
θθ−+= iii jxjx xx  

,1
xx jq ii θ=θ −  

,θθ = ii qxx  

,θθ θ=θ ii j  (3.2) 

(b) the commutation relations between the first order differentials and 
the inner derivations are 

( ) ,11 22
θ∧θ−+∧+=∧ iii ddd jxjx xx  

,1
xx jq ii ∧θ=θ∧ − dd  

,θθ ∧=∧ ii xjqx dd  

θθ ∧θ+=θ∧ ii dd 21 j  (3.3) 

or 

( ) ,1 2
θ∧θ−+∧+=∧ iii ddd jjxjx xx  

,1
xx q ii ∧θ=θ∧ − dd  

,θθ ∧=∧ ii xqx dd  

.1 θθ ∧θ+=θ∧ ii dd j  (3.4) 

Proof. In order to obtain the commutation rules of the coordinates with 
inner derivations, we shall assume that they are of the following form: 

,21 θθ+= iii AxAx xx  

,43 θ+θ=θ iii xAA xx  
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,65 xAxAx iii θ+= θθ  

.87 xxAA iii +θ=θ θθ  

The coefficients ( )81 ≤≤ kAk  will be determined in terms of the 

deformation parameters q and j. But the use of the relations (2.1) does not 
give rise any solution in terms of the parameters q and j. However, we have 

( ) ( ) ,0,0,0 6482372514 =−=−=− AqAAAqAAAqAAA  

( ) ( ) .0,0,0 28
2

64736158 =−=−=− AAqAAqAAAqAAA  

To find the coefficients, we need the commutation relations of the inner 
derivations with the differentials of x and .θ  Since 

( ) ( ),,, 21 θ==δ= XxXX ijjXi di  

we can assume that the relations between the differentials and the inner 
derivations are of the following form: 

,1 21 θ∧θ+∧+=∧ iii ddd axax xx  

,43 θ∧+∧θ=θ∧ iii xaa xx ddd  

,65 xaxax iii ∧θ+∧=∧ θθ ddd  

.1 87 xxaa iii ∧+∧θ+=θ∧ θθ ddd  

Applying xi  and θi  to the relations (2.11), one gets 

,0,,1, 4
1

3
2

2
2

1 ==−== − AjqAjAjA  

0,,0, 8765 ==== AjAAqA  

and 

( ) ,0,0,0 8262
2

625
2

12 ==−=− AaAajajAAjqAa  

( ) ,0,0,0 468484
2

374 ==−=− AaAjaaAjjaqaA  etc. 
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Using the relations (3.2), (2.12) and (3.1), we obtain 

.01,0 1
2
164 =++== aaaa  

Thus, we can take ja =1  or .2
1 ja =  If we demand that the commutation 

rules of the inner derivations with d  are of the form 

,, 21 θθθ ∂=+∂=+ iiii dddd CC xxx  

then one has 

,,0,,1,1, 54
1

3
2

21
2

1 jqaajqajaCja ===−=−== −  

0,,0, 8
2

762 ===−= ajaajC  

or 

,,0,,,, 54
1

3
2

2
2

11 qaaqajjajCja ===−=−== −  

.0,,0,1 8762 ===−= ajaaC  

Proposition 3.3. The commutation relations between the second order 
differentials and the inner derivations are 

,222
xx xjx ii ∧=∧ dd  

,212
xx q ii ∧θ=θ∧ − dd  

,22
θθ ∧=∧ ii xjqx dd  

 ( ) .1 2222
xxj iii ∧−+∧θ=θ∧ θθ ddd  (3.5) 

Proof. In order to find the relations between the second order 
differentials and the inner derivations, we will assume the following form: 

,2
2

2
13

2
θ∧θ+∧+=∧ iii ddd kxkCx xx  

,2
4

2
3

2
θ∧+∧θ=θ∧ iii xkk xx ddd  

,2
6

2
5

2
xkxkx iii ∧θ+∧=∧ θθ ddd  
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.2
8

2
74

2
xxkkC iii ∧+∧θ+=θ∧ θθ ddd  

Using the relations (2.13)-(2.15) with xi  and ,θi  we obtain 

,1,,,,0 75
1

3
2

13 ===== − kjqkqkjkC  

.1,0,0 2
86424 jkkkkC −=====  

3.2. Lie derivatives 

We know, from the classical differential geometry that the Lie derivative 
L  can be defined as a linear map from the exterior algebra into itself which 
takes k-forms to k-forms. For a 0-form, that is, an ordinary function f, the Lie 
derivative is just the contraction of the exterior derivative with the vector 
field X: 

.ff XX di=L  

For a general differential form, the Lie derivative is likewise a contraction, 
taking into account the variation in X: 

( ).α+α=α XXX ii ddL  

The Lie derivative has an important property when acting on differential 
forms. If α  and β  are two differential forms on M, then 

( ) ( ) ( ),β∧α+β∧α=β∧α X
k

XX j LLL  

where α  is a k-form. 

In this section, we find the commutation rules of the Lie derivatives with 
the elements of the algebra ,A  their differentials, etc., using the approach of 

[2]. 

Proposition 3.4. In the 3Z -graded space, the formulae of the Lie 

derivative are given by 

,xxx j ii dd −=L  
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 .2
θθθ −= ii dd jL  (3.6) 

Proof. Let 

., θθθ +=+= iiii dddd DC xxx LL  

If we apply d  to these formulae, using the relations (2.20), we get 

., 2jDjC −=−=  

Proposition 3.5. The commutation relations of the Lie derivatives with 
the elements of A  are 

( ) ( ) ( ) ,1111 22222
xxx xjjjjxjx ii ∧−+∧θ−+θ−++= θθ ddLLL  

( ) ,2121
xxx jjqjq i∧θ−+θ=θ −− dLL  

( ) ,2
θθθ ∧−+= ixjjqqxx dLL  

( ) θθθ ∧θ−+θ+=θ id11 22 jj LL  (3.7) 

or 

( ) ( ) ( ) ,1111 222
xxx xjjjjxjx ii ∧−+∧θ−−θ−++= θθ ddLLL  

( ) ,1 2121
xxx jqjq i∧θ−+θ=θ −− dLL  

( ) ,1 2
θθθ ∧−+= ixjqqxx dLL  

( ) .11 22
θθθ ∧θ−+θ+=θ idjj LL  (3.8) 

Proof. Using the relations (3.3) and (3.4), we get 

( ) xjx xxx ii dd −=L  

( ) ( ) ( )θθ −θ−+−+= iiii dddd 222 11 jjjxj xx  

( ) +∧−+ xxj id12  

( ) ( ) ( )[ ].1111 222
xx xjjjxj ii ∧+∧θ−−+θ−++= θθ ddLL  

Other relations can be similarly obtained. 
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Proposition 3.6. The relations of the Lie derivatives with the first order 
differentials are 

( ) ,1 θθ−+= LLL ddd jxx xx  

,1
xx q LL θ=θ − dd  

,2
θθ = LL xjqx dd  

θθ θ=θ LL dd j  (3.9) 

or 

( ) ,122
θθ−+= LLL ddd jxjx xx  

,21
xx jq LL θ=θ − dd  

,θθ = LL xjqx dd  

.θθ θ=θ LL dd  (3.10) 

Proof. Using the relations (2.20) and (3.3) or (3.4), we get 

( ) xjx xxx dddd ∧−= iiL  

( ) ( ) ( ) xjx xx dddd ∧−∧= ii  

( ) ( ) ( ) θ∧θ∧−−∧−−∧∧= iii ddddddd 12jjxjxj xx  

( ) ( ) ( ) xxx xjjjjxj iii dddddddd ∧−−∧θ−+∧+= 12  

( ) ( ) θ∧θ∧−− idd12j  

( ) ( ) ( )θθ −∧θ−+−∧= iiii dddddd 21 jjjx xx  

( ) .1 θθ−+= LL dd jx x  

The other relations can be similarly obtained. 
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Proposition 3.7. The relations of the Lie derivatives with the second 
order differentials are 

,22
xx xjx LL dd =  

,212
xx q LL θ=θ − dd  

,22
θθ = LL xqx dd  

 ( ) .1 2222
xxj LLL ddd −+θ=θ θθ  (3.11) 

Proof. Using the relations (3.7), (2.21) and (2.22), the relations of the 
Lie derivatives with second order differentials also can be similarly obtained. 
Other commutation relations can be similarly obtained. 

To complete the description of the above scheme, below we get the 
remaining commutation relations as follows: 

Proposition 3.8. The Lie derivatives and partial derivatives are 

,xxxx LL ∂=∂  

( ) ,1 2
θθθ ∂−+∂=∂ LLL xxx jq  

,21
θ

−
θ ∂=∂ LL xx jq  

.θθθθ ∂=∂ LL  (3.12) 

Proof. Using the relations (2.22) and (3.6), the relations of the Lie 
derivatives with partial derivatives also can be similarly obtained. 

Proposition 3.9. The relations of the inner derivations are 

 .0, 32 =∧=∧ θθ xxx jq iiiii  (3.13) 

Proposition 3.10. The commutation relations between the Lie derivatives 
and the inner derivations are 

,xxxx ii LL =  

,xx q ii θθ = LL  
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,1
θ

−
θ = ii xx q LL  

.θθθθ = ii LL j  (3.14) 

Proposition 3.11. The commutation relations of the Lie derivatives are 

 ( ) .2
θθθ −+= LLLLL xxx jjq id  (3.15) 

Note. The Lie derivatives can be written as follows: 

 ( ) ( ) .,1 2
θθθ −+∂=−+∂= ii dd jjj xxx LL  (3.16) 

Acknowledgement 

This work was supported in part by TBTAK the Turkish Scientific and 
Technical Research Council. 

References 

 [1] V. Abramov and N. Bazunova, Algebra of differential forms with exterior 

differential 03 =d  in dimension one, Proceedings of the Second International 
Symposium on Quantum Theory and Symmetries, 2001, pp. 198-205. 

 [2] S. Çelik, Cartan calculi on the quantum superplane, J. Math. Phys. 47(8) (2006), 
Art. No. 083501, 16 pp. 

 [3] S. Çelik, Differential geometry of the 3Z -graded quantum superplane, J. Phys. A 

35 (2002), 4257-4268. 

 [4] W. S. Chung, Quantum 3Z -graded space, J. Math. Phys. 35 (1993), 2497-2504. 

 [5] C. Chryssomalakos, P. Schupp and B. Zumino, Induced extended calculus on the 
quantum plane, Algebra i Analiz 6(3) (1994), 252-264. 

 [6] A. Connes, Noncommutative Geometry, Academic Press, 1994. 

 [7] R. Kerner, 3Z -graded algebras and the cubic root of the supersymmetry 

translations, J. Math. Phys. 33 (1992), 403-411. 

 [8] R. Kerner, 3Z -graded exterior differential calculus and gauge theories of higher 

order, Lett. Math. Phys. 36 (1996), 441-454. 



Salih Celik and Erdogan Mehmet Ozkan 146 

 [9] R. Kerner and V. Abramov, On certain realizations of the q-deformed exterior 
differential calculus, Rep. Math. Phys. 43 (1999), 179-194. 

 [10] B. Le Roy, A 3Z -graded generalization of supermatrices, J. Math. Phys.             

37 (1996), 474-483. 

 [11] Yu I. Manin, Quantum groups and noncommutative geometry, Montreal Univ., 
1988, preprint. 

 [12] Yu I. Manin, Multiparametric quantum deformation of the general linear 
supergroup, Comm. Math. Phys. 123 (1989), 163-175. 

 [13] P. Schupp, P. Watts and B. Zumino, Differential geometry on linear quantum 
groups, Lett. Math. Phys. 25 (1992), 139-147. 

 [14] P. Schupp, P. Watts and B. Zumino, Cartan calculus on quantum Lie algebras, 
Adv. Appl. Clifford Alg. (Proc. Suppl.) 4-S1 (1994), 125-134. 

 [15] P. Schupp, Cartan calculus: differential geometry for quantum groups, Proc. 
Internat. School Phys. Enrico Fermi 127 (1996), 507-524. 

 [16] J. Wess and B. Zumino, Covariant differential calculus on the quantum 
hyperplane, Nuclear Phys. B 18 (1990), 302-312. 

 [17] S. L. Woronowicz, Differential calculus on compact matrix pseudogroups, Comm. 
Math. Phys. 122 (1989), 125-170. 


