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Abstract

The flow of an incompressible second-grade fluid along an infinite

permeable wall is discussed. The velocity field due to a variable shear

stress on the porous boundary is examined. The non-linear partial

differential equation resulting from the momentum equation is solved

analytically. Effects of suction and material parameter of second-grade

fluid on the flow phenomena are analyzed. The solution of the problem

indicates that for small time a strong non-Newtonian effect occurs in the

velocity field and for large time the velocity field gives the results for

Newtonian case.

1. Introduction

It is now generally recognized that in industrial applications non-
Newtonian fluids are more appropriate than Newtonian fluids.
Numerous models have been suggested for non-Newtonian fluids with
their constitutive equations varying greatly in complexity. Already the
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class of flows for which an exact solution is possible for Navier-Stokes
equations that govern the flow of Newtonian fluids is rather restricted.
This class is further narrowed down for non-Newtonian fluids on account
of the non-linear relationship between the stress and the rate of strain at
any point of the flow. One particular class of fluids for which one can
reasonably hope to derive exact solutions is the class of viscoelastic
fluids, which was first introduced by Rivlin and Ericksen [7]. The
constitutive equation for one of the simpler models in this class is

,2
12211 AAAIT α+α+µ+−= p (1)

where T is the stress tensor, p is the scalar pressure and 1, αµ  and 2α

are measurable material constants. They denote, respectively, the
viscosity, elasticity and cross-viscosity. These material constants can be

determined from viscometric flows for any real fluid. 1A  and 2A  are

Rivlin-Ericksen tensors and they denote, respectively, the rate of strain

and acceleration. 1A  and 2A  are defined by

( ) ( ) ,2,1,11
1 =++= −−
− ∇∇ n

dt
d

n
T

n
n

n AVVA
A

A

.10 =A (2)

Here 
dt
d  is the material time derivative, and V is the velocity at a point.

Second order fluids are dilute polymeric solutions (e.g.,

polyisobutylene, methyl-methacrylate in n butyl acetate, polyethylene

oxide in water, etc.). The equation is frame invariant and applicable for
low shear rates. A detailed account on the characteristics of second-grade
fluids is well documented by Dunn and Rajagopal [2]. Theoretical
investigations by Dunn and Fosdick [1] and Fosdick and Rajagopal [3]
have indicated that for an exact model, satisfying the Clausius-Duhem
inequality and the assumption that the specific Helmholtz free energy be
a minimum in equilibrium, the following conditions must hold:

.0,0,0 211 =α+α≥α≥µ (3)

The analysis of the flow of the second-grade fluids, in particular, and
the viscoelastic fluids, in general, is more challenging mathematically
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and computationally, because of a peculiarity in the equations governing

the fluid motion; namely, the order of the differential equation(s)

characterizing the flow of these fluids is more than the number of the
available boundary conditions. This issue is discussed in reference [6].
Later a detailed discussion is presented by Rajagopal [5] and relevant
references are given in that study. In our special type of flow considered
here, however, there is no need for additional boundary conditions.

In this study, the flow on a porous plate is discussed. The fluid
considered is second-grade. The porous character of the plate and
viscoelastic nature of the fluid increase the order the differential
equation. The flow is due to a variable shear stress of magnitude of

( ).0 tcU  Finally, the effects of the material parameter of second-grade

fluid are examined.

2. Mathematical Formulation

Suppose that a second-grade fluid, at rest, occupies the space above

an infinitely extended porous plate in the ( )zx, -plane. At time += 0t

the plate is under the action of variable shear stress with ( ).0 tU  By the

influence of the shear stress, the fluid above the plate is gradually
moved. The velocity field will be of the form

( ) ( )[ ],0,,, tVtyu=V (4)

where u is the x-component of the velocity V, ( ) 0<tV  is the suction

velocity and ( ) 0>tV  is the blowing velocity. The governing equations

are given by

,0=Vdiv (5)

,TV div
dt
d =ρ (6)

where ρ is the density of the fluid. By virtue of (4), the continuity

equation is identically satisfied and the x-momentum equation reduces to

( ) ( ) .0,0,
3
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The corresponding boundary condition is

( ) ( ) .0,0
0

2

22
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
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=

ttcU
y

utV
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u
y
u

y

(8)

Moreover, the natural condition

( ) ,0, →tyu   as  ,∞→y (9)

also has to be satisfied.

3. Solution of the Problem

In order to obtain the solution for (7) we introduce the similarity
parameter

( )

t

dttVy

ν

−
=η ∫

2
(10)

and expand the velocity field in a series with respect to the second-grade
parameter as [8]

( ) ( ) ( ) ( ) ,2

2

10

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
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
+η






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β+η







ν
β+η=η f

t
f

t
fu (11)

where ν is the kinematic viscosity and .1
ρ
α

=β

Substituting (11) into (7) and boundary conditions (8) and (9) and
then equating the equal powers, we obtain the following systems:

System of order zero

,02 00 =′η+′′ ff (12)

[ ] ( ) ( ),00 tUcf t =′ λ=η (13)

( ) 00 →ηf  as .∞→η (14)

System of order one

,
2
142 00111 fffff ′′′η+′′=+′η+′′ (15)
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( )
( )

,0
2
1

001 =



 ′′η+′+′

λ=η t
fff (16)

( ) 01 →ηf  as ,∞→η (17)

where prime denotes the differentiation with respect to η and

( )
( )

.2,
2

ctc
t

dttV
t

νρ
=

ν
−=λ ∫ (18)

Zeroth-order solution

The solution of (12) subject to boundary conditions (13) and (14) is
given by

( )[ ].erf10 η−= Af (19)

In order to satisfy the condition (13), we require

( )
( )

.
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2
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dttV
tUcA (20)

It is obvious from (20) that A is a function of time only. However, A

must be a constant, and this is possible only if

( ) ( )
( )

.
2

exp2.const
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We observe that (21) is a relationship between ( )tU0  and ( )tV  which

ensures the constancy of A. So it follows that A is constant.

We further examine that (21) significantly narrows the class of
possible solution of the system of order zero and even in this case the
solution is two parametric

( ) ( )[ ].,,, 000 tUtVtyff = (22)

It is necessary to specify the function ( )tU0  in the form of (21) and at

the same time ( )tU0  defines the value of constant A, which significantly
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affects the value of ( ).0 ηf  Thus, we conclude that (19) and (21) give the

solution for the system of order zero.

First-order solution

Inserting the zeroth order solution into (15)-(17) we obtain

( ),23242 2
111

2
η−η

π
=+′η+′′ η−eAfff (23)

[ ] ( ) ( ),212 2
1

2
λ−

π
=′ λ−

λ=η eAf t (24)

( ) 01 →ηf  as .∞→η (25)

The solution of (23) subject to the conditions (24) and (25) is given by

( ) .
21

251 22 3
2

42

1
η−η− η

π
+η









λ−
λ+λ−

π
=η eAeAf (26)

The complete solution up to order 






ν
β
t

 is of the following form:

( ) 

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1 deAu
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2
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π


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
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
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ν
β+ η−η− eAeA
t

(27)

The graphs are shown in Figures 1, 2 and 3 in which velocity varies
with respect to the wall, for various values of time, second-grade
parameter, and suction/blowing parameter, i.e., =β==β= ,1,0,1 tt

,5.0,1,2.0 =β=t  and .1.0,0,1.0−=V

Figure 1
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Figure 2

Figure 3

4. Special Cases

Case 1. If ( ) ,0,0 =β=tV  and the condition at the plate is of

impulsive motion, then we obtain the familiar first Stokes’ problem of a
wall suddenly set into motion. The solution is given by

( ) [ ( )],erf1 ∗η−=η Uf (28)

where

.
2 t

y
ν

=η∗

Case 2. If ( ) 0,0 ≠β=tV  and the condition at the plate is of impulsive

motion, then we readily recover the result of Teipel [8], and is given by

( ) ( ) ( ) ,2
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where

.1
2
3,

2
1

11
π

−=
π

−= ba

Case 3. For ( ) ,0,
2

=βν=
t

KtV  and sudden motion of the plate, we

obtain the result of Jahnke et al. [4] and is given as

( ) .

2
erf1

2
erf

1

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
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
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∗

∗
K

K

UF (30)

The graph is shown for 6,4,2,1,0,2−=K  in Figure 4. It is observed

that for ( )∗η> FK ,23  is exactly one and for 11−<K  it is no more real.

Figure 4

5. Conclusions

The main features of the solution (27) are:

1. The boundary layer thickness decreases with increase of suction
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velocity and increase with large values of blowing velocity. It is also
noted that the blowing velocity and the material parameter of the second-
grade fluid has the similar effect on boundary layer thickness.

2. It is observed that for short time ( )5≤t  a strong non-Newtonian

effect is present in the velocity field and velocity behaves as a Newtonian

case for large time ( ).5>t

3. Introduction of the similarity parameter η leads to an exact

solution of the governing non-linear partial differential equation.

4. It is to remark that the viscous flow due to a variable shear stress
has not been reported yet in the literature and can be obtained as a

special case of the presented analysis by taking .01 =α
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