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Abstract 

The flow of an unsteady incompressible fluid with uniform 
distribution of dust particles through a narrowing system has been 
investigated analytically. In the proposed problem, Laplace transform 
techniques reduce the governing equations to zeroth order Bessel 
differential equation. The solutions thus obtained are in the form of 
Bessel functions and yield the velocity distributions of the fluid and 
dust particles. Expressions for shear stress are obtained for various 
cases and the solutions are plotted graphically to appreciate the effect 
of different parameters like Reynolds number, number density and the 
permeability of the porous medium on the velocity of dust and fluid 
phase. 
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1. Introduction 

In the recent years, considerable research efforts have been expended to 
enhance the scientific understanding of the physical process governing the 
mechanics of fluids and developing a mathematical model describing the 
fluid flow. In particular, fluids embedded with particles are encountered 
frequently in nature demanding a devoted study towards the understanding of 
flow mechanics of dusty fluids. Moreover, the analysis of fluid flow through 
a porous medium has drawn the attention of geophysical scientists specially 
in the context of the recovery of crude oil from the pores of reservoir rocks 
[1]. 

Prasad and Ramacharyulu [2], Mitra and Bhattacharyya [3], Michael and 
Miller [4] and Debnath and Ghosh [5] have investigated the flow of dusty 
fluids due to its growing applications in the fields of fluidization, 
combustion, use of dust in gas cooling systems, centrifugal separation of 
matter from fluid, petroleum industry, polymer technology and electrostatic 
precipitation. Saffman [6] has discussed the stability of laminar flow of dusty 
fluid and has formulated the governing equations for the flow of dusty fluid. 
Michael and Miller [4] have investigated the motion of dusty gas with 
uniform distribution of the dust particles which occupied the semi-infinite 
space above a rigid plane boundary. Samba Siva Rao [7] has obtained the 
solution for unsteady flow of a dusty viscous liquid through circular cylinder. 
Amos [8] has studied the magnetic effect on pulsatile flow in a constricted 
axis-symmetric tube. Rukmangadachari and Arunachalam [9] have obtained 
the results on dusty viscous flow through a cylinder of triangular cross-
section. Further, the kinematical properties of fluid flows were studied by 
Kanwal [10], Truesdell [11], Indrasena [12], Purushotham and Indrasena 
[13], Bagewadi et al. [14-16] by applying differential geometry techniques 
and recently they have studied two-dimensional dusty fluid flow in Frenet 
frame field system. 

Parallel to the study of dusty fluid flow in diverse situations, the analysis 
of fluid flow in narrowing systems has gained significant momentum with 
regard to its applications in many engineering problems like narrowing of 
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pipeline network in drinking water distribution systems and sewage systems. 
Moreover, analysis of fluid flow in narrowing systems helps one to 
understand the mechanism of migration of suspended heavy organic particles 
towards the walls in oil-producing wells and pipelines. The fluid flow 
dynamics through narrowing channels are specially being explored because 
of its relationship with stenosis in blood flow and the optimal design of 
artificial organs. In this context, several bio-mathematicians like Verma et al. 
[17, 18], Ponalagusamy [19], Chaturani et al. [20-22] have integrated the 
concept of the narrowing system in the study of blood flow through a 
stenosised artery by using different mathematical techniques. More recently, 
an analytical solution of fluid flow through narrowing system was derived by 
Patel et al. [23]. 

This paper addresses the problem of fluid flow suspended with dust 
particles through a narrowing channel in a porous medium. Analytical 
solutions are obtained for both fluid and dust velocities by assuming the 
number density of the dust particles to be a constant throughout the flow. The 
equations of motion are solved by considering the fluid and dust particles to 
be at rest initially. A few particular cases, i.e., flow under an impulsive 
pressure gradient, flow under transition motion and flow in finite time, are 
considered. 

2. Equations of Motion 

The Navier-Stokes equations for an incompressible dusty fluid flow 
through a porous medium are [6]: 

For fluid phase 

,0=⋅∇ u  (2.1) 

 ( ) .1 2
η
μ−−

ρ
+∇ν+∇

ρ
−=

∂
∂ uuvKNupt
u  (2.2) 

For dust phase 

,0=⋅∇ v  (2.3) 
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We have following nomenclature: 

u - velocity of the fluid phase, v - velocity of dust phase, p - the fluid 
pressure, m - mass of the particle, 16 rK πμ=  - Stokes resistance coefficient 

with μ  being the viscosity of the fluid and 1r  is the radius of the spherical 

particle, N - number density of the particle, t - the time, ρ - mass density of 

the particle, 
ρ
μ=ν  - the kinematic viscosity of the fluid, η - permeability of 

the porous medium. 

3. Formulation and Solution of the Problem 

Consider an unsteady laminar flow of an incompressible viscous fluid 
with uniform distribution of dust particles through porous medium in a long 
circular cylinder in which the fluid is at rest initially. The flow is due to the 
influence of time dependent pressure gradiance imposed along the axis of the 
cylinder. It is assumed that the dust particles are spherical in shape and 
uniform in size and number density of the dust particles is taken to be 
constant throughout the flow. Let z be the direction of the axis of cylinder 
along which the flow takes place and let r be the radial direction outward 
from the z axis. Assumption is made that the channel is narrow due to the 
depositions of thickness δ on the wall of the cylinder. The elevation of 
thickness due to deposition is given by [23]: 

 .cos12 0
0 ⎟

⎠
⎞⎜

⎝
⎛ π+δ−= z

zRR  (3.1) 

Here, 0R  is the distance from the axis of the cylindrical boundary and z is the 

distance from 0=z  to the point of calculation P. 
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Figure a. Geometry of the flow. 

The axis of the channel is along z axis and the velocity components of 
both fluid and dust particles are, respectively, given by: 

( ),,;0;0 truuu zr === θ  

( ).,;0;0 trvvv zr === θ  (3.2) 

By virtue of the above equations, we can rewrite (2.2) and (2.4) as 
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The initial and the boundary conditions imposed on the system are 

for ,0,0;0 ==< vut  

for 0,0;0 ==> vut  at ,Rr =  

finitevfiniteu ==  at .0=r  (3.5) 

By introducing the following nondimensional quantities: 
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equations (3.3) and (3.4) can be expressed as 
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where 
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Accordingly, equations (3.1) and (3.5) assume a nondimensional form 

,cos121
0
⎟
⎠
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⎝
⎛ π+δ−= z

zR  

for 0,0;0 ==> vut  at ,Rr =  

finitevfiniteu ==  at .0=r  

Let ( )t℘  be the time dependent pressure gradient to be imposed on the 

system. So we can write 

( ).tz
p ℘=
∂
∂−  

Applying Laplace transform to equations (3.6) and (3.7), one arrives at 
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( ),vuvs −λ=  (3.9) 

where u  and v  are the Laplace transforms defined by 

∫
∞ −=
0

udteu st    and   ∫
∞ −=
0

,vdtev st  

and ( )sP  is the Laplace transform of ( ).t℘  
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After Laplace transform, the boundary conditions become 

0,0 == vu  at ,Rr =  

 ,, FinitevFiniteu ==  at .0=r  (3.10) 

Equation (3.8) can be rearranged as 

 ( ),1 2
2

2
sRePuQdr

ud
rdr

ud −=−+  (3.11) 

where .1
2 ⎟

⎠
⎞⎜

⎝
⎛

λ+
βλ−λ+β+= ssReQ  

The above equation resembles a modified second order Bessel equation 
of zeroth order whose solutions are 

 ( ) ( ) ( ) .200
Q

sRePQrBKQrAIu ++=  (3.12) 

( )QrI0  and ( )QrK0  are the Bessel functions of the first kind and second 

kind, respectively. The property ( ) ∞→QrK0  as 0→r  demands that 

0=B  thereby reducing equation (3.12) to 

 ( ) ( ) .20
Q

sRePQrAIu +=  (3.13) 

Subject to the conditions (3.10), one obtains 

 ( ) ( )
( ) .1
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2 ⎥⎦
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Q
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Further, it is evident that from (3.9) that 

 ( )
( )

( )
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Let us now consider the following cases. 
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4. Particular Cases 

Case 1. Impulsive motion. In the case of impulsive motion, the pressure 
gradient is given by 

( ) ( ),0 tpt δ=℘  

where ( )tδ  is Dirac delta function and 0p  is a constant. 

Equations (3.14) and (3.15) become 
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Laplace inverse of u  and v  gives 
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where ( )...,3,2,1=m  are the positive roots of ( ) .00 =kI  

Shear stress (Skin friction) 

The shear stress at the boundary at Rr =  for impulsive motion is given 
by 
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Case 2. Transition motion. For transition motion, we have 

( ) ( ) ,0
wtetHpt −=℘  

where ( )tH  is Heaviside step function. The solutions in this case are 
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Shear stress (Skin friction) 

The shear stress at ,Rr =  
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Case 3. Motion for a finite time. In this case, we consider 

( ) ( ) ( )[ ].0 TtHtHpt −−=℘  

The solutions are given by 
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Shear stress (Skin friction) 

At ,Rr =  the shear stress becomes 
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5. Conclusion 

Considering that the flow takes place in a porous medium, an analytical 
solution for the velocity distributions for both fluid and dust in a narrowing 
channel has been derived. Based on the solutions obtained in the form of 
modified Bessel functions, various plots are depicted below for different 
values of Reynolds number Re and number density N and the permeability η 
of the porous medium. It is evident from the graphs that the velocity 
distributions are paraboloid in nature and the flow of fluid is parallel to      
that of dust. Observations from the graph reveal that the velocity profiles 
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decrease with the increase in Reynolds number and number density of the 
dust particles. However, with the increase in the permeability of the porous 
medium, the velocity tends to increase. Further, it is observed that if the dust 
is very fine, i.e., mass of the dust particles is negligibly small, then the 

relaxation time K
m=τ  of the dust particles decreases and as ,0→τ  fluid 

and dust velocities will be same. Also, the fluid particles reach the steady 
state earlier than the dust particles. This difference is due to the fact that the 
time dependent pressure gradient is directly exerted on the fluid. 

The notations used during the above discussion are given by the 
following expressions: 
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Figure 1. Variation of fluid and dust phase velocity with r (for different Re, 
Case 1). 

    
Figure 2. Variation of fluid and dust phase velocity with r (for different Re, 
Case 2). 
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Figure 3. Variation of fluid and dust phase velocity with r (for different Re, 
Case 3). 

    

Figure 4. Variation of fluid and dust phase velocity with r (for different N, 
Case 1). 

    

Figure 5. Variation of fluid and dust phase velocity with r (for different N, 
Case 2). 
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Figure 6. Variation of fluid and dust phase velocity with r (for different N, 
Case 3). 

    

Figure 7. Variation of fluid and dust phase velocity with r (for different η, 
Case 1). 

    

Figure 8. Variation of fluid and dust phase velocity with r (for different η, 
Case 2). 
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Figure 9. Variation of fluid and dust phase velocity with r (for different η, 
Case 3). 

References 

 [1] O. M. Phillips, Flow and Reaction in Permeable Rocks, Cambridge University 
Press, Cambridge, 1991. 

 [2] V. R. Prasad and N. C. P. Ramacharyulu, Unsteady flow of a dusty incompressible 
fluid between two parallel plates under an impulsive pressure gradient, Def. Sci. J. 
30 (1979), 125-130. 

 [3] P. Mitra and P. Bhattacharyya, Unsteady hydromagnetic laminar flow of a 
conducting dusty fluid between two parallel plates started impulsively from rest, 
Acta Mechanica 39 (1981), 171-182. 

 [4] D. H. Michael and D. A. Miller, Plane parallel flow of a dusty gas, Mathematika 
13 (1966), 97-109. 

 [5] Lokenath Debnath and A. K. Ghosh, On unsteady hydromagnetic flows of a dusty 
fluid between two oscillating plates, Appl. Sci. Res. 45 (1988), 353-365. 

 [6] P. G. Saffman, On the stability of laminar flow of a dusty gas, J. Fluid Mech.          
13 (1962), 120-128. 

 [7] P. Samba Siva Rao, Unsteady flow of a dusty viscous liquid through circular 
cylinder, Def. Sci. J. 19 (1969), 135-138. 

 [8] E. Amos, Magnetic effect on pulsatile flow in a constricted axis symmetric tube, 
Indian J. Pure Appl. Math. 34 (2003), 1315-1326. 

 [9] E. Rukmangadachari and P. V. Arunachalam, Dusty viscous flow through a 
cylinder of triangular cross-section, Proc. Indian Acad. Sci. 88A (1979), 169-179. 

 [10] R. P. Kanwal, Variation of flow quantities along streamlines, principal normals 
and bi-normals in three-dimensional gas flow, J. Math. 6 (1957), 621-628. 



Analytical Solutions for a Dusty Fluid Flow … 221 

 [11] C. Truesdell, Intrinsic equations of spatial gas flows, Z. Angew. Math. Mech.        
40 (1960), 9-14. 

 [12] Indrasena, Steady rotating hydrodynamic-flows, Tensor (N.S.) 32 (1978), 350-354. 

 [13] G. Purushotham and Indrasena, On intrinsic properties of steady gas flows, Appl. 
Sci. Res. A 15 (1965), 196-202. 

 [14] C. S. Bagewadi and B. J. Gireesha, A study of two dimensional steady dusty fluid 
flow under varying temperature, Int. J. Appl. Mech. Eng. 9 (2004), 647-653. 

 [15] C. S. Bagewadi and B. J. Gireesha, A study of two dimensional unsteady dusty 
fluid flow under varying pressure gradient, Tensor (N.S.) 64 (2003), 232-240. 

 [16] K. R. Madhura, B. J. Gireesha and C. S. Bagewadi, Exact solutions of unsteady 
dusty fluid flow through porous media in an open rectangular channel, Adv. 
Theor. Appl. Mech. 2 (2009), 1-7. 

 [17] V. K. Verma, M. P. Singh and V. K. Katiyar, Mathematical modeling of blood 
flow through stenosed tube, Journal of Mechanics in Medicine and Biology       
8(1) (2008), 27-32. 

 [18] V. K. Verma, M. P. Singh and V. K. Katiyar, Analytical study of blood flow 
through an artery with mild stenosis, Acta Ciencia Indica 2 (2004), 281. 

 [19] R. Ponalagusamy, Blood flow through an artery with mild stenosis: a two layered 
model, different shapes of stenosis and slip velocity at the wall, J. Appl. Sci.              
7 (2007), 1071. 

 [20] P. Chaturani and P. N. Kaloni, Two-layered Poiseuille flow model for blood flow 
through arteries of small diameter and arterioles, Biorehology 13 (1976), 243-250. 

 [21] P. Chaturani and V. S. Upadhya, A two-layered model for blood flow through 
small diameter tubes, Biorehology 16 (1979), 109-118. 

 [22] P. Chaturani and D. Biswas, A theoretical study of blood flow through stenoded 
arteries with velocity slip at the wall, Proc. First International Symposium on 
Physiological Fluid Dynamics, IIT Madras, India, 1983, pp. 23-26. 

 [23] A. D. Patel, I. A. Salehbhai, J. Banerjee, V. K. Katiyar and A. K. Shukla, An 
analytical solution of fluid flow through narrowing systems, Ital. J. Pure Appl. 
Math. 29 (2012), 63-70. 

 [24] D. F. Young, Effect of a time-dependent stenosis on flow through a tube, Journal 
of Engineering and Industrial Transactions, ASME 90 (1968), 248-254. 


