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Abstract 

In toxicological studies interest often lies in proportions or counts for 
which an increase in the dose group over control indicates a safety 
risk. Additionally, the control group observes values that are zero          
or near-to-zero for endpoints characterizing pathological processes. In 
such instances, the comparison of dose groups versus control requires 
special attention as inference for ratio-to-control is infeasible or 
unstable and inference for difference-to-control is highly sensitive to 
the number of zeros or near-to-zero values. In practice, assays are 
commonly performed multiple times in a laboratory so that data of 
some historical controls are available. When the concurrent control 
values fall within a corresponding normal range, the evaluation is 
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performed by comparing doses versus the concurrent control. If the 
data of the concurrent control are outside the normal range, a test 
versus the concurrent control has either an increased risk of a false-
positive result or an increased risk of a false-negative result, 
depending on the direction of the deviation. In this work, we discuss a 
simple to use Williams-type approach for comparing against a mean 
historical value. The idea is illustrated on three examples and we show 
how the method can be implemented the statistical software package 
R. 

1. Introduction 

Methodologically, two different types of endpoints can be distinguished 
in toxicological studies: (i) outcomes of a general physiological process, e.g., 
the hemoglobin content, and (ii) outcomes of a specific pathological process, 
e.g., the number of micronuclei. The former are often continuous variables 
for which adverse reactions tend to cause either increasing or decreasing 
values (e.g., enlargement or inhibition of liver weight). The latter endpoints 
are often proportions or counts for which the direction of pathological counts 
or proportions is inherently increasing. A consequence of these directional 
changes is that one-sided tests are appropriate to investigate if a compound 
impacts the endpoint over a reference value or control. 

For pathological outcome variables, the focus of this manuscript, the data 
in the untreated control group are often zero or near-to-zero, i.e., most of the 
randomized units (e.g., animals) reveal the value zero or only some small 
value, such as 1 or 2. In such instances, the common comparison of dose 
groups versus control requires special attention, as: 

  (i) inference for ratio-to-control, e.g., recommended for a k-fold 
interpretation [1], is either infeasible or unstable; 

  (ii) inference for difference-to-control is highly sensitive to the number 
of zeros or near-to-zero values, i.e., observing 0 tumors in 50 control animals 
versus 1 tumor in 50 controls changes the p-value of the test for treatment 
effect notably; and 
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 (iii) the power of tests for the difference of proportions is largest when 
the proportion on control is zero since this minimizes the estimator of the 
common variance. 

In practice, such assays are commonly performed multiple times in           
a laboratory and therefore data of some historical controls are typically 
available [2]. When the values of the concurrent control falls within a related 
normal range, the evaluation is performed by comparing doses versus the 
concurrent control. If the data of the concurrent control are, however, small 
compared to the normal range, a test versus the concurrent control has a 
false-positive tendency (i.e., an increased probability of wrongly claiming a 
change in the endpoint over control). Analogously, a false negative tendency 
occurs when the concurrent control data are large compared to the normal 
range. For example, the poly-3-trend test on histiocytic sarcomas in      
female rats in the long-term bioassay of benzophenone is not significant 
( ),074.0=p  but highly significant when taking the control data from six 

historical studies into account ( )004.0=p  [3]. 

It is therefore recommended to use tests that allow historical information 
to be incorporated when evaluating pathological outcome variables. For  
both, proportions and counts, modifications of the Cochran-Armitage-trend 
test have been proposed [4, 5], yet these approaches do not seem to be 
implemented routinely for the evaluation of toxicological assays. Reasons 
may include: 

  (i) a focus on current tumor evaluation in long-term carcinogenicity 
bioassays, 

 (ii) a complex approach that may not be transparent to toxicologists, 
published mainly in statistical journals (e.g., [3, 6-12]), 

(iii) the US National Toxicological Program [13] recommends Dunnett 
and Williams-type approaches [14], while the Cochran-Armitage-trend test is 
only sensitive for near-to-linear shapes and not for any shape (see, e.g., [15]); 
and 
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(iv) asymptotic solutions are inappropriate for most toxicological assays 
which tend to have rather small sample sizes. 

Recently, [16] proposed a two-step approach for the routine evaluation of 
the Ames fluctuation test which “sorts out” significant Williams-test results 
when the concurrent control is below a threshold in order to reduce the 
number of false positives. Wolf et al. [17] on the other hand proposed a 
method for the HET-MN assay that uses a threshold to decide whether a test 
versus all historical raw data should be used. Both of these approaches follow 
the US-FDA recommendation: The concurrent control group is always the 
most appropriate and important in testing drug related increases in tumor 
rates... historical control data can be very valuable in the final interpretation 
of the study results [18]. A potential problem for both approaches is, 
however, that they may be biased. The former may sort out real positive 
trends while the latter depends on the sample size of the historical controls. 

Hayashi et al. [2] discussed the difficulties with the statistical analysis of 
rodent cancer bioassays using historical control data directly. In this paper, 
we propose and discuss, based on three examples, a simplified approach 
which starts by evaluating if the concurrent control is within a normal range. 
If it is, the concurrent control is used for comparisons while the arithmetic 
mean of the historical assays is used as a standard value if it is not. The 
actual decision for or against a trend is performed with a Williams test, 
modified for comparison against a fixed default value instead of an estimated 
mean value of the current control. The advantage of this approach is that its 
application is relatively simple and will result in smaller false decision rates 
than the two ideas discussed above, namely the Williams-test with only the 
concurrent control data and to model the historical and concurrent control 
data (see the simulation study in the Appendix for details). Note that other 
approaches which may result in even better error rates, for example based      
on Bayesian ideas [19] or mixture distributions (e.g., zero-inflated Poisson 
models or hurdle models, [20]), are also available. These are not discussed 
here as they tend to be rather complex and hence not suitable for day-to-day 
analysis. Here we describe a Williams-type procedure for the analysis          
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of studies including several dose groups and a zero-dose control to claim            
a dose-dependent trend when rejecting the null-hypothesis. To support 
implementation of the ideas discussed we also present code for the statistical 
software R [21] in the Appendix of this work. An evaluation of the statistical 
properties and comparison against alternative approaches of the method is 
also provided in the Appendix. 

2. Three Examples 

In this section, we will introduce three examples which will be used to 
illustrate the usefulness of the new approach. In the first example, the number 
of micronucleated erythrocytes measured by the hen’s egg genotoxicity assay 
for micronucleus induction [HET-MN, 17] is the primary endpoint. This end-
point can be considered as count data, as the number of scored polychromatic 
and normochromatic erythrocytes is constant. Commonly a one-way layout 
with three or four doses of the test compound, a negative control (NC), and a 
positive control, with six eggs randomly assigned to each group is used. 

 

Figure 1. Boxplot of HET-MN assay data. 

The boxplot in Figure 1 shows the data for a selected assay without         
the positive control (see MNassay in the Appendix for full data). In this 
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example, a relatively large numbers of micronucleated erythrocytes (MN’s) 
in the control ( ),17.2=NCx  low numbers in the low doses and markedly 

increased number of MN’s in the highest dose can be seen. In the same 
laboratory, 24 historical assays are available where the mean on the negative 
control at 1.77 is much smaller than the mean of the concurrent control [22] 
(see histMN in the Appendix). The question therefore arises, whether the p-
values of a common Williams-type trend test for the comparison against     
the concurrent control (on the Freeman-Tukey transformed endpoint) are         
too large, due to an unusually large number of MN’s in the concurrent 
control, and hence wrongly indicating no toxic effect. For the above 
example, we selected a real data example with only one of six MN-count 
being zero in the control for illustration. Figure 2 (from Figure 5 in [22], see 
MNassayZeroControl in the Appendix for full data) gives an example with 
only zero values in the concurrent control group. 

 

Figure 2. Boxplot of HET-MN with zero control data. 

In the second example, alveolar-bronchial adenomas in a 102 weeks 
carcinogenicity bioassay treated with Pivalolactone are considered. These 
adenomas were analysed as (mortality-independent) crude tumors and 
historical control rates were available for 23 related bioassays [8]. The 
boxplot in Figure 3 shows a descriptive summary of the historical tumor rates 
as well as the tumor rates in the current study on different doses (stars). 
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Figure 3. Boxplot of historical alveolar-bronchial adenomas data. Black 
points are the observed historical data and stars correspond to the concurrent 
data at doses 0, 75 and 150mg/kg. 

Once more the concurrent control tumor rate is larger than the historical 
tumor rate, leaving the question whether the higher tumor rate of the 
concurrent control ( )1.0ˆ =NCp  compared to the historical tumor rate 

( )07.0ˆ =HCp  causes a serious increase of the p-value of the common 

Williams-type test for comparison against the concurrent control. 

The third example is focused on the mortality-adjusted analysis of 
tumors. The analysis of crude tumor rates is biased when mortality is 
different in the groups. Therefore, the poly-3 adjusted proportions are used 
for mortality adjustment when the cause of death is unknown. Here the 
individual data of tumor status (0=no tumor, 1=tumor) and day of 
death/sacrifice for the adenoma in Harderian glands in male mice of NTP 
long-term bioassay study C61621D are used (Table 1). The unexpected 
larger number of 4 tumors out of 50 animals in the concurrent control for this 
rare tumor leads to questions whether this may cause false negative decisions 
(i.e., a too large p-value) to occur. Historical control data from 13 studies 
including both, tumor status and day of death/scarifies, were collected from 
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the NTP database which suggest that 4 in 50 animals is untypically large 
(Table 2). 

Table 1. Harderian gland tumors of current NTP study No. C61621D 
(Chemical Name: Triethanolamine; CASRN: 102-71-6) 

Dose group No. of animals  No. of tumors 
0mg/kg 46 4 

200mg/kg 45 5 
630mg/kg 44 6 

2000mg/kg 49 1 

Table 2. Harderian gland tumor data from 13 historical and one concurrent 
(it) studies. Studies of 2 years length exposure rate of topical application. 
Animals represent male mice of strain B6C3F1. (CASRN: Chemical 
Abstracts Service Registry Number) 

Chemical Name CASRN Study No. No. of 
animals 

No. 
without 
tumor  

No. of 
tumors 

Benzethonium chloride 121-54-0  C61494B 50 48 2 

bis(2-Chloroethoxy)methane 111-91-1  C99028 50 50 0 

Coconut oil acid diethanolamine 
condensate 

68603-42-9  C55312B 50 48 2 

1,2-Dibromo-2,4-dicyanobutane  35691-65-7  C97003D 50 43 7 

Diesel fuel marine DIESELFUEL C54795B 49 46 3 

Diethanolamine 111-42-2  C55174D 50 50 0 

Diethyl phthalate 84-66-2  C60048B 50 49 1 

Diisopropylcarbodiimide 693-13-0  C93020D 50 47 3 

Lauric acid diethanolamine 
condensate 

120-40-1  C55323B 50 49 1 

Methyl trans-styryl ketone 1896-62-4  C95003C 50 50 0 

Oleic acid diethanolamine 
condensate 

93-83-4 C91014  49 47 2 

Sodium xylenesulfonate 1300-72-7 C55403D 50 49 1 

Triethanolamine 102-71-6  C61621D 50 46 4 

4-Vinyl-1-cyclohexene diepoxide  106-87-6  C60139A 50 50 0 
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3. Williams-type Procedures for the Comparison  
Against a Standard Value 

In this section, we will discuss straightforward statistical approaches         
that are applicable to the three examples introduced above. We will first 
introduce the methodology in generic terms and then illustrate their 
application in the subsequent section. 

The main assumption we will use is that the mean value of the controls 
of historical assays is approximating the true value, denoted as standard, of 
the particular endpoint (e.g., the tumor rate or number of MN). The standard 
represents a constant value and hence will be treated to have no variance and 
is independent of sample size. From the Bayesian viewpoint, this assumption 
is rather limiting, but does simplify the problem substantially while      
making the approach numerically feasible and independent of the number         
of available assays. Therefore, multiple comparison procedures versus a 
standard are proposed. A modified Dunnett procedure for comparison against 
a standard was previously described [23] and related simultaneous prediction 
intervals have also been discussed [24]. 

3.1. Estimation of the threshold 

Since a threshold is routinely used to decide whether an assay is 
evaluated with the concurrent control or with historical controls, the 
estimation of said threshold should be clear and transparent and making this 
decision is typically the first step of the analysis. It starts by defining a 
normal range as a prediction interval for k values in the concurrent control 
based on rζ  values in R historical assays. Parametric approaches depend 

heavily on the underlying normal distribution while non-parametric ideas 
exhibit problems with tied data (e.g., when using counts). Moreover, the 
related phase II quality control chart approaches are complicated [25]. 

In bio-medical research, 2σ intervals are common where 2 is 
approximating the two-sided 95% quantile of the standard normal 
distribution. These intervals are also recommended by quality control 
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arguments [26]. The general form of these intervals is ,2ˆ SD±θ  where θ̂  is 
the mean value of the historical controls and the SD is the standard deviation 
of the estimate used in the concurrent control data (e.g., the standard 
deviation of the mean of the negative controls). For count data, for example, 
the interval is constructed for Freeman-Tukey transformed variables and has 
been recommended based on a tradeoff between simplicity and validity [27]. 

The intervals are of the form: ,2 CCHCHC nSDx ±  where HCx  and 

HCSD  are the mean transformed counts and estimated standard deviation of 

the historical control (HC) data, respectively, and CCn  is the sample size      

of the concurrent control. For tumor rates, the corresponding interval is 

( ) ,
ˆ1ˆ

2ˆ
CC

HCHC
HC n

ppp −
±  where HCp̂  is the estimated tumor based on 

historical data and CCn  is the number of observations in the concurrent 

control group. 

Besides the 2σ intervals described above, alternatives, such as using the 
difference between the maximum and the minimum of the historical control 
rates or the inter-quartile range (IQR) have been discussed [28]. 

3.2. Count data transformed to approximate normal distributed 
endpoints 

Generalized linear models can be used to draw inference on count data. 
In particular, the variation between animals (or other experimental units) can 
be modeled by generalized Poisson distribution models, such as the quasi 
Poisson or negative binomial model [29]. The commonly used log-link 
function, however, causes unstable or infeasible ratio-to-control (odds ratio) 
estimates when zero or near-to-zero control data occur. A simple alternative 
is to transform the data and subsequently use common parametric tests on the 
transformed variable. For toxicological count data, such transformation 
approaches were used for the Cell Transformation Assay [30, 31], the Ames 
Fluctuation Assay [16], and the in vitro Chromosome Aberration Assay [32]. 
A common challenge encountered when using count data is a dose-dependent 
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increase in the variance so that the assumption of variance homogeneity         
is violated. According to Guan [33], the simple Freeman-Tukey root 

transformation [34], defined as ,1+κ+κ= ijij
FT
ijx  where ijκ  is the 

count of animal j in treatment group ki ...,,1,0=  (0=concurrent control), 

can be recommended for transforming count data into approximate normal 
distributed variables which satisfy variance homogeneity approximately. 

A Williams-type procedure 

A Williams-type approach for comparing counts against the standard, ϑ, 
defined as the mean count in the historical control assays, can be used. The 
test statistic is defined as 
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This approach can be easily implemented using the argument rhs in the 
function glht of the R package multcomp. Notice, a simple Welch-type 
modification for the common occurring heteroscedasticity is available [36].  

In the subsequent section, we will illustrate how adjusted p-values and 
simultaneous confidence intervals can be estimated for this Williams-type 
procedure. 
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3.3. Crude proportions 

Proportions frequently occur in toxicology as pathological outcomes, 
such as mortality, crude tumor rate or incidences of histopathological 
findings. Traditionally cross-table analysis methods, such as chi-squared  
test, are used in this context. Small sample size observed in toxicological 
studies, however, leads to liberal results for table-based analysis methods 
when asymptotic approaches are used, while exact approaches tend to be 
conservative. Agresti and Caffo [37] proposed to overcome this issue by 
adding two pseudo success and two pseudo failure when computing the 
sample proportions. They showed that the corresponding Wald confidence 
intervals have coverage close to nominal level for small to medium      
sample sizes. This idea based on two-sample comparisons was subsequently 
extended to a one-way layout with 2>k  groups [38] and the Williams-type 
procedure [25]. Simulations for the typical design in toxicological studies 
with 3 to 4 groups and sample sizes below 20 indicate that a “Add1” 
approach is suitable for one-sided confidence intervals [25]. 

For Rr ...,,1=  historical control assays with rZ  events and rm  animals 

and a current assay with iY  events and in  animals ( ),doses...,,1 ki =  the 

Williams-type approach can be defined using the following test statistic: 
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This approach can be implemented using the R package MCPAN and both, 
adjusted p-values and simultaneous confidence intervals, can be found.  

A Monte Carlo simulation study, available in the Appendix, shows that 
this approach is advantageous in situations where the expected value of the 
historical control data is smaller in comparison to the concurrent control 
group. 

3.4. Poly-3-estimates 

The primary endpoints in long-term carcinogenicity bioassay are tumor 
incidences. Due to a strong interaction between tumor formation and 
mortality, a simple evaluation of crude tumor proportions cannot be 
recommended. Instead the analysis of mortality-adjusted tumor rates by the 
poly-3-approach can be recommended [39, 40], in particular since cause of 
death information is rarely available. The idea is to use individual mortality-

specific weights, ( )3maxttw ijij =  (where ijt  is the time when a particular 

tumor in animal i of treatment group j was found), is particularly appealing 
due to its simplicity. The weight takes the value ,1=ijw  if an animal 

survives until the final sacrifice or dies during the study with a tumor of 
interest. The analysis of crude proportions can be easily replaced by poly-3 
adjusted proportions for both concurrent bioassay and the historical control 

data by using adjusted proportions, ∗∗ = iii nYp  and adjusted sample           

sizes (animals at risk) ∑ =
∗ = in

j iji wn 1 .  A Williams-type procedure for the 

comparisons against the concurrent control is discussed in [41]. Analogously, 
this approach can be extended to a Williams-type procedure for the 
comparison against a standard, i.e., against the mean of the historical poly-3-
adjusted proportions. This approach is much simpler than a recent proposal 
which requires resampling [6]. 

( )∑∑
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with 

,∗∗ = iii nYp  

,∗∗∗ = rrr mZq  

.1

1
∑
=

∗=ξ
R

r
rq

R
 

4. Evaluation of the Examples 

In this section, the three examples previously introduced are evaluated by 
the new Williams-type procedures for comparing against standard using the 
R packages multcomp and MCPAN. The process used to analyse the data is 
discussed here while step-by-step instructions using R are given in the 
Appendix. Furthermore, for direct comparison, the p-values or confidence 
limits of the standard Williams-type approach for comparisons against the 
concurrent control are reported to demonstrate the advantage of the new 
approach. 

4.1. Evaluation of the HET-MN example 

We start by transforming the count data (both concurrent and historical) 
using a Freeman-Tukey transformation to obtain an approximately normally 
distributed variable whose variance is homogeneous. The mean of the 
transformed concurrent control is 3.07 and outside the normal range of the 
transformed historical controls [1.05, 2.50]. Therefore, the Williams-type 
procedure against the mean of the historical controls is recommended to 
avoid a false negative decision, i.e., too large p-values. 
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Table 3. P-values of Williams-type contrasts against concurrent and standard 
control 

Comparison Concurrent Standard 

3vs. DC  0.0038 < 0.0001 

22.vs 5.13 DDC +  
0.0741 0.0000 

3.vs 75.05.13 DDDC ++  
0.2680 0.0003 

3vs. 375.075.05.13 DDDDC +++ 0.3942 0.0004 

Table 3 provides the p-values for the trend contrasts as defined in 
equation (2) against both, the concurrent and the standard. A significant trend 
for the first contrast which compares the highest doses against control can         
be seen irrespective of using concurrent controls or a standard value. The         
p-value for the comparison against the historical control is, however, much 
smaller. Moreover, all contrasts are significant when comparing against         
the historical control whereas only the first contrast is significant when 
comparing against concurrent control, suggesting that a safety issue may be 
present that is undetected if only the concurrent control data are used. 

4.2. Evaluation of crude tumor rate 

We begin by estimating the proportion of tumors for both concurrent  
and historical data using the Add1 approach. The spontaneous rate of the 
concurrent control is with 0.12 inside the 2σ interval [–0.04, 0.23], so that 
the Williams-type procedure against the concurrent control is indicated. Note 
that the simple range of Add1 adjusted proportions is with [0.02 0.21] very 
similar. Both approaches using historical controls, namely the logistic model 
[8] and the Williams-type approach [19], show a significant increase in tumor 
rates (see Table 4), whereas the comparison against the concurrent control 
(which is the correct approach in this case) is not significant. 
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Table 4. Lower confidence limits for Williams-type approaches 

Comparison  Concurrent  Standard  Logistic model 

150.vs DC  –0.0721 0.0076 0.10 

2vs. 75150 DDC +  
–0.0920 0.0052 0.10 

4.3. Evaluation of poly-3 tumor rates 

First the poly-3 estimates for both concurrent and historical data are 
calculated from the raw data that contain the tumour status and the days on 
study for each individual. In this specific example, the mortality in animals 
with Harderian gland adenomas is not substantial so that the crude 
proportions and the poly-3 rates are quite similar. Notice, however, that this 
is not typically the case for other tumors and studies. 

Table 5. Crude proportions and poly-3 estimates for historical studies 

Study No. No. Harderian Gl. 
Adenoma 

No. Animals Proportion Poly3Proportion 

C61494B 2 50 0.040 0.042 

C99028 0 50 0.000 0.000 

C55312B 2 50 0.040 0.043 

C97003D 7 50 0.140 0.152 

C54795B 3 49 0.061 0.083 

C55174D 0 50 0.000 0.000 

C60048B 1 50 0.020 0.021 

C93020D 3 50 0.060 0.065 

C55323B 1 50 0.020 0.022 

C95003C 0 50 0.000 0.000 

C91014 2 49 0.041 0.044 

C55403D 1 50 0.020 0.022 

C60139A 0 50 0.000 0.000 
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Table 6. Crude proportions and poly-3 estimates in current study 

Treatment  Harderian Gl. 
Adenoma 

No. animals Proportion Poly3Proportion 

0mg/kg 4 50 0.080 0.083 

200mg/kg  5 50 0.100 0.107 

630mg/kg  6 50 0.120 0.132 

2000mg/kg  1 50 0.020 0.021 

Although the poly-3 rate of the concurrent control is at 0.083 within the 
2σ interval of the historical poly-3 rates, [–0.016, 0.092], both Williams type 
approaches are compared here for illustration. Note that the Williams-
approach used includes an “umbrella protection” as a downturn effect at the 
highest dose may occur. For all possible peak doses, namely 2000, 630 or 
200mg/kg, separate Williams contrast tests are estimated, adjusted against 
multiple contrasts and multiple peak doses [42]. 

Table 7. P-values for umbrella protected Williams-type contrasts using a 
concurrent control and historical data 

Comparison Concurrent Standard 

2000.vs DC  0.988 0.992 

2.vs 6302000 DDC +  
0.790 0.217 

3.vs 2006302000 DDDC ++ 0.711 0.059 

630.vs DC  0.405 0.088 

2.vs 200630 DDC +  
0.438 0.024 

200.vs DC  0.576 0.187 

From the results in Table 7, one can see no trend when using the 
concurrent control only. Considering the historical control data, a trend for 
doses up to 630mg/kg as a plateau shape can be found. 
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5. Summary 

The endpoints of a pathological process in toxicology, such as the 
number of micronuclei or tumor rate, are frequently evaluated as counts or 
proportions and often are zero or near-to-zero in the concurrent control 
group. For such data using an inadequate method of analysis will result in an 
increased risk of an incorrect decision. In the case when concurrent control 
data have a smaller observed value than the historical values, an increased 
risk of a false positive decision exists, while the risk of a false negative 
decision is inflated if the concurrent values are larger than the historical 
values. Several statistical approaches for a weighted analysis of concurrent 
and historical controls are available, although these are rarely used in routine 
analysis. One of the reasons is that these methods constitute a black box for 
toxicologists, while another reason is that guidelines recommend the primary 
and sole comparison against the concurrent control, provided they are within 
the range of historical controls. Furthermore, no software is publicly 
available for these specialist methods. Finally, these weighted approaches 
require, somewhat difficult to obtain, conditions on the historical controls, 
e.g., a larger number of included bioassays with a certain between-assay 
variability. The contrasting approach of using a Wilcoxon test comparing 
against all individual historical values on the other hand depends directly on 
the number of historical bioassays and can be therefore not recommended. 

A William-type trend test comparing against a standard, namely the 
mean of the historical bioassays, is proposed. Its advantages are 

   (i) using Williams-tests recommended by the US-NTP as a general 
testing strategy, 

  (ii) robustness against data conditions of the historical data, in 
particular only a few historical bioassays can also be used, 

 (iii) its application is conditional on the concurrent control data being    
out-side the normal range of the historical data, 

 (iv) applicable to counts, crude proportions and poly-3 rates, 
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  (v) independent of the number of available historical studies HCn  

 (vi) availability of public software (R), 

(vii) easy interpretability. 

Of course, these advantages come at the disadvantage that this approach 
ignores the between-assay variability in the historical data. 

When the use of the concurrent control instead of the historical controls 
is appropriate, Williams-type procedure against the zero-dose-control for 
counts, proportions and poly-3 estimates are available [22, 25, 41]. 
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Appendix A. Supplementary Material 

R code 

In this section, we provide simple R code used to analyse the examples. 
Comments are preceded by #. 

The HET-MN example 
##read in data 

histMN <- 

structure (list(MN = c(0, 0, 1, 2, 1, 2, 0, 1, 1, 0, 1, 0, 1, 0, 

1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 3, 0, 1, 0, 0, 0, 2, 0, 2, 3, 0, 

0, 0, 0, 3, 1, 0, 0, 0, 0, 3, 1, 0, 0, 1, 2, 0, 0, 0, 1, 1, 0, 

0, 1, 1, 2, 0, 0, 0, 2, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 

1, 2, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 1, 1, 0, 0, 3, 1, 2, 0, 

3, 0, 1, 1, 1, 0, 1, 1, 0, 0, 2, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 

1, 0, 0, 1), Run = structure(c(6L, 6L, 6L, 6L, 6L, 6L, 10L, 10L, 

10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 13L, 13L, 13L, 

13L, 13L, 13L, 16L, 16L, 16L, 16L, 16L, 16L, 20L, 20L, 20L, 20L, 

20L, 20L, 22L, 22L, 22L, 22L, 22L, 22L, 23L, 23L, 23L, 23L, 23L, 

23L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 

4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 7L, 7L, 7L, 7L, 7L, 7L, 

8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 11L, 11L, 11L, 

11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L, 12L, 14L, 14L, 14L, 14L, 

14L, 14L, 15L, 15L, 15L, 15L, 15L, 15L, 17L, 17L, 17L, 17L, 17L, 

17L, 18L, 18L, 18L, 18L, 18L, 18L, 19L, 19L, 19L, 19L, 19L, 19L, 

21L, 21L, 21L, 21L, 21L, 21L, 24L, 24L, 24L, 24L, 24L, 24L), .Label = c("01", 

"02", "03", "04", "05", "06", "06-AK", "06-KM", "06-SK", "07", 

"07-KM", "07-SK", "08", "08-KM", "08-SK", "09", "09-AK", "09-KM", 

"09-SK", "10", "10-KM", "11-1", "11-2", "11-SK"), class = "factor")),.Names = c("MN", 

"Run"), class = "data.frame", row.names = c(1L, 2L, 3L, 4L, 5L,  

6L, 31L, 32L, 33L, 34L, 35L, 36L, 61L, 62L, 63L, 64L, 65L, 66L, 

91L, 92L, 93L, 94L, 95L, 96L, 121L, 122L, 123L, 124L, 125L, 126L, 

151L, 152L, 153L, 154L, 155L, 156L, 181L, 182L, 183L, 184L, 185L, 

186L, 211L, 212L, 213L, 214L, 215L, 216L, 241L, 242L, 243L, 263L, 

264L, 265L, 266L, 284L, 285L, 286L, 287L, 288L, 289L, 314L, 315L, 

316L, 317L, 318L, 341L, 342L, 343L, 344L, 345L, 346L, 370L, 371L, 

372L, 373L, 374L, 375L, 406L, 407L, 408L, 409L, 410L, 411L, 442L, 

443L, 444L, 445L, 446L, 447L, 478L, 479L, 480L, 481L, 482L, 483L, 
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508L, 509L, 510L, 511L, 512L, 513L, 536L, 537L, 538L, 539L, 540L, 

541L, 572L, 573L, 574L, 575L, 576L, 577L, 608L, 609L, 610L, 611L, 

612L, 613L, 638L, 639L, 640L, 641L, 642L, 643L, 668L, 669L, 670L, 

671L, 672L, 673L, 734L, 735L, 736L, 737L, 738L, 739L, 770L, 771L, 

772L, 773L, 774L, 775L)) 

 

MNassay <- 

structure (list(dose = c(0, 0, 0, 0, 0, 0, 0.375, 0.375, 0.375, 

0.375, 0.375, 0.375, 0.75, 0.75, 0.75, 0.75, 0.75, 0.75, 1.5, 

1.5, 1.5, 1.5, 1.5, 1.5, 3, 3, 3, 3, 3, 3), MN = c(2, 2, 4, 0, 

3, 2, 0, 2, 0, 2, 2, 4, 0, 1, 7, 0, 0, 1, 1, 8, 2, 2, 0, 1, 3, 

14, 28, 19, 2, 6)), .Names = c("dose", "MN"), class = "data.frame", row. names = 698:727) 

 

dose <- gl(5, 6, labels=c("NC", "D1", "D2", "D3", "D4")) 

MN <- c(0, 0, 0, 0, 0, 0, 3, 1, 0, 1, 1, 2, 0, 1, 2, 0, 0, 0, 1, 0, 0, 2, 0, 0, 4, 0, 0,3, 3, 
0) 

MNassayZeroControl <- data.frame(dose, MN) 

 

##Historical data 

# Freeman-Tukey transformation 

histMN$ft<-sqrt(histMN$MN)+ sqrt(histMN$MN+1) 

#estimated p per historical study 

phat_hist <- tapply(histMN$ft, histMN$Run, mean) 

#obtrain standard value and its variance 

MeanHist<-mean(phat_hist) 

SDHist<-sd(phat_hist) 

#find reference range 

RefValue<-round(cbind(MeanHist-2*SDHist, MeanHist+2*SDHist), digits= 2) 

 

##concurrent control data and analysis 

#Freeman-Tukey transformation 

MNassay$ft<-sqrt(MNassay$MN)+ sqrt(MNassay$MN+1) 

#defining factor levels 

MNassay$DOSE <- as.factor(MNassay$dose) 

#load library multcomp which implements Williams-type procedures 

ibrary (multcomp) 

#Remove concurrent control from data 

myMNassay <- droplevels(subset(MNassay, dose != 0)) 

# fit a reduced linear model 

nam <- lm(ft ~ DOSE-1, data=myMNassay) 

design<-summary(MNassay$DOSE) 
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#contrast matrix (without concurrent control) 

cmatrix<-contrMat(design, type="Williams") [, -1] 

#Find the Williams-type adjusted p-values against a standard 

pValHist<-summary(glht(nam, linfct=cmatrix, rhs=MeanHist, alternative="greater"))$test$pvalues 

#Print 

print(pValHist) 

#test against concurrent control 

cmatrix_cc <-contrMat(design, type="Williams") 

nam_cc <- lm(ft ~ DOSE-1, data=MNassay) 

#Find the Williams-type adjusted p-values against concurrent control 

pValCC<-summary(glht(nam_cc, linfct=cmatrix_cc, alternative= 

"greater"))$test$pvalues 

#Print 

print(pValCC) 

The crude tumor rate example 

##read data 

HIST <- data.frame( 

tumor = c(0,0,1,2,1,8,0,0,1,4,6,3,0,0,1,2,3,4,0,1,1,2,3), 

rats = c(20,12,19,25,10,49,20,12,19,47,54,18,19,10,17,22,20,20,17,20,15,20,20) 

) 

ACT <- data.frame( 

dose = c("0","75","150"), 

tumor = c(2,6,10), 

rats = c(20,49,49) 

) 

 

#Graphical illustration of the data 

boxplot(HIST$tumor/HIST$rats, ylab="tumor rate", xlab="historical control and current study 
(points)") 

points(jitter(rep(1, 23)),HIST$tumor/HIST$rats, col="blue", pch=16) 

points(c(1,1,1), ACT$tumor/ACT$rats, pch=19,type = "p",cex=1.3, col="red") 

text(c(1,1,1)+0.3, ACT$tumor/ACT$rats, c("0","75","150"),cex=1.3) 

 

#Using concurrent data 

n <- ACT$rats # define a vector of number of experiments (n_i) 

y <- ACT$tumor # define a vector of number of successes (y_i) 

names(n)<-names(y)<-as.character(ACT$dose) # adding a names attribute 

estp <- (y+0.5)/(n+1) # Add1 estimate for concurrent control proportion 

varp <- estp*(1-estp)/(n+1) # Add1 variance estimate 

# Creating an appropriate contrast matrix for Williams-type comparisons 
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library(MCPAN) 

contrWill <- contrMat(n=n, type="Williams") 

contrWill %*% estp # Estimator 

# Obtain adjusted p-values 

round(binomRDtest(y, n, type="Williams",method="ADD1", alternative="greater", dist="MVN") 
$p.val.adj, digits=3) 

#Simultaneous confidence intervals 

Waldci(cmat=contrWill, estp=estp, varp=varp, varcor=varp, alternative="greater")$conf.int 

 

#Using historical control data 

HIST$prop <- with(HIST, (tumor+0.5)/(rats+1)) # Add1 estimate for hist control proportions 

standard <- mean(HIST$prop) # calculating the standard value 

#Reference interval 

Ref <- round(c(standard-2*sqrt(standard*(1-standard)/n[1]),standard+2*sqrt(standard*(1-
standard)/n[1])),digits=2) 

propCorrected <- estp[-1] - standard # substracting standard value from dose proportions 

contrWill[,-1] %*% propCorrected # Estimator 

# adjusted p-values 

round(Waldtest(cmat=contrWill[,-1], estp=propCorrected, varp=varp[-1], alternative= "greater") 
$p.val.adj, digits=3) 

#Simultaneous confidence intervals 

Waldci(cmat=contrWill[,-1], estp=propCorrected, varp=varp[-1], varcor=varp[-1], alternative 
="greater")$conf.int 

The poly-3 tumor tumor rate example 

#Data set of historical control data 

HardGland_HistControl <- 

data.frame( 

NTPStudy = c(rep("C61494B", 50),rep("C99028", 50),rep("C55312B", 50),rep("C97003D", 
50),rep("C54795B", 49),rep("C55174D", 50),rep("C60048B", 50), 
rep("C93020D",50), rep("C55323B", 50), rep("C95003C",50), rep("C91014", 
50),rep("C55403D", 49),rep("C60139A", 50)), 

Days = c(732, 732, 732, 732, 732, 732, 732, 732, 655, 732, 717, 732, 732, 733, 733, 613, 
733, 733, 603, 733, 733, 631 733, 733, 733, 733, 733, 733, 733, 733, 733, 637, 
733, 733, 733, 733, 719, 733, 733, 733, 733, 733, 733, 733, 733, 733, 733, 577, 
733, 733, 733, 730, 730, 730, 730, 729, 729, 539, 730, 729, 633, 728, 729, 729, 
558, 694, 730, 729, 729, 729, 729, 578, 729, 397, 730, 730, 730, 730, 544, 730, 
728, 729, 728, 728, 729, 499, 729, 729, 730, 730, 728, 707, 730, 730, 461, 533, 
730, 730, 495, 533, 728, 728, 490, 729, 729, 727, 612, 664, 729, 584, 729, 727, 
728, 729, 729, 729, 728, 728, 727, 729, 618, 729, 727, 729, 729, 729, 727, 728, 
729, 728, 645, 673, 729, 729, 728, 700, 729, 729, 728, 729, 729, 729, 729, 729, 
729, 728, 729, 728, 729, 729, 420, 731, 730, 710, 731, 732, 731, 732, 730, 701, 
731, 610, 731, 731, 732, 617, 674, 730, 665, 730, 732, 730, 730, 730, 730, 730, 
728, 574, 693, 731, 643, 731, 731, 616, 732, 732, 732, 731, 730, 732, 529, 732, 
731, 732, 546, 679, 732, 731, 662, 609, 731, 735, 735, 735, 686, 735, 735, 707, 
707, 735, 735, 126, 735, 413, 231, 735, 546, 735, 735, 518, 735, 735, 735, 630, 
735, 462, 735, 735, 735, 735, 735, 532, 735, 735, 735, 735, 252, 490, 735, 329, 
266, 441, 686, 735, 735, 70, 735, 224, 686, 735, 729, 730, 731, 596, 730, 731, 
729, 674, 411, 593, 730, 473, 731, 729, 730, 729, 730, 730, 730, 729, 716, 729, 
731, 730, 731, 731, 729, 729, 730, 730, 729, 730, 729, 678, 730, 729, 731, 730, 
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729, 731, 730, 649, 729, 731, 730, 729, 485, 729, 611, 731, 451, 730, 635, 730, 
730, 730, 730, 730, 730, 730, 731, 731, 731, 731, 731, 732, 732, 732, 732, 620, 
737, 737, 737, 737, 737, 738, 738, 738, 738, 738, 732, 431, 732, 732, 732, 737, 
737, 716, 690, 737, 730, 558, 730, 730, 730, 731, 731, 731, 731, 731, 731, 730, 
730, 729, 731, 729, 730, 729, 729, 731, 731, 729, 731, 732, 731, 729, 732, 725, 
731, 732, 731, 702, 682, 730, 706, 731, 592, 730, 515, 730, 672, 731, 731, 732, 
732, 640, 721, 729, 730, 730, 730, 730, 730, 731, 731, 517, 732, 730, 730, 598, 
736, 735, 736, 735, 736, 735, 353, 736, 736, 736, 670, 736, 735, 736, 584, 736, 
735, 622, 735, 736, 736, 735, 736, 736, 736, 736, 736, 541, 735, 736, 735, 562, 
735, 735, 736, 735, 636, 735, 736, 736, 736, 735, 736, 646, 616, 735, 735, 735, 
735, 344, 521, 709, 729, 619, 730, 521, 731, 729, 729, 730, 730, 729, 730, 631, 
668, 729, 698, 503, 730, 731, 730, 729, 730, 691, 731, 730, 730, 730, 714, 729, 
730, 730, 730, 721, 585, 622, 729, 729, 402, 730, 730, 730, 730, 598, 712, 730, 
731, 729, 729, 730, 729, 730, 729, 730, 691, 667, 729, 730, 729, 729, 730, 729, 
729, 729, 730, 730, 729, 730, 729, 729, 456, 730, 729, 730, 729, 452, 730, 730, 
729, 730, 729, 730, 730, 730, 729, 730, 730, 485, 730, 729, 729, 695, 730, 561, 
729, 729, 699, 729, 730, 734, 691, 735, 651, 647, 735, 706, 734, 690, 575, 687, 
735, 680, 733, 734, 646, 735, 735, 735, 733, 697, 733, 734, 735, 705, 735, 564, 
733, 734, 733, 734, 734, 733, 733, 733, 686, 702, 735, 733, 575, 494, 691, 733, 
735, 734, 735, 735, 735, 735, 674, 730, 216, 588, 730, 730, 730, 730, 730, 730, 
730, 625, 731, 439, 731, 625, 731, 731, 731, 731, 731, 731, 601, 731, 731, 575, 
732, 732, 732, 732, 732, 613, 732, 640, 732, 732, 732, 732, 733, 733, 733, 6, 496, 
733, 733, 733, 733, 733, 5, 733, 733), 

Lesions = c(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0)) 

#Data set of concurrent study 

HardGland_concurrent <- 

data.frame(Treatment.Group = factor(rep(c("0 MG/KG","200 MG/KG","630 MG/KG","2000 MG/KG"), 
each=50)), 

Days = c(731, 730, 679, 732, 617, 732, 730, 733, 733, 733, 733, 732, 732, 730, 730, 732, 
731, 731, 368, 733, 730, 732, 733, 733, 733, 730, 733, 730, 732, 732, 731, 731, 
732, 731, 732, 731, 732, 730, 732, 732, 730, 730, 732, 713, 731, 730, 730, 731, 
733, 732, 733, 733, 732, 733, 732, 732, 733, 516, 730, 668, 730, 667, 622, 731, 
731, 730, 732, 732, 732, 732, 732, 732, 732, 730, 732, 538, 732, 730, 731, 732, 
733, 730, 730, 731, 732, 731, 731, 683, 730, 733, 730, 666, 731, 731, 684, 717, 
689, 730, 733, 732, 730, 541, 733, 732, 733, 731, 671, 608, 733, 732, 494, 730, 
733, 730, 730, 733, 731, 731, 732, 733, 732, 732, 731, 695, 374, 731, 732, 732, 
730, 731, 653, 730, 732, 733, 508, 732, 698, 733, 731, 733, 732, 730, 678, 646, 
731, 730, 731, 733, 733, 732, 656, 733, 730, 730, 733, 732, 731, 730, 732, 730, 
730, 730, 730, 731, 731, 731, 713, 733, 731, 671, 730, 573, 732, 731, 732, 676, 
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731, 731, 730, 607, 580, 730, 733, 725, 732, 732, 732, 732, 730, 730, 730, 732, 
731, 732, 730, 731, 733, 733, 679, 731), 

Lesions = c(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)) 

#Summary table for historical control data 

HistControl <- aggregate(Lesions ~ NTPStudy,data=HardGland_HistControl, FUN=sum) 

HistControl$Number <- aggregate(Lesions ~ NTPStudy,data= HardGland_HistControl, FUN=length)[,2] 

HistControl$Proportion <- with(HistControl, Lesions/Number) 

# Calculating Poly3 adjusted tumour rates for histircal control data using a for loop 

library(MCPAN) 

HistControl$Poly3Prop <- c() 

for(i in 1: length(levels(HardGland_HistControl$NTPStudy))){ 

Data <- subset(HardGland_HistControl, NTPStudy==levels(HardGland_HistControl$NTPStudy)[i]) 

HistControl$Poly3Prop[i] <- poly3est(time=Data$Days, status= Data$Lesions, tmax= 
max(Data$Days))$estp 

} 

 

#Summary table for consurrent study 

#order the dose levels 

HardGland_concurrent$Treatment.Group <- factor(HardGland_concurrent$Treatment.Group,  

levels=c("0 MG/KG","200 MG/KG","630 MG/KG","2000 
MG/KG")) 

Current <- aggregate(Lesions ~ Treatment.Group,data=HardGland_concurrent, FUN=sum) 

Current$Number <- aggregate(Lesions ~ Treatment.Group,data=HardGland_concurrent, 
FUN=length)[,2] 

Current$Proportion <- with(Current, Lesions/Number) 

# Calculating Poly3 adjusted tumour rates for concurrent study using a for loop 

Current$Poly3Prop <- c() 

for(i in 1:length(levels(HardGland_concurrent$Treatment.Group))){ 

Data <- subset(HardGland_concurrent, 
Treatment.Group==levels(HardGland_concurrent$Treatment.Group)[i]) 

Current$Poly3Prop[i] <- poly3est(time=Data$Days, status=Data$Lesions, 
tmax=max(Data$Days))$estp 

} 

# Calculating the variance of Poly3 adjusted proportions 

Current$VarPoly3 <- with(Current, Poly3Prop*(1-Poly3Prop)/(Number)) 

 

## Umbrella protected Williams type analysis using concurrent control 

library(multcomp) 

# Umbrella protected contrast matrix for Williams-type comparisons 
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contrUWill <- contrMat(n=Current$Number, type="UmbrellaWilliams") 

Waldtest(cmat=contrUWill, estp=Current$Poly3Prop, varp=Current$VarPoly3, alternative="greater") 

 

## Analysis using the mean of hist. control proportions as reference value 

# mean of Poly3 adjusted proportions of historical control data 

standard <- mean(HistControl$Poly3Prop) 

# Reference interval 

Ref <- round(c(standard-2*sqrt(standard*(1-standard)/Current$Number[1]), 

standard+2*sqrt(standard*(1-standard)/Current$Number[1])),digits=3) 

# shifted Poly3 adjusted proportions 

Current$Poly3PropShift <- with(Current, Poly3Prop-standard) 

# calculating p-values 

Waldtest(cmat=contrUWill[,-1], estp=Current$Poly3PropShift[-1], varp= 
Current$VarPoly3[-1], alternative="greater") 

Simulation study 

To evaluate the performance of the Williams-type procedure for the 
comparison against a standard value for crude proportions (further denoted as 
Standard), we compared it with a Williams-type procedure for crude pro- 
portions using the concurrent control only (modified for small sample sizes 
by adding pseudo-observations as described in 25, further denoted as Add1) 
and a method that incorporates the historical control information by fitting a 
beta-binomial model [19, further denoted as BetaBin] using Monte Carlo 
simulations. The generated datasets were designed according to the standard 
experimental design from the US National Toxicology Program. For the 
concurrent study we used a balanced design with one control group and three 
dose groups, where the sample size per group was set to 50. Further-more, 
we assumed a total number of 20 available historical control studies. The 
binomial proportions for the historical control groups were simulated from a 
beta distribution with parameters a and b. The parameters of the beta 
distribution were set to get an expected proportion of 0.1. Therefore, we 
selected three scenarios: Scenario A with beta ( )180,20 == ba  

representing a small between study variability (0.0004); Scenario B with beta 
( )45,5 == ba  reecting a moderate between study variance (0.0018); 
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Scenario C with beta ( )18,2 == ba  that corresponds to a high between 

study variability (0.0043). Figure A.4 represents density curves for the      
three settings. The binomial proportions for the current study were set to 
( ),05.0,05.0,, 3210 +χ=π+χ=πχ=πχ=π  representing an increasing 

dose-response pattern. To change the binomial proportion of the concurrent 
control group in comparison with the expected value of the historical control 
groups, we varied χ between 0 and 0.3 in increments of 0.01. 

 

Figure A.4. Density curves of beta distributions used for Monte Carlo 
simulations. 

Note that 1.0<χ  reflects the situation where the proportion of the 

concurrent study is smaller than the expected proportion of the historical 
control groups and 1.0>χ  corresponds to the case where it is greater. For 

each simulated data set and each method, we calculated Williams-type 
simultaneous confidence intervals. For each method, we computed the 
empirical power as the probability that the lower bound for any of the 
calculated confidence intervals is greater than zero. For each parameter 
setting, we simulated 10,000 data sets. 
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Figure A.5. Empirical power to detect an increasing dose effect. Values of χ 
below 0.1 represent a decreasing difference between the concurrent control 
and the expected value of the historical control data, while values above 0.1 
represent an increasing difference. 

Figure A.5 presents the empirical power for the three scenarios and 
increasing differences between the binomial proportion of the concurrent 
study and the expected value of the historical control groups. The power to 
detect an increasing difference between the control group and the remaining 
dose groups of both methods that incorporate the historical control 
information, Standard and BetaBin, monotonously increase with increasing 
χ. As opposed to this, the power of the Add1 method slightly decreases with 
increasing χ, because the variance estimator of the binomial proportions is 
also affected by the choice of χ. 
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In the chosen simulation setting the value 1.0=χ  presents a cut point: if 

,1.0<χ  the proportion of the concurrent control group is lower than the 

expected value of the historical control groups, and if ,1.0>χ  the 

concurrent control group is greater than the expected value of the historical 
control groups. Among the methods that incorporate historical control 
information, the BetaBin method shows a better performance by means of a 
greater power than the Standard method for .1.0<χ  If the expected value of 

the historical control groups is greater than the concurrent control group, the 
Standard method shows a greater power than the BetaBin procedure. 

The power of the BetaBin approach approximates the Add1 method with 
increasing between study variability. In contrast, the Standard approach 
performs equal in all scenarios, because this method does not take the 
between study variability into account. In summary, the Standard method is 
advantageous in situations where the expected value of the historical control 
data is smaller in comparison to the concurrent control group. 


