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Abstract

The concept of mean is extended to non-normal fuzzy numbers and its
properties (internality, zero-sum deviation, crispness, invariance, and
associativity) are illustrated thoroughly. Analogously, the notion of
variance is extended to non-normal fuzzy numbers and its properties
(positivity, zero-variance, invariance, change of pole) are reported
together with the relationships between two different definitions of
variance and different poles. In particular, we demonstrate inequalities
between variances of the same fuzzy set with respect to different
poles. Finally, the variance is defined for the union of fuzzy sets.

1. Introduction

The concept of fuzzy random variable was introduced by Kwakernaak
[8], but its natural characterization, given by the notion of expected value,
was introduced only later by Puri and Ralescu [10] and they proved to be a
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fuzzy number. The expectation of a fuzzy number was introduced by Dubois
and Prade [3] and it is an interval-valued function. They considered it as a
random set and showed that the interval-valued expectation is additive in the
sense of an addition of fuzzy numbers. The expected value corresponds to the
first moment with respect to the origin and is important in many practical
applications. However, some of the most useful information about a real-
valued or a fuzzy random variable are provided also by moments greater than
the first, especially by that of the second order, which is related to the
variance. The first moment is well represented also by a fuzzy number, while
the second, more than the first, is better described by crispness rather than
fuzziness [9]. In fact, analogously to the case of a real-valued random
variable, variance should measure the spread or dispersion of the fuzzy
random variable around its expected value and, although it might be interval-
valued, generally a crisp value is preferred. The variance or covariance of a
fuzzy number and their properties were probably introduced for this reason,
some years later, although they usually characterize a random variable in
Statistics and are relevant for linear statistical inference with fuzzy random
data [2, 5, 7].

The crisp possibilistic mean, variance, and covariance of a fuzzy number
were introduced by Carlsson and Fullér [1], considering a continuous
possibility distribution, consistently with the extension principle and the
current definition of expectation and variance in probability theory.

Few results deal with fuzzy sets that do not verify some properties such
as normality and convexity. However, very often there is a necessity to
handle a fuzzy set that is obtained by the union of two or more fuzzy
numbers. In this case, the resulting fuzzy set is generally non-normal and
non-convex, and is termed fuzzy quantity [4]. The variance of a fuzzy
quantity, together with its properties, is interesting both theoretically and
practically. In the latter case, it may involve the defuzzification step, i.e., the
transformation of a fuzzy output into a crisp value, which condenses all the
vagueness expressed by a fuzzy quantity. Therefore, it may be useful in
many applications of fuzzy systems in control theory, in economics, and in
finance.
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The present paper analyzes this subject pursuing two aims. The first aim
is to illustrate the possibilistic mean, variance, and covariance for a non-
normal fuzzy number, summarizing almost all their properties. The second
aim is to investigate the possibilistic mean and variance of the union of two
fuzzy sets. Therefore, the structure of the paper is as follows: Section 2
reports the usual definitions and basic notations of fuzzy sets and fuzzy
numbers. Section 3 describes the possibilistic mean, variance, and covariance
of a non-normal fuzzy number, and lists their properties. Section 4 presents
the extension of the possibilistic variance to the union of two fuzzy sets.

Section 5 concludes with some comments.
2. Basic Definitions and Notations

Let X be a universal set; a fuzzy subset 4 of X is defined by a function
wy(): X = [0, 1], called the membership function. Throughout this paper,
X is assumed to be the set of real numbers, R, and F, the space of fuzzy

sets.

Definition 1. The fuzzy set 4 € F is a fuzzy number iff:

(1) Yy € [0, 1], the set 4¥ = {x € R : pu4(x) > y}, which is called y-cut
or y-level of 4, is a convex set,

(2) p4() is an upper-semicontinuous function,

(3) supp(4) = {x € R : py(x) > 0} is a bounded set in R,

(4) height 4 = max ..y pny(x)=h>0.

By virtue of conditions (1) and (2), each y-level is a compact and convex

subset of R, hence it is a closed interval in R, 4" =[a;(y), ag(y)]. If

h =1, then the fuzzy number is normal.

If condition (1) fails, then we say that 4 is a fuzzy quantity. Finally, A4 is a

crisp number with value m if its membership function is given by p 4(x) =1

if x =m and p4(x) = 0 otherwise.
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Definition 2. A fuzzy number A4 is a so-called left-right fuzzy number,
A= (a), ay, o, B);p @ < ay; a,B >0, if the corresponding membership

function, for all x € R, satisfies

L(al_xj, a —o<x=<a,

o
h, a <x<ay,

malx) =47, : 2 (1)
R( sz, a <x<ap +B,
0, elsewhere,

where L and R, called the left and the right shape functions, are continuous
and decreasing mappings from [0, 1] to [0, 1] such that L(0) = R(0) =4 >0
and L(1) = R(1) = 0.

For the sake of brevity, this fuzzy number will be denoted by A =
(@, ap, o, B) and the closure of the support of 4 will be [a; — a, ay + B].

For a triangular fuzzy number 7T = (a, a, B) with height %, the

membership functions are

L(a&xj - h(l - “;xj, )
(o555

In the following, we will represent a general L-R fuzzy number 4 by

means of its y-levels, i.e., 4 = AY = [a; (), ag(y)], Vy [0, 4].
3. Mean, Variance, and Covariance for Non-normal Fuzzy Numbers

The concept of mean or expected value corresponds to the notion of
the center of gravity, which is an imaginary point in a body of matter or
in a distribution of any type, where for convenience in calculation or
representative synthesis, the total weight of the body may be considered to

be concentrated. Therefore, it is also termed center of mass. In the case of
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uniform density, the concept of mean or expected value corresponds to the
notion of a barycenter, which is the point at the center of any shape and it is
also termed a centroid, center of area or center of volume. Such notions
involve an idea of crispness. However, within the fuzzy set theory, in the
framework devised by Puri and Ralescu [10], the expected value is a fuzzy
number and in the context of Dubois and Prade [3], it is an interval-valued

function.
Let A be a normal fuzzy number of the LR type with strictly monotonic
shape functions. Then the y-level sets of 4 are [A] = [a; — aL ' (y), ay +

BR™!(y)], Vy €0, 1], and the lower and upper mean probability values (see
Dubois and Prade [3, pp. 292-293]) are

Ei(A) =a - ocj a; L(x)dx and E*(A)=a, + BI::O R(x)dx.

Therefore, the interval-valued expectation is E(A4) = [E.(4), E*(A4)].

The possibilistic mean, introduced by Carlsson and Fullér [1], equally
generates an interval-valued function, with the lower and upper bounds
indicated below:

J ; vla - oL (v)]dy .
M.(4) = 1 = 2f Al - ol ()]

0

_[ ; vlay — BR™(v)]dy

1
d
K

and the interval-valued possibilistic mean is M (4) = [M,(4), M™(4)]. The

M (4) =

=2 J ; vlay — BR™(v)]dy

interval-valued possibilistic mean is a proper subset of the corresponding

interval-valued probabilistic mean: M (A) < E(A), as Carlsson and Fullér

[1] proved in their paper.
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The crisp possibilistic mean value [1] of 4 is given by

H(a) = Mo M) 4

and, obviously, an analogous crisp value could be given for the crisp

expectation [3].
3.1. Mean for non-normal fuzzy numbers

Let A be an L-R fuzzy number with strictly monotonic and continuous
shape functions L(x) and R(x), whose y-level sets are [A]" =[a; (), ag(v)],
Vy € [0, h]. The definition of the crisp possibilistic mean value [1, 6] is

extended now to the case where 4 is a non-normal fuzzy number and some of

its properties, which might be useful subsequently, are stated afterwards.

Definition 3. The crisp possibilistic mean value of 4 with height 4 is the
arithmetic mean of the lower possibility-weighted average of the left-hand
endpoint of the y-cut and of the upper possibility-weighted average of the
right-hand endpoint of the y-cut, with the final expression given by

— h
W) = [ s (1) + a(lay. )
In fact,

. j: yar(y)dy j: yag(y)dy

2 hd : hd
[ Jw

M(4) = 3 [M.(4) + 7°(4)] =

= h% J ; vlag (v) + ag(y)]dy.

2 -1
The factor 1/ h? originates from the weight ( _[ 0 ydy) applied to the two

types of means.
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The properties of the crisp possibilistic mean value of 4 can be

summarized as follows:

1. Internality

M(A) lies between the upper and lower bounds of the support. In
fact, from the inequalities: a;(0) < a;(y) < ar(y) < ar(0), Vy, we can
immediately infer that M (A4) € [a; (0), az(0)].

2. Zero-sum deviation

The expected value of the negative deviations from the mean equals the

expected value of the positive deviations. Let D be the deviation from M (4)

with D* = az(y) - M(A4) and D™ = a;(y) — M(A) or vice versa. Then
¥0) = 52 [ ants) = F (0 + [ lan) - W

= %h%('l.: y[aR(y) - M(A) +ar(y)- M(A)]de

- L[ anto) + aler 5 [ 2t )y

= M(A)- hizzz\?(A)'[Oh ydy = M(A) — M(4) = 0.

3. Crispness

If 4 is a crisp real number @, then a; (v) = ag(y) = @, Vy € [0, h] and

— 1 _ _
M(A =—I a+a)dy = a.
(4) 7 , Y@ +a)dy
4. Invariance

For each A € [0, 2] and © € R, let us consider the linear transformation

C =24+ 0. Hence, C" =[ha;(y)+ 0, Aag(y) + 0]. Then the possibilistic

mean (or expected) value of C is given by
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M(C)=M(A4+0)= h%-[()h y[har (y) + 0 + dag(y) + 0]dy

1 h 1 h —
= h—zkjo vlap (v) + ag(y)ldy + h—229jo ydy = AM (A) + 6.

In a similar way, we might prove that the possibilistic mean of a linear
combination of fuzzy numbers is equal to the linear combinations of the

possibilistic means of fuzzy numbers, that is,
M)A+ 0B) = AM(A) + 6M (B).
5. Associativity

This property implies that the total mean of a set 4 is equal to the
weighted mean of the means of disjoint subsets, partitioning 4. More
formally, let 4 be an L-R fuzzy number with strictly monotonic and

continuous shape functions and let 4, ..., 4; be subsets of 4 such that

o . k
Supp(4)Vsupp(4,) = B if i # j, () = T4 14, (x), and maxlp ()]
= h;. For the sake of simplicity, the partition is carried out in such a way that

each 4; is only left or right. Then there exist two elements, 4;, and 4;,, of
the partition such that max[uAl,L (x)] = max[uAl,R (x)]=h and (ip —iy) >1.

Consequently, for 1 <i <i;, a;j(y)=a(y) if hi_y <y <h; and a;(y)=0
elsewhere. For ip <i <k, a;(y)=agp(y) if hj_1 <y <h; and a;(y)=0

elsewhere. Therefore, Z;L: ,ai(v) = ag(y) and Z:;.R a;(y) = ap(y). Let

w; = (h? - hiz_l)/ (2h?) be the weight of 4;. Then the possibilistic mean of A
is given by the weighted mean of the possibilistic means of the subsets 4;:

hj
I va; (v)dy
hi

h; d
_fh'_lv Y

1

k k
M(4)= ZWiM(Ai) = ZWi
i=1 i=1
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Z 2 J‘hi (1)d
= > wi———— | ya(y)dy
= U R R

~

k .2 2
hi — hi—l 2 J.hi
=> va; (y)dy
2 2 2
i=1 2h hi - hi—l hi—l

ST st = L] [ anar s [ et
2.5 o, 1O =7 | vatdy+ | vap(r)dy

= [ o) + an(rley.

The previous list reports the main properties of the crisp possibilistic
mean of a fuzzy number that are similar to those of the arithmetic mean for a
set of numbers or to those of the expected value for a real-valued random
variable. Moreover, it should be noted that when % =1, the results can be
easily deduced from those explicitly reported in Fullér and others [1, 6].
Now, let us calculate the crisp possibilistic mean for non-normal trapezoidal
and triangular fuzzy numbers.

Example 3.1. Let 4 = (ay, a5, o, B) be a non-normal trapezoidal fuzzy
number. Then a; (y) = a; — (1 - y/h)a and ag(y) = ap + (1 —y/h)B, while

the possibilistic mean (or expected) value of 4 (without detailed algebraic
passages) is given by

W) =5 [+l = Q= /h)a + 0y + 1= 3/l

_(@+a) (B-a)
_ 122Jr .

and it could be read as equal to the midpoint of the minor basis plus a
fraction of the skewness, i.e., an asymmetric measure of the trapezium, but it

does not depend on the height, 4, of the non-normal fuzzy number.

If a, = aj, then 4 is a non-normal triangular fuzzy number and M (A4)
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= a; + (B — a)/6. Therefore, analogously to the case of a trapezoidal fuzzy
number, it could be read as equal to the abscissa of the vertex plus a fraction

of the skewness, i.e., a measure of the triangle’s asymmetry.

These results show that triangular and trapezoidal non-normal fuzzy
numbers with different heights, #, have the same interval-valued possibilistic
mean as normal ones, as could be argued intuitively from Figure 1, where

the trapezoidal fuzzy number, A(aj, ay, a, B), is reported with respect
to different heights (A, hy, k3, ...), implying different slopes for the
membership functions. However, any non-normal fuzzy number of the LR

type with strictly monotonic functions, A4(aj, ay, a;(y), ag(y)), should
provide the same outcome, if max|u 4(x)] =4, Vh e [0, 1], whereas at its
extreme values: a;(0) = a; — o and ay(h) = aj, as well ap(0) =ay; — B

and ag(h) = ay.

Figure 1. Trapezoidal fuzzy numbers with different heights, 4, setup on
Alay, as, a, B).

In general, the variance may depend on the height, 4, as shown in the

following example:
Example 3.2. Let 4 = (ay, a5, o, B) be a non-normal trapezoidal fuzzy

number with a; () = a; — a + alog(l + hy)/log(1 + h?) and ag(y) = ar +
(1—=7y/h)B. The possibilistic mean (or expected) value of 4 (again without
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detailed algebraic passages) is

— h
=L o) (1T

log(1 + h?) h
_(ata) B aW?-2) o
2 6  an’log(l+h*) 2i*

On the contrary, if a;(y) and/or ag(y) depend only on y/h, then a
simple change in the variable leads to independence of the variance on 4. For

example, let 4 = (ay, ay, a, B) be a non-normal trapezoidal fuzzy number
with a;(y)=a; —a + alog[l + (e —1)y/h] and ag(y)=a, + (1 —y/h)B,
where e is the base of the natural logarithms. It can be shown that the
possibilistic mean (or expected) value of 4 is

M(A) = (ay + ay)/2 + B/6 — ale® — 4e + 5)/[4(e — 1)*].
3.2. Variance and covariance for non-normal fuzzy numbers
Let 4 be a non-normal fuzzy number, A" = [a;(y), ag(y)] be its y-cuts,

and max g [u(x)] be equal to 4, where /< 1. Let E(y) = %(aL (y)+ag(v))

be the arithmetic mean of the y-levels. Following Carlsson and Fullér [1], the

definition of the variance of 4 can be stated as follows:

Definition 4. The crisp possibilistic variance of 4 is the lower

possibility-weighted average of the squared distance between E(y) and the

left-hand endpoint of the y-cut plus the upper possibility-weighted average of
the squared distance between E(y) and the right-hand endpoint of the y-cut,

1e.,

) = [ posla < a0 - an Py

[ posla 2 agllE) - g} @
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Therefore, the crisp possibilistic variance of 4 is the arithmetic mean of
the lower and upper possibilistic variances: V,(4) and V*(4), respectively.
The factor 1/ h? is derived from the weights, as in the definition of the

possibilistic mean. Since Pos[4 < aj ()] = Pos[4 > ar(y)] = y, elementary

calculus leads to the following formula:
1 h 2
V)= — > [ ler(r) = ar P v ™

Example 3.3. Let 4 = (q;, ay, o, B) be a trapezoidal fuzzy number with

central values a; and a,, spreads o and § and height /. Then

2
V(A):(azgal +0‘;LB) +(0‘;'2B)2'

Example 3.4. If ay = a;, then 4= (a;, o, B) is a triangular fuzzy

number with central value a;, spreads o and § and height 4. Its variance is
_(a+p)®
Vi) = 24

and it follows immediately from the preceding result. Similarly to the crisp
possibilistic mean, the crisp possibilistic variance does not depend on height,
h, if the fuzzy number is a trapezoidal or triangular fuzzy number. Therefore,
in these cases, as could be argued from Figure 1, the interval-valued
possibilistic variance does not depend on /4, because when % changes, the

spread measured by variance remains unchanged.

The variance may be defined also as the second moment about a given
value, termed pole and generally assumed to be equal to the expected value,

but any other value might be chosen.

Definition S. Let xy € R be a fixed number and let 4 be a non-normal

fuzzy number as defined above. Then, analogously to the previous definition,

the variance of 4, with respect to the pole x, is given by
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Vo) =5 [ Posta = a1l - Py

" post > gl - am)]zdyj. ®)

The following definition of the covariance between two fuzzy numbers
is useful for the development of this expression and to obtain an interesting
result as reported below [6].

Definition 6. Let A and B be two non-normal fuzzy numbers of the LR
type with strictly monotonic and continuous shape functions and with the
same height, 4. The crisp possibilistic covariance of 4 and B is the lower
possibility-weighted average of the distance between E(y) and the left-hand

endpoint of the y-cut of 4, multiplied by the corresponding distance of B plus
the upper possibility-weighted average of the distance between the right-hand
endpoint of the y-cut and E(y) of 4, multiplied by the corresponding distance

of B, 1.e.,

1 h
(. 8) = [ B0 - aw {Es () - ol

+ j Oh Ylag(y) = E4(V][br(v) - EB(Y)]dY} )

Therefore, the crisp possibilistic covariance of 4 and B is the arithmetic mean

of the lower and upper possibilistic covariances: C,(4, B) and C*(4, B),

respectively. The factor 1/ h? is derived from the weights, as in the variance.

Simple passages lead to
h
C(4, B) = [ Aan(r) = ar(lbelr) ~burldy.— (10)

Note that if 4 = B, i.e., 4 coincides with B, then C(4, 4) = V(A).

Example 3.5. Let 4 = (a;, ap, a, B) and B = (b, by, &, 8) be two

trapezoidal fuzzy numbers. It can be shown that the covariance between A
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and B is given by
C - g 1 h h
(4. 8)=— 5 [ flaz + (1= 1/ —ay + (1= 1/h)a]
by + (1= v/h)d = by + (1 - y)e]dy

:(azgal +0€2B)(bngl +325j+71_2(a+[3)(s+8).

Example 3.6. If a; = a; and b, = b}, then 4 and B are triangular fuzzy

numbers and their covariance becomes
C(4, B) = %(a +B) (e +9).

Also, the covariance of two trapezoidal or triangular fuzzy numbers does
not depend on /4, but in the case of functions of other shapes, it might depend
on /.

Example 3.7. Let 4 be a non-normal fuzzy number of the LR type
with strictly decreasing and continuous shape functions, and with the centre

c=(a +ay)/2. Let ay(h)=a; and ag(h)=a, be the internal values
corresponding to the maximum heights of the memberships functions. Let

us consider two symmetrical fuzzy numbers, 4" and 4" such that E(4') =

E(4")=c and A7 =[ar(y), ¢(y)] and A" =[y(y), a(y)], where ¢ and
v : [0, 7] > R are defined as follows: ¢(y) = a; + ay —ay(y) and y(y) =
a; +a, —ag(y). Then A" and A" are two symmetrical non-normal fuzzy

numbers of the LR type, derived from A4, and their covariance will be

1 (¢h
c’, 4) = h—z“ JE) = arIE (1) - apr)ldy
h
+ [ o) - Ep(r)lag(y) - EAffm]dyj

=1 "yle - ay()llag(y) - el
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Example 3.8. Let 4 = (aj, ay, o, B) be a trapezoidal fuzzy number
and ¢ =(a; +ay)/2. Let A" =(aj, ap, o) and A" = (ay, ap, B) be two
symmetrical trapezoidal fuzzy numbers setup on A4, as indicated in the

previous Example 3.7. The covariance between 4’ and A" is given by

2 rh
O, ) == [ [ole = a + (= v/mallay + (1= y/1)p = cldy

2
_(a —4611) +(a2—6116)(0l+3)+%l3.

Example 3.9. If a, = gy, then 4 is a triangular fuzzy number. Let 4" =
(a1, o) and A" = (ay, B) be two symmetrical triangular fuzzy numbers

setup on A. The covariance between A" and A" is given by
C(A, A") = %B
The variance V' (A) satisfies the following properties:
1. Positivity: V(A4) > 0.
2. Zero-variance: V(A) = 0 if and only if 4 is a crisp (constant) value,
implying az (1) = ag(y) = a.

3. Invariance for linear transformation: Let A e [0, 1] and 0 € R be real

numbers, let 4 be a fuzzy number, and let B = A4 + 0. Then
V(B) = V(r4 + 0) = X2V (A).
The following theorem could be seen also as a property of variance.

Theorem 1. Let xj € R be a constant number and let A be a non-normal

fuzzy number of the LR type with strictly decreasing and continuous shape

functions, and with centre c. Then

Vig (4) = 2V (A4) + [xo - M(A)} ~[e - M(A)F - C(4, 4"), (11
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where A" and A" are two symmetrical non-normal fuzzy numbers of the LR

type, constructed upon A, as indicated in Example 3.7.

Proof.
Vo) = 5| [ oo = an P + [ 1150 - an(r )Pt
Simple passages lead to
1 h 2 2
=5 [, Tllan(n) = a()F + 258 = 2xplas (1) + ap(r)]

+2ay(y)ag(y)}dy

1 _
=2V (4) + h—zxé[ﬁ’é] —~ 2xM (A)

1 h 5
-3 2 1l = dar) + ar+ e - ar(llarr) - e
— 2V(A) + x¢ — 2xM (4) - hlzcﬂ[ﬁ’g] 26 (A) = C(A, A"

= 2V(A) + x5 — 2xoM (A) — ¢* + 2eM(A) = [M(A)) - C(4', 4"
= 2V (A) + x5 — 2xoM (4) + [M(A)F = ¢? + 2cM (4)

- M (AP -4, 4")
= 2(A) +[xg - M(A)P —[c - M(A)F - C(4, 4").

Theorem 2. Let xy € R be a constant number and let A be a non-normal

fuzzy number of the LR type with strictly monotonic and continuous shape
Sfunctions, and E(y) = [ar(y) + ag(y)]/2. Then the following equality also
holds:

Vigd) = V() + 5 [ g = ECPet (1)
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Proof.

Vo) = [0 ~ a Pt + [ 4l — anr)Pet
= [l - a0+ EGIP + L - ar() £ EP ey

h 2 2
= [ 1ilxo — EQF + [ra(r) + £
+2[xg = E@)]l=aL () + E@)]+ [xo - EQ)P
+[map(y) + EQF + 2xg — EG)[=ag(y) + EQ)lidy
= [y -~ EP + 2o ~ EILEG) - ar () + EG) - ag ()]
+[EQ) = a ()] +[E() - ag(@)F }dy
h 2 2 2
= [ 1ED) - a,F + [E) - ag )P + 2Lz — E(1)]
+2[xo — E(MIRE®) - ar(v) - ar(y)lidy

h 2 2 2
= [ TED) - a,0F + [E) - ar @) + 2Lxo - EGF oy
= [ 1B - ar GOF + () - ag)P e + [ 120y — EG )P

=V(A)+ 2IZ vlxo — E(v)Fdy.

Note that the 9th line disappears in 10th line because [2E(y)— az(y)
—agp(y)] = 0. The expressions given by the two theorems are obviously

equivalent. The proof is carried out through the expressions reported below:
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2 ¢h 2
Vio(A) =V (4) + el B vlxo — E()) dy

. 2
— V(A) + h%. Oh Y[XO _ aL(Y) _; aR(’Y)jI d’Y

= V(4) + %.'Oh y[2xo - [aL(g) + aR(Y)]TdY

=V(4)+ h%: v%{% —dxplag (v) + ag(y)]

+lag () + ag ()} dy

1 (h 2 1k
=)+ [ by = [ vanolas (1) + ar(o)lay

+ # I Oh vlag (v) + ag(v)Pdy

2
_ 2 2y
= V(A)+h_2x0[7

h
] -2 o Hlar )+ anr)ley
0

1 h 2
+ 2210 vlag () + agp(y) £ ag (V)" dy

=)+ 38 = 2507 () + L [ llan() - ap (1)F
+ da (v)[ap(y) — ap (v)] + 4a, (v) }y

=)+ 3 = 2 (4) o [ lan) - ap (1Pt

b ] s (an) = dan (1 + 4o P
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= V(A) + x3 — 2xoM (A) + V(4) + h%J.: Ylap (v)ag(y)]dy

=2+ 53 = 200(4) + 5 [ slan (anr)le

Example 3.10. Let 4 = (qy, ay, a, B) be a trapezoidal non-normal fuzzy
number and ¢ = (q; +ay)/2. Let A" =(ay, ap, o) and 4" = (ay, ap, B)
be two symmetrical trapezoidal fuzzy numbers setup on A. The crisp

possibilistic variance of 4, with respect to x; € R, is given by

_(a —a)2 (a+[3)2 a + a,
Vio(4) = 241 0 +(x0—%j

—(Xo—az)B;a—%B-

The expression for a triangular fuzzy number is immediately obtained,

assuming a; = a,.
Proof.

Vo (4) = 27(A4) + [xg = M(A)F = [c = M(4) - C(4, &)

e —a  a+BT (a+B)?
‘2{[22 TS }+ 7 }

+ (xo (g ;az) N = Ot)jz

_l:al ;az (g ;az) B (B;a)r

_{(az - @), (@ - W), %B}

= 2(u)2 + z(O‘T*sz +2ay - a) % By, ;23)2
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o e -2

_[_B—OCT (@ —a) (p-a)(0+B) op
6 4 6 6

_(@-a)f (m-a)l (@+p)]  (a+p)
2 4 18 36

2
+(x0—al+Tazj Jr(az—al)OL;rB—(612—611)&;FB

e R e e e

_ (a2 ~a) N (o +PB)° +(x0 _aq +azj2
4 12

+[(az—a1)—a2;al _(XO_algazj}B;a_%B

_(@-q) N (o +B)° +(x0 _q +a2j2
4 12

—(xo—az)Bga—%B-

In order to introduce one more property of variance, it is useful to define
the variance in a form analogous to the one used for a real-valued random
variable, already reported by Carlsson and Fullér [1] and adapted here for a

non-normal fuzzy number.

Definition 7. Let 4 be a non-normal fuzzy number of the LR type with
strictly decreasing and continuous shape functions. The crisp possibilistic

variance of A4 is the lower possibility-weighted average of the squared
distance between M (A4) and the left-hand endpoint of the y-cut plus the

upper possibility-weighted average of the squared distance between M (A)
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and the right-hand endpoint of the y-cut, i.e., the pole is the constant real

value, M(A) € R, and the variance becomes

Vi) = 5 [T 0P + D7) - an(F . (13)
It can be proved that
Vi) = 5 [ 1laE )+ aknley - 72 (a). (149
Proof.

V() = S Vi(A) + 77 ()

= 2| ] Posla < a I () - s ()P
R

1

hd
R

(2 ) - P+ 2 AT - et

h — 2
N j  Posla 2 ag@)][(4) ~ ag () ey

1
2
1 h — 2 — 2
- h_zjo WM (4) - ap (V) + [M(4) - ap(y)]*}dy

1 (" 2 2 M
:h_2 Oy[M (A)-l—aL(Y)_zM(A)aL(Y)

+ M*(4) + ag(y) - 2M (4)ag (v)]dy

1 ¢4 1 ¢ —
=3 [, i)+ akldy + = [ 2 (A



144 Michele Lalla and Nicoletta Pacchiarotti

1 h _
-7 | ) P2M(A)lar(v) + ap(v)]dy
Lph oo 2 M2 M>
_ h_Z.[o vlaz (v) + ag(y)ldy + M?(4) - 2M7*(4)

= [ a0+ Ry - 370,

There is a property of Vi7(4) that could also be ascribed to the property

of the crisp possibilistic mean, specifically to its weighted squared deviation,
whose average or expected value is minimum when the pole of deviation is

assumed to be the crisp possibilistic mean.

Theorem 3. Let xy € R be a constant number and let A be a non-normal

fuzzy number of the LR type with strictly decreasing and continuous shape

functions. Then the variance with respect to the pole X, Vxo (4), always

exceeds the variance with respect to the pole M (A), Vi;(A4), i.e.,
Vi (4) 2 Vi (4). (15)

Proof.

1L fh o 2 i 2
Vig()= -5 [ AT () % 30— ar F + () £ x0 - ag(F

=L 50 + s~y (O + 20F7(4) - ]l = (1)

+[M(4) - T + [xo — ar ()P

+2[M(4) - xo][xo — ag(y)]}dy

- hLz oh v{lxo = ar (NI + [xo — ar ()] }ey

1 h _
+h_2.[o v2[M(A4) - xo Py
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1 ¢4 —
+ h_ZIO V2[M (A) - x0][xo — ar (v) + xo — ag(y)]dy

— 2 — 1 ¢h
= Vi (A) + DE(4) = o+ DT (4) = s [ 2720ty

-0 = x0)- 5 [ 2l 1)+ ano)e
= Vg (4) + D) T+ 200 [(4) = x0] - 2W(A)FT(4) - ]
= Vg (4) + D)~ T+ 20 (4) - ][~ FE(4)

= on (A) - [M(A) - xO]2 < on (A)

The relationships between the variances ¥y (4), Vj7(A4) and V(4) are

stated in the following theorem:

Theorem 4. Let A be a non-normal fuzzy number of the LR type with
strictly decreasing and continuous shape functions. Then the variance is

minimum when the pole is the mean E(y) = [ay(y)+ ag(y)]/2, i.e., for any

constant value xy € R, the following inequalities hold:
Vo (4) 2 Viz(4) 2 V(A4). (16)

Therefore, the variance, Vj7(4), is formally similar to the corresponding
notion of variance defined in statistics, but, unlike the latter, V3 (A4) does not

attain the minimum value, i.e., the pole equal to M (A4) is not the pole

providing the minimum value for the variance of 4. On the contrary, the

definitions of ¥ (4), given in equations (6) or (7), which assume the mean of
the y-levels, E(y), as pole, have the minimum value, although the pole is not

a fixed point in the support of 4. The proof is analogous to the previous:
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Vir(4) = [ AT = B~ ag (F + [V(4) + £ — anr)F bt

=L [ 0T - EGOF + 5 - P
+ 2[M(4) = EQI[EQ) - ag (0] + [M (4) - EQ)P
+[85) - a0 + 23T(4) - EQIIEG) - a1l

_ hLQ jo” YIE) - ag 0P +[E(r) - ag ()P ey

oL [T - B
el PR Y
+ 2E(4) ~ EOIEG) ~ ay (1) + E() — ag(r)h
h —

= V()4 [ rialb() - B

+2[M (4) = E(I2E(Y) - ar(v) - ag (1)l dy
= V() + L [y I - EG)Phay = v(4)

el PR I fdy 2 V(A).

Let 4 = (aj, a3, o, B) be a trapezoidal non-normal fuzzy number with a
centre ¢ = (a; + ay)/2, left-width o > 0 and right-width B > 0 or let 4 =
(a1, a, B) be a triangular non-normal fuzzy number with a “centre” ¢ = a;,
left-width a > 0 and right-width B > 0. Then, the results reported above,

some of which previously illustrated in the literature [1, 6] are summarized in
Table 1.
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Table 1. Mean, variances, and covariances of a non-normal trapezoidal and a

triangular fuzzy number with height £

Moment Trapezoidal fuzzy number Triangular fuzzy number
Vi (+a) (B-a) p-a
M(4) TG a +

2 2 2
V(A4 a9 U~+B (OL+B) (O(+B)
() ( 2 s )T m 24
a, —ay " o+ ﬁ b2 — b] n €+ 8
2 6 2 6 1
C(4, B) 5 (@ +B)(e+9)

+ oo+ B)(e +9)

2
c4, A" (a —441) +(az—al6)(0€+[3)+0t?l3 %B
(@ -a) (a+p)’ a+ayY (o +B)’ 2
a4 m -] )
—(xo—az)Bga—%B —(Xo—al)B;a—%ﬁ

4. Variance of Fuzzy Quantities

The previous definition is extended to the case of fuzzy quantities,
namely to the union of two or more fuzzy numbers, which is not, in general,

a fuzzy number.
Let 4 = (ay, ay, o, B),p and B = (by, by, €, ), 5, Where aj < by, are
normal fuzzy numbers with continuous monotonic shape functions. Let 4" =

[a; (), ag(y)] and BY = [b;(y), br(y)] be their y-cuts.

The union and the intersection of 4 and B could be defined by means of
several -norms and 7-conorms, well-known in literature. We choose here the

most usual ones, that is, we define

D = AN B ={(x, up(x)) s.t. up(x) = min[p4(x), up(®)]}, (17
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C =AU B = {(x, pc(x)) st pe(x) = max[uy(x), pp(x)]).  (18)
D is always a fuzzy number, with height being /).

Three cases may occur:

1. suppANsuppB # J, that is, D# < and AU B has convex

y-levels. Therefore, it is a fuzzy number.

2. suppA(\supp B # <, that is, D # I, but AU B does not have

convex y-levels. Therefore, it is a fuzzy quantity, but not a fuzzy number.
3. supp A\ supp B # &, thatis, D # &.

From our point of view, the last two are the most relevant cases.

If E(y) is the mean value, E(y) = %(GL +ag + by + bg)(y), using the

above mentioned notations, the variance of the union of 4 and B could be

stated as follows.

Definition 8. The variance of 4 U B is given by

4
raus) =3 | hl Vi)~ E(r)P d, (19)
i=1

where

min[aL(y), bL(Y)]’ i = 1:

aR(Y)’ i = 2’
(v) = 20
:(v) by (1), . (20)

max[ap(y), bg(y)], i=4
and by = 0 ifi=1,4 b = hp it i = 2, 3.

Just to consider one case, suppose that min[a; (y), by (y)] = a;(y) and

max[agp(y), br(y)] = br(y), Vy €0, 1]. We can write
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V(4UB) = | ; vlaL(v) - EQ)F ey + I;D vlag(y) - EQ)F dy
! 2 ! 2
+ [, Woulr) = EPdy+ [ +lbwtr) - EG)Pdy 21
= | rllan )~ EQOF + lanr) - EG)P et
+ [ rllon ()~ EOP +belo) - )P

[P - EP +lar() - BRIy @2)

= Vi(A4) + Vg(B) - hpV (4N B), (23)

where V() denotes the variance with respect to the pole specified by the

subscript index, E(7).

Let us observe that if 4 () B = &, then the relationship still holds. Let us
now compute V(A4 U B) through the variances of the sets 4, B, and 4 () B,
each calculated with respect to its own mean value. Let E 4(y) be the
arithmetic mean of the y-levels of 4 and, similarly, let Ez(y) and Ep(y) be
the arithmetic mean of the y-levels of B and D, respectively.

Property 4.1. The variance of the union of two sets is expressed also by

the following equality:

VAU B) = V(A)+V(B) - 1BV (AN B+ [ Es(r) - Ear)F et

-2f Oh " ED(y) - EG)P dy. (24)

Note that the absence of a subscript index in the symbol of variance
means that the wvariance is calculated with respect to the arithmetic
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mean of the y-levels of its argument, i.e., V(4)=Vg, (4), V(4N B)=

VEAﬂB (AN B), and so on.

To prove equation (24), the following equalities may be considered:
[a,(v) = EQ)P + [ag(v) - EG)F
= [a,(1) = E4(0F +[ar(y) = E4()F + 2[E(y) - E40)F,
[bL () = EQ)F + [b(v) - EQ)F
= [bL(v) - Eg(F +[br(y) = Eg(n)F + 2[E() - E5(v)T,
[bL(v) = )Y +[ag(y) - EQ)F
= [bL (1) = EpMF +[ap(y) - Ep() + 2[E(y) - Ep(n)F

leading to

V(AU B) = V(A)+V(B) = hp¥ (4N B) + 2 01 YEA() - E(r)F ay

+ 2] 4lE() - EGPey-2[ P AlEp) - EPey. (25)

Since

[E4(1)— EQ)F +[Ep(y) - E()F

_[E4(v) = Ep(y) 2 [ Es() = Ealy) 2
el R

= 2 [Es(r) - E4)P.

equation (24) is immediately obtained.

Three special cases are described in the following:
1. If A= B, ie., A coincides with B, then V(4)=V(B), hp =1,
ANB =4, Ep(y)=E4(y), Ep(y) = E4(v) = E(y), and
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1 hp
V(AU B) = V(4) + V(4) - V(4) + j |1 0d - 2}0 v-0dy = V(4).

In other terms, if 4 = B, then the variance of AU B is equal to the

variance of 4.

2.If AN B =0, i.e., 4 and B are disjoint sets, then 4y =0, V(4 B)
=V (J) =0 and

V(AU B) =V () + V(B)+ [ +lE5(r) - Ea(r)F e

In other words, if 4 and B are disjoint sets, then the variance of 4 U B is

equal to the sum of the variances of 4 and B plus an additive term, which
could be intended as the “variance” of the difference between the means of

their y-levels.

3.If A > B, i.e., Bisasubsetof 4, then hp =1, AN B =B, Ep(y) =
Ep(y), and

F(AUB)= V() + V(8) - V(8) + [ +lEsr) - E4r)Pes
2
_ QJ'; Y|:EB(Y) _ (EA(Y) er EB(Y)H dy

= V() + 5 [ AlE5 ()~ Eato)Par

This result is not intuitive because one would expect to obtain only V(4):

the additive term might be intended as a measure of the asymmetry of subset

B with respect to 4. More specifically, it is somehow a measure of the
diversity of the two shapes. If Lg(x) =L (x —1) with t € R* and Rp(x) =
R (x + 1), then Eg(y) = E4(y), and V(AU B) =V (A).

Note also that the crisp possibilistic mean of 4 B presents similar
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difficulties because it is equal to the mean of the crisp possibilistic means of

A and B, which will not coincide with the crisp possibilistic mean of A4.
4.1. Numerical example of the variance of the union of two fuzzy sets

Let 4= A(1,2,1,2) and B = B(4, 5,1, 1/5) be two trapezoidal normal
fuzzy numbers, as illustrated in Figure 2. Therefore, a; (y) = v and ap(y) =
4 -2y for 4, by(y)=3+y and br(y) =11/2 —y/2 for B. Then E(y) =
/B[y +4-2y+3+y+11/2—7y/2]=(25/8) — (v/8). Other terms useful in
the formulae are the means of the membership functions of 4 and B: E 4(y)
—(/2)ly+4-271=2 /2 and Egly) = (D)3 + 7+ 112 7/2] = 17/4
+y/4. Let D be the fuzzy number resulting from the intersection of A
and B. Then D = D(3+1/3,1/3,2/3) with hp =1/3 and the mean of its
membership functions will be: Ep(y) = (1/2)[3+y +4 - 2y] =7/2 —v/2.

! 25 ) I 25 ¢\
V(AUB)—JO v(v—ngg) dy+thy(4—2y—§+§) dy

1 25 ¢V (11 vy 25 y)?
*Lﬂ{(““?*g) +(T§‘?+§) dy

hp 25 Y 25 Y
__[() 'Y|:(3+Y—?+§) +(4—2Y—?+§j d’}/

= Vg(4) + Vg(B) - hpVp (4N B)

_ 387 319 49 19013
T 128 T 128 3456 3456
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or, following equation (24)

2

V(AUB):V(A)+V(B)—h1%V(AﬂB)+I;y(—+——2+%j dy
3 (7 vy 25 yY?
-2 V(z‘z‘?w)dy

_2+£ 1 +729 5 11 19013
- 2304 3456 °

g 32 216 192

a\/

T
0 | 2 34 I 5] G

Figure 2. Two trapezoidal fuzzy numbers: A(1, 2, 1, 2) and B(4, 5, 1, 1/2).

5. Conclusions

The definitions of mean and variance have been extended to non-normal
fuzzy numbers of the LR type and it has been shown that for the most
common shapes (linear and power functions), mean and variance do not
depend on the non-normality, i.e., the crisp possibilistic mean and variance
do not depend on the height, 4, of a fuzzy number with linear or power shape
functions. Their properties have been illustrated thoroughly, more than in
any other previous publications. Moreover, variance has been extended to
the union of fuzzy sets, leading up to an appealing expression involving the
variances of the two original fuzzy numbers minus the variance of their
intersection multiplied by the square of the height of their intersection,
plus two additional terms contributing to balance the simplification of the

relationship.
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