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Abstract 

Theory of fractional Brownian motion (fBm) is exclusively developed 
by many researchers and used for modeling long-range dependence 
when studying processes in computer networks, in financial markets 
as well as in hydromechanics, climatology, and hydrography. 

The fBm ( ),tBH  where ,0≥t  is a Gaussian process with stationary 

increments and has the so-called Hurst parameter ( )1,0∈H  which 

characterizes self-similarity of distributions and roughness of paths. 
However, the stationarity of increments of fBm restricts substantially 
its applicability for modeling processes with long memory. In 
particular, it does not allow us to model processes whose regularity of 
paths and “memory depth” change in time. A generalization of the 
fBm is the multifractional Brownian motion (mBm), denoted by 
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( ),tBh  where the constant Hurst parameter H in ( )tBH  is substituted 

by a time-dependent Hölder continuous Hurst function ( )th  taking its 

values in ( ).1,0  As such, mBms are useful as stochastic models for 

phenomena that exhibit non-stationarity, for example, risky asset in 
financial market, traffic in modern telecommunication networks or 
signal processing. 

0. Introduction 

In this paper, we shall obtain explicit expression for solutions of      
linear stochastic differential equations (SDEs) driven by mBm with time-

dependent coefficients. Here SDEs are described in a space ( )∗S  of 

generalized random processes (the Hida space of stochastic distributions) and 

the stochastic integrals with respect to mBms are defined in ( )∗S  as the 

multifractional Wick-Ito sense. More precisely, we introduce the S-transform 
of a mean square integrable random variable Φ; for Φ fixed, this is the 
functional [ ]( )ηΦS  operating on deterministic functions η and is fully 

characterized as the expectation on Φ multiplied by the factor, like the 
exponential martingale induced by η. Then the Wick product Ψ◊Φ  of Φ 

and Ψ is characterized by the defining equation such that [ ]( ) =ηΨ◊ΦS  

[ ]( ) [ ]( ).ηΨ⋅ηΦ SS  Further, the S-transform and the diamond ◊ denoting the 

Wick product can be extended to ( ) .∗S  This leads us to the white noise 

approach such that the multifractional Wick-Ito integral can be defined as     

the ( )∗S -valued integral of ( ) ( ),tBdt
dtF h◊  if it exists; ( ) ( )∫ ◊b

a h tBdtF  

( ) ( )∫ ◊=
b
a h dttBdt

dtF ,:  where ( )tBdt
d

h  denotes the multifractional white 

noise. We notice that the multifractional Wick-Ito integral is the extension of 
the fractional Wick-Ito integral with respect to fBm with the constant Hurst 
parameter 21≠H  and the classical Ito integral with respect to the standard 

Brownian motion that is the fBm with .21=H  
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Our investigation is based on the method of the S-transform which is 
much simpler and does not make use of the complicated constructions from 
the white noise calculus. Moreover, the injective property of the S-transform 
enables us to solve the above-mentioned SDEs. 

Thus, for fundamental results, referring to Bender [3, 4], Corlay et al. 
[15], Lebovits and Lévy-Véhel [27] and Lebovits et al. [28], we shall proceed 
to discuss important notions such as fBm (Section 1), mBm (Section 2), 
S-transform approach (Section 3), white noise setting (Section 4), white noise 
operators HM  (Section 5) and stochastic integral with respect to mBm 

(Section 6). In the sequel, we shall obtain explicit expression for solutions of 
the linear SDEs driven by mBm (Theorem 7.1, Section 7). Moreover, we 
shall derive Ito formula for geometric mBm from the simple one for mBm 

( )tBh  (Theorem 8.3, Section 8). As an application, we shall obtain a 

multifractional version of the Black-Scholes equation, that is, the pricing 
partial differential equation (PDE) related to European call option, where a 
risky asset process is modeled by geometric mBm (Theorem 9.1, Section 9). 

Our theorem on expression for solutions of SDEs corresponds to an 
extension of the result in Lebovits and Lévy-Véhel [27] where the solutions 
of SDEs are limited to geometric mixed multifractional Brownian motion 
and mixed multifractional Ornstein-Uhlenbeck process. Ito formula for 
geometric mBm corresponds to an extension of that in Lebovits and Lévy-
Véhel [27] where the simple case for mBm is investigated. In addition, the 
multifractional version of the pricing PDE corresponds to an extension of the 
result in Necula [33] where the market is considered under the fBm 
environment with the constant Hurst parameter H in ( ).1,21  

1. Fractional Brownian Motion 

Fractional Brownian motion was introduced in 1940 by Kolmogorov 
[24] as a way to generate Gaussian “spirals” in a Hilbert space, and then 
popularized in 1968 by Mandelbrot and Van Ness [31] by its relevance        
to model natural phenomena; hydrology, finance, signals and images 
processing, and telecommunications. 
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Let ( )P,, FΩ  be a complete probability space. Then the fractional 

Brownian motion is defined as a Brownian motion with a constant parameter 
H which is called Hurst parameter: 

Definition 1.1. A real-valued random process ( )( ) R∈= tHH tBB  is 

called (two-sided, normalized) fractional Brownian motion (fBm) with Hurst 
parameter ( )1,0∈H  provided that 

(i) ( )tBH  is a Gaussian process, 

(ii) ( ) 00 =HB  a.s., 

(iii) ( )[ ] ,0=tBE H  

(iv) ( ) ( )[ ] [ ] ,,,2
1 222 R∈−−+= stststsBtBE HHH

HH  

where [ ]⋅E  denotes the mathematical expectation. 

Especially the case 21=H  leads to the standard Brownian motion 

(sBm). In this sense, fBm appears as a generalization of sBm. It is well 
known that fBm HB  is a semimartingale if and only if ,21=H  i.e., in the 

case of a classical sBm. Hence, Ito’s stochastic integration theory for 
semimartingales cannot be applied, if .21≠H  

Remark 1.2. FBm HB  is not a stationary process, but has stationary 

increments. In fact, from Definition 1.1(iv), we can deduce the following 
expression for the variance of the increment of the process in an interval: 

[ ( ) ( )( ) ] .22 H
HH stsBtBE −=−  

Moreover, since HB  is a Gaussian process, we have that for all ,1≥n  

[ ( ) ( ) ] .2
12 2

nH
n

n
HH stnsBtBE −⎟

⎠
⎞⎜

⎝
⎛ +Γ

π
=−  

Remark 1.3. By the Kolmogorov criterion, a process ( )( ) R∈= ttXX  

admits a continuous modification if there exist constants ,1≥α  ,0>β  and 



Linear Stochastic Differential Equation 91 

0>k  such that 

[ ( ) ( ) ] β+α −≤− 1stksXtXE  

for all ., R∈ts  Noticing the nth moment of the fBm in Remark 1.2, by the 

Kolmogorov continuity criterion, we deduce that fBm has a version with 
continuous trajectories. 

FBm is the only centered Gaussian process with stationary increments. 
The Hurst parameter H governs different properties of the fBm, for instance, 
the self-similarity of the process, the correlation of the increments and the 
roughness of the path. We summarize these according to Bertrand et al. [8] as 
follows: 

1. Self-similarity. For all ,0>c  

{ ( ) } { ( ) },;~;
law

RR ∈∈ ttBctctB H
H

H  

where 
law
~  means the equivalence in the sense of probability law. Thus, H 

means the self-similar index. 

2. Correlation of the increments. Stationary increments means that for 
all ,,, R∈tsh  

( ) ( )( ) ( ) ( )( )[ ]sBhsBtBhtBE HHHH −+−+  

( ) ( )( )[ ] ( ) ( )( )[ ]0HHHH BhBstBhstBE −−−+−=  

( ).: sth −ρ=  

In contrast with sBm, the increments of fBm are correlated. They even 
display long-range dependence or long memory when ,21>H  that is, for 

all ,0≠h  

( )∑
∈

∞=ρ
Zk

h k .  

More precisely, let ( ) ( ) ( )jBjBjY HH −+= 1  denote the increments of 

fBm and ( ) ( ) ( )[ ] ( )00: 1 −ρ== jYjYEjr  its correlation. Then the following 
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is well-known: 

• if ,21=H  then the increments are independent; 

• if ,21>H  then ( ) ,∑+∞
−∞= +∞=k kr  thus, we have long memory of 

the increments; 

• if ,21<H  then ( )∑+∞
−∞= +∞<k kr ,  thus, we have short memory of 

the increments. 

3. Roughness of the path. In spite of its usefulness, fBm model has 
some limitations, an important one of them is that the roughness of its path 
remains everywhere the same. 

In order to explain this important issue, based on Ayache and Lévy-
Véhel [1], we introduce the notion of pointwise Hölder exponent which 
provides a measure of the local Hölder regularity of a process path in 
neighborhood of some fixed point t. 

Let ( )( ) R∈ttX  be a stochastic process whose paths are with probability 1 

continuous and nowhere differentiable functions (this is the case of fBm 
paths). Let [ )1,0∈α  and t be fixed. One says that a path ( )ω,tX  belongs to 

the pointwise Hölder space ( ),tCα  if for all R∈s  small enough, one has 

( ) ( ) ( ) .,, αω≤ω−ω+ sCtXstX  

The pointwise Hölder exponent of the path ( )ω,tX  at the point t, is defined 

as 

( ) { [ ) ( ) ( )}.,;1,0sup, tCXtX
α∈ω⋅∈α=ωα  

Then the roughness of fBm path remains everywhere the same, that is, 

( ( ) ) .1, ==α∀ HtP tBH  

From a geometrical point of view, H determines the (constant) roughness 
of the sample paths of the fBm and is linked to the fractal (or Hausdorff) 
dimension D of the graph by the simple relation .2 HD −=  
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With regard to the construction of fBm, there are well-known results, one 
is nonanticipative stochastic integral representation and the other is spectral 
representation as follows: 

1. Moving average representation. This was introduced by Mandelbrot 
and Van Ness [31] in 1968, and presented by Samorodnitsky and Taqqu    
[38, Chap. 14] in 1994, in the slightly modified form as follows: 

( ) ( ) [( ) ( ) ] ( )∫ −
+

−
+ −−−

+Γ
=

R
,21

2121
21

sdBsstH
V

tB HHH
H  (1.1) 

where for all reals x and θ, 

( )
⎩
⎨
⎧ >=

θ
θ
+ ,otherwise,0

,0if, xxx  

and ( ) ( )HHVH π+Γ= sin12:  is a normalizing factor such that ( )( )1HBVar  

1=  and the kernel ( ) 21−− Hst  rules the dependence between the process 

increments. We note that 

( ) ( )
( ) [( ) ] ,2

1121
sin12 21

0
22121

−∞ −−

⎭
⎬
⎫

⎩
⎨
⎧ +−+=

+Γ
π+Γ

∫ HdsssH
HH HH  

where ( )⋅Γ  is the Gamma function. In (1.1), ( )( ) R∈ttB  denotes the ordinary 

two-sided Brownian motion, that is, 

( )
( )

( )⎩
⎨
⎧

<−

≥
=

,0for,

,0for,

2

1

ttB

ttB
tB  

where ( )tB1  and ( )tB2  are two independent Brownian motions for .0≥t  

We can rewrite (1.1) as follows: 

( ) ( ) [( ) ( ) ] ( )
⎩
⎨
⎧ −−−

+Γ
= ∫ ∞−

−−0 2121
21

21 sdBsstH
V

tB HHH
H  

( ) ( )
⎭
⎬
⎫−+ ∫ −t H sdBst

0
21  for ,0≥t  ( )′1.1  



K. Narita 94 

( ) ( ) [( ) ( ) ] ( )
⎩
⎨
⎧ −−−

+Γ
= ∫ ∞−

−−t HHH
H sdBsstH

V
tB 2121

21

21  

( ) ( )
⎭
⎬
⎫−− ∫ −0 21

t
H sdBs  for .0<t  ( )″1.1  

2. Harmonizable representation. This was first defined by Kolmogorov 
[24] in 1940 as follows: 

( ) ( ) ( )∫ ξ
ξ

−=
+

ξ

R
Wde

HCtB H

it
H ˆ11

21  for all ,R∈t  (1.2) 

where Wd ˆ  is “the Fourier transform of the white noise”, that is, the unique 

complex-valued stochastic measure which satisfies, for all ( ),2 RLf ∈  

( ) ( ) ( ) ( )∫ ∫ ξξ=
R R

,ˆˆ WdfxdWxf  almost surely,  (1.3) 

dW being the usual real-valued white noise (i.e., a Brownian measure). Here 

f̂  denotes the Fourier transform of f; 

( ) ( )∫ ξ−=ξ
R

.ˆ dxxfef xi  

For all the technical details, we refer to Samorodnitsky and Taqqu [38, pp. 
325-326]. Equation (1.3) implies that ( )tBH  is real-valued. The constant 

( )HC  in (1.2) is deduced from the requirement that [ ( ) ] ,11 2 =HBE  and 

defined by 

( ) ( ) ( )
( )

21

21
22cos2: ⎟

⎠
⎞

⎜
⎝
⎛

−
−Γπ

= HH
HHHC  

( ) ( ) .sin12
2 21

⎟
⎠
⎞⎜

⎝
⎛

π+Γ
π= HH  (1.4) 
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Here the last equality follows from Euler’s reflection formula such that 

( ) ( ) ( ) ( ) ( )zzzzzz
π

π=−ΓΓ−=−ΓΓ sin1  

which is derived from Euler’s expression for the trigonometric function 
sin(πz) in terms of infinite product. In fact, from the relation that ( ) =+Γ z1  

( ),zzΓ  we have formal calculations, heuristically, as follows: 

( )( ) ( ) ( )HHH 2122sin −ΓΓ=
π
π  

( )( )
( ) ( ) ( ) ( )

( ) ( )HH
HHHH

H 212
212122

2sin −
−Γ−Γ

=
π
π⇔  

( )( )
( ) ( )

( ) ( )HH
HH

H 212
2212

2sin −
−Γ+Γ

=
π
π⇔  

( )( ) ( )
( ) ( )HH

HHH 2212
2122sin

−Γ+Γ
−π=π⇔  

( ) ( ) ( )
( ) ( )HH

HHHH 2212
212cossin2

−Γ+Γ
−π=ππ⇔  

( ) ( )
( ) ( ) ( ) .sin12

2
21

22cos2
HHHH

HH
π+Γ

π=
−

−Γπ
⇔  

It is known that the probability laws of the processes defined by (1.1) and 
(1.2) are equivalent. Hence, in (1.1) and (1.2), we used the same notation 

( )( ) R∈tH tB  to denote the fBm. 

2. Multifractional Brownian motion 

Since the intensity of the long-range dependence depends on both Hurst 
parameter ( )1,0∈H  and the lag h, once fixed the lag, the autocorrelation 

only depends on the Hurst parameter. Hence, the most immediate 
generalization of the fBm can be obtained by allowing H to vary over time, 
that is, the constant Hurst parameter H in equations (1.1) and (1.2) will be 
substituted by a time-dependent Hurst exponent ( ).th  
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This idea was proposed by Lévy-Véhel [29] in 1995. In fact, in some real 
datasets there is evidence that the roughness of the sample path varies with 
location. In such cases, a single number, i.e., Hurst parameter H or fractal 
(Hausdorff) dimension D, may not provide an adequate global description of 
the roughness of the sample path and there is motivation for developing 
models which allow for varying roughness. Lévy-Véhel [29] has considered 
such datasets in Image Analysis and Signal Processing contexts, and these 
led him to consider a generalization of fBm which he calls multifractional 
Brownian motion. 

The first representation is a mean average approach and was proposed by 
Peltier and Lévy-Véhel [35] in1995, subsequently to Lévy-Véhel [29]: 

Definition 2.1. Let [ ) ( )1,0,0: →∞h  be Hölder continuous with 

exponent .0>β  Then, for each ,0≥t  relation ( )′1.1  defines the value 

( )tBH  with ( ).thH =  For ,0≥t  the following random process is called 

multifractional Brownian motion (mBm) with Hurst function ( ):th  

( )( ) ( )
( )( ) [( ) ( ) ( ) ( ) ] ( )

⎩
⎨
⎧ −−−

+Γ
= ∫ ∞−

−−0 2121
21

21: sdBsstth
V

tB ththth
th  

( ) ( ) ( ) .
0

21

⎭
⎬
⎫−+ ∫ −t th sdBst  (2.1) 

The second representation is a spectral approach introduced by Benassi 
et al. [7]. 

Definition 2.2. Let [ ) ( )1,0,0: →∞h  be Hölder continuous with 

exponent .0>β  Then, for each ,0≥t  relations (1.2) and (1.3) define the 

real value ( )tBH  with ( ).thH =  For ,0≥t  the following random process 

is called multifractional Brownian motion (mBm): 

( )( ) ( )( ) ( ) ( )∫ ξ
ξ

−=
+

ξ

R
Wde

thCtB th

it
th ˆ11: 21  (2.2) 
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with ( )ξWd ˆ  as appeared in (1.2), and ( )xC  as given by (1.4), i.e., ( ) =xC  

( ) ( ) .sin12
2 21

⎟
⎠
⎞⎜

⎝
⎛

π+Γ
π

xx  

The processes ( )( )tB th  in Definitions 2.1 and 2.2 are well defined (i.e., 

square integrable) if the function ( )⋅h  is Hölderian of order 10 ≤β<  on 

[ ].1,0  Cohen [13] proved the equality in distribution of both processes 

normalized in such a way that [ ( )( ) ] ( ).22 th
th ttBE =  From these definitions, 

it is easy to see that mBm is a zero mean Gaussian process whose increments 
are in general neither independent nor stationary; recall that fBm has 
stationary correlated increments for .21≠H  When ( ) Hth =  for all ,0≥t  

mBm is of course just fBm with constant Hurst parameter H. 

For the sake of simplicity, the mBm with Hurst function ( )⋅h  defined by 

(2.1) or (2.2), is denoted by ( )( ) .0≥ttX  Then we summarize as follows: 

Remark 2.3. MBm ( )tX  satisfies the following properties: 

(i) ( )tX  is a Gaussian process, 

(ii) ( ) 00 =X  a.s., 

(iii) ( )[ ] ,0=tXE  ,0≥t  that means the process is centered, 

(iv) it follows from Ayache et al. [2, Proposition 4] that the 
autocovariance of ( )tX  of the standard mBm, namely of an mBm with 

[ ( )] ,112 =XE  is given by 

( ) ( )[ ] ( ) ( )( )[ ( ) ( ) ( ) ( ) ( ) ( ) ],, shthshthshth ststshthDsXtXE +++ −−+=  

where 

( ) ( ) ( ) ( ) ( )
( ) ( )( ) .2sin12

sinsin1212, yxyx
yxyxyxD

+π++Γ
ππ+Γ+Γ

=  
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The mBm ( )tX  is a continuous process for all 0≥t  with probability 

one. This was shown in Peltier and Lévy-Véhel [35, Proposition 3], by the 
help of skilful splittings of the Ito integral representation, some fundamental 
inequalities and the Kolmogorov criterion. 

Remark 2.4. At each point s, the mBm ( ) ( )( )tBtX th=:  is locally 

asymptotically self-similar with index ( )sh  in the following sense: assume 

that ( )th  is Hölder continuous with exponent β and that ( ) <≥ tht 0sup  

( ).,1min β  Consider ( ) ( ),sXusX −ρ+  i.e., the increment process of the 

mBm at time s, and lag ρu. Then Benassi et al. [6] proved that 

( ) ( )
( ) ( ( )( )) ,~lim

law

0 +
+

+ ∈
∈→ρ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ρ
−ρ+

R
R

ush
u

sh uBsXusX  

where ( ( )( ))
+∈Rush uB  is an fBm with parameter ( )sh  defined on .+R  The 

above distributional equality states that at any point s, there exists an fBm 
with parameter ( )sh  tangent to the mBm. 

Remark 2.5. Unlike fBm’s, the increments of mBm ( ) ( )( )tBtX th=:  are 

no longer stationary nor self-similar, and its path regularity explicitly varies 
with time. More precisely, the following properties of mBm are known by 
Ayache et al. [2, Propositions 1 and 2]: Assume that ( ).sup 0 tht≥>β  Then 

(i) With probability one, for each ,0t  the Hölder exponent at point 

00 ≥t  of mBm is ( );0th  recall that the Hölder exponent of a process ( )tX  

at point s is defined as 

( ) ( ) ( ) .0lim;sup:,
0 ⎭

⎬
⎫

⎩
⎨
⎧ =−+α=ωα

α→ h
sXhsXs

hX  

A “large” ( )ωα ,sX  means that X is smooth at s, while irregular behavior of 

X at s translates into α close to 0. 
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(ii) With probability one, for each interval [ ] ,, +⊂ Rba  the graph of 

mBm ( )( ) [ ]battX ,∈  verifies the following property: 

( ) [ ]{ } ( ) [ ]{ } ( ) [ ]{ },,;min2,;dim,;dim batthbattXbattX BH ∈−=∈=∈  

where Hdim  and Bdim  denote the Hausdorff dimension and the box 

dimension, respectively. 

We note that there is a Gaussian process generalizing the mBm and 
having the Hölder regularity that can be a very “irregular function” (see 
Ayache and Lévy-Véhel [1]). 

We can refer statistical study of fBm and mBm, and modeling in finance, 
to Bertrand et al. [8] and Bianchi [11]. 

The following Sections 3-6 provide the necessary backgrounds on the 
S-transform and the white noise theory to define a stochastic integral and to 
handle stochastic differential equations (SDEs) driven by mBm. 

3. The S-transform Approach 

Since the fractional Brownian motion (fBm) with Hurst parameter 
21≠H  is not a semimartingale, the integration theory of the Ito type 

cannot be applied to this family of processes. Therefore, different extensions 
have been proposed. The first one was introduced by Lin [30], who proved 
that an interesting class of processes is integrable with respect to an fBm and 
derived an analogue of the Black-Scholes formula in financial market. In this 
case, the integration theory is based on the ordinary pathwise product in 
defining the integral: 

( ) ( ) ( ) ( ) ( )( )∫ ∑
−

=
+→Δ

−ωσ=δωσ
b

a

n

k
kHkHkH tBtBttBt

1

0
10

,lim:,  

for suitable integrand ( )., ωσ t  Here and hereafter, nttta <<<=Δ "10:  

,b=  ( ).max 110 kknk tt −=Δ +−≤≤  However, this integral, in general, does 
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not have expectation zero. Moreover, Rogers [36] and Dasgupta and 
Kallianpur [16] showed an arbitrage opportunity in the Black-Scholes model 
under the pathwise integral setting as described above. 

Thus, the second integration theory for the fBm was introduced by 
Duncan et al. [17]. This integration is based on the method of the Wick 
product, that is, the Wick product ◊  is used instead of the ordinary product 
in Riemann sums: 

( ) ( ) ( ) ( ) ( )( )∫ ∑
−

=
+

→Δ
−◊ωσ=ωσ

b

a

n

k
kHkHkH tBtBttdBt

1

0
1

0
,,lim:,  

for suitable integrand ( )., ωσ t  An important property is that this integral has 

expectation zero, i.e., 

( ) ( ) .0, =⎥⎦
⎤

⎢⎣
⎡ ωσ∫

b

a H tdBtE  

Duncan et al. [17] began to define the Wick product of two exponential 
functions ( ) ( ) ( )gfgf +=◊ EEE :  and also extended to define the Wick 

product of two functionals in the space of the linear span of the exponential 

functions which is dense in ( ) ( ).1≥Ω pLp  Further, they extended to more 

general functionals, including the functionals of the form ( ) ( )∫
∞

0
tdBtf H  for 

suitably given f. This integral by the method of the Wick product has been 
further developed by Hu and ∅ksendal [22] in a fractional white noise 
setting. As an application, they obtained no-arbitrary result in the Black-
Scholes model. However, in this setting, the underlying probability space 
depends on the Hurst parameter H of the fBm, i.e., one has to consider 
different spaces for different parameters. Moreover, 21>H  is assumed in 

constructing the appropriate spaces. Regarding this matter, Elliott and Van 
Der Hoek [18], in white noise setting, presented a new framework for fBm in 
which processes with all Hurst parameters in ( )1,0  could be considered 

under the same probability measure. As an application, they obtained the no-
arbitrage result in the Black-Scholes model.  
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Stochastic integration theory with respect to fBms was also developed by 
Hu [21]. Hu mainly used the integral kernels ( )stKH ,  and ( )stH ,η  such 

that 

( ) ( ) ( )∫=
t

HH sdBstKtB
0

,     and   ( ) ( ) ( )∫ η=
t

HH sdBsttB
0

,  

with fBm ( )tBH  ( )10 << H  and sBm ( ),tB  and extended the 

correspondence between fBm and sBm to that between nonlinear functionals 
of fBm and nonlinear functionals of sBm. Further, Hu used Wiener chaos 
expansion and idea of creation operator from quantum field theory in order to 
define stochastic integral. In fact, he introduced ‘algebraically integrable 
integrands’ for which stochastic integral could be defined. This integral has 
expectation zero and relates to the method of the Wick product, Malliavin 
calculus and Skorohod integral; for more details, see Biagini et al. [10], 
Mishura [32] and Nualart [34]. 

On the other hand, Bender [3, 5] gave a motivation for a simple 
definition of the fractional Ito integral and generalized the models in Hu and 
∅ksendal [22] and Elliott and Van Der Hoek [18]. This definition is based on 
the S-transform, an important tool in the white noise analysis, but carries 
over to an arbitrary probability space on which a two-sided Brownian motion 
lives. Concerning the definition of stochastic integrals, the S-transform 
approach is equivalent to the white noise definition as developed in Hu and 
∅ksendal [22], Elliott and Van Der Hoek [18] and Bender [4], as long as we 

suppose the integrand and the integral to be ( )Ω2L -valued. However, the     

S-transform approach is much simpler and does not make use of the 
complicated constructions from the white noise calculus. 

In the following, we briefly present the basic idea of the concept of the 
S-transform according to Bender [3]; we also refer a summary to Rostek [37]. 

First, we have to introduce some notation. For ,10 <α<  the Riemann-
Liouville fractional integrals (the fractional integrals of Weyl’s type) are 
defined by 
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( ) ( ) ( ) ( ) ( ) ( )∫ ∫
∞ ∞ −α−αα

− +
αΓ

=−
αΓ

=
x

dtttxfdtxttfxfI
0

11 ,11:  

( ) ( ) ( ) ( ) ( ) ( )∫ ∫∞−

∞ −α−αα
+ −

αΓ
=−

αΓ
=

x
dtttxfdttxtfxfI

0
11 11:  

if the integrals exist for almost all .R∈x  These fractional integrals are 
nothing but normalized blurred version of the function f, either averaging 
over future or over past function values. On the other hand, the fractional 
derivatives of Marchaud’s type are given by 

( )
( ) ( )∫

∞

ε α+
α

ε±
−

α−Γ
α= dt

t
txfxffD 1, 1: ∓  

and 

,lim: ,
0

fDfD α
ε±

→ε

α
± +

=  

if the limit exists in ( )RpL  for some .1>p  The notation ∈α
± fD        

( )RpL  indicates convergence in the ( )RpL -norm. Concerning the latter 

representation 

( )
( ) ( )

∫
∞

ε
α−

→ε

α
±

−
α−Γ

α
=

+
,1lim

0
dttt

txfxffD ∓  

we can interpret this fractional derivative as a weighted sum, this time 
averaging difference quotients yielding a blurred version of the first 
derivative f. 

Based on these definitions, for given Hurst parameter ( ),1,0∈H  

consider the fractional integrals fI α
±  with ( ),12121 <<−=α HH  and 

the fractional derivatives fDα
±  with ( ).21021 <<−=α HH  Then the 

operators HM ±  are defined as 
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( )

⎪
⎪

⎩

⎪
⎪

⎨

⎧

<<

=

<<

=

−
±

−−
±

±

.12
1,

,2
1,

,2
10,

21

21

HIK

Hf

HfDK

fM
H

H

H
H

H  (3.1) 

Here 

( ) [( ) ] .2
1121:

21

0
22121

−∞ −−

⎭
⎬
⎫

⎩
⎨
⎧ +−++Γ= ∫ HdsssHK HH

H  

We notice that 21
HH VK =  with ( ) ( )HHVH π+Γ= sin12  as given in (1.1). 

We recall a construction of fBm starting from a Brownian motion.  

Let ( )P,, FΩ  be a probability space that carries a two-sided Brownian 

motion B; observe B in equation (1.1). For ,, R∈ba  we define the indicator 

function 

[ ]( )

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤≤−

≤≤

=

.otherwise,0

,if,1

,if,1

, atb

bta

tba1  (3.2) 

By Bender [3, Theorems 2.1 and 2.6], we note the properties of the 

operators HM ±  as the following remarks: 

Remark 3.1. The fBm can be represented in terms of the operators HM ±  

and the indicator function [ ]:,0 t1  For ,10 << H  let the operators HM ±  be 

defined by (3.1). Then [ ] ( )R2,0 LtM H ∈− 1  and an fBm HB  is given by a 

continuous version of the Wiener integral 

( ) ( [ ]) ( ) ( )∫ −=
R

.,0 sdBstMtB H
H 1  (3.3) 

This is the well-known Mandelbrot and Van Ness representation (1.1); more 
details can be found in Bender [4]. 
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Remark 3.2. Using the operators ,HM ±  one can formulate the useful 

fractional integration by parts rule: 

( ) ( ) ( ) ( ) ( ) ( )∫ ∫ +− =
R R

dssgsfMdssgMsf HH  (3.4) 

for rapidly decreasing functions f and g on .R  

The S-transform is an important tool in white noise analysis. Here we 
give a definition and state some results that do not depend on properties of 

the white noise space. We first introduce some notation. ( )fI B  denotes the 

Wiener integral ( ) ( )∫R sdBsf  for function ( );2 RLf ∈  we notice that the 

underlying probability space is given by ( )P,, FΩ  that carries a two-sided 

Brownian motion B. If there is no danger of confusion, then we shall drop the 

superscript B. 0f  is the usual ( )R2L -norm, and the corresponding inner 

product is denoted by ( ) ., 0gf  

Let G  be the σ-field generated by ( ){ }.: R∈ffI  Then we define 

( ) ( )PLL ,,: 22 GΩ=  and denote by 0Φ  the ( )2L  norm. We also denote 

by ( )RS  the Schwartz space of smooth rapidly decreasing functions. Then, 

based on Bender [3, Definition 2.2], we define the S-transform on ( ):2L  

Definition 3.3. For ( ),2L∈Φ  the S-transform is defined by 

( ) ( ) [ ( ) ] ( ).,::
def

RSeES I ∈η⋅Φ=ηΦ η  (3.5) 

Here the Wick exponential of ( )ηI  is defined by 

( ) ( )
( ) ( ) ( ) .2

1exp:: 22
1def 2

0 ⎟
⎠
⎞

⎜
⎝
⎛ η−η== ∫ ∫

η−ηη
R R

dsssdBsee
II  (3.6) 

Hence, (3.5) is rewritten as 

( ) ( ) ( ) ( ) ( ) ( ).,2
1exp 2 R

R R
SdsssdBsES ∈η⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ η−η⋅Φ=ηΦ ∫ ∫  
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From now on, the S-transform of an element Φ of ( )2L  is noted by SΦ     

or [ ].ΦS  

By Definition 3.3, for ( )2L∈Φ  fixed, the S-transform is a functional 

from ( )RS  to ,R  i.e., ( ) ( ) .: RR →Φ SS  

Remark 3.4. The mapping ( )ΦΦ S6  is injective: If ( ) ( ) =ηΦS  

( ) ( )ηΨS  for all ( ),RS∈η  then .Ψ=Φ  This result is well known in the 

white noise setting; an elementary proof can be found in Bender [3, Theorem 
2.2]. 

By Bender [3, Theorem 2.3], we can characterize ( )2L  convergence in 

terms of the S-transform: 

Remark 3.5. Let nΦ  be a sequence in ( )2L  and ( ).2L∈Φ  Then the 

following assertions are equivalent: 

(i) nΦ  (strongly) converges to ( ).2L∈Φ  

(ii) ,00 Φ→Φn  and for all ( ),RS∈η  ( ) ( ) ( ) ( ).ηΦ→ηΦ SS n  

It is easy to prove the following property of the Wick exponential: 

Remark 3.6. Let ( )., 2 RLgf ∈  Then 

[ ( ) ( ) ] ( ) .:::: 0, gfgIfI eeeE =⋅  

In particular, since ( ( ) ) ( ) [ ( ) ( ) ]:::::: η⋅=η IfIfI eeEeS  for ( ),RS∈η  

we have 

( ( ) ) ( ) ( ) ( ).,:: 0, RSeeS ffI ∈η=η η  

Further, by Remark 3.6, we have [ ( ) ] 1:: =fIeE  for ( ).2 RLf ∈  Hence, 

we can define a probability measure on G  by 

( ) .::
def

dPedQ fI
f =  (3.7) 



K. Narita 106

We notice that P and fQ  are equivalent. Thus, with the measures ,ηQ  

( ),RS∈η  we can rewrite the S-transform as 

( ) ( ) [ ].Φ=ηΦ ηQES  (3.8) 

In the following, we briefly summarize several properties of the 
S-transform according to Bender [3, Sections 2 and 3]. 

The S-transform of a simple Wiener integral ( ) ( )∫
b
a

tdBtf  for 

deterministic function f is 

( ) ( ) ( ) ( ) ( )∫∫ η=η⎟
⎠
⎞

⎜
⎝
⎛ b

a

b

a
dtttftdBtfS .  (3.9) 

In fact, since ( ) ( ) ( )∫ η−=
t

dsstBtB
0

:~  for ( )RS∈η  is a two-sided Brownian 

motion under the measure ,ηQ  equation (3.8) yields 

( ) ( ) ( ) ( ) ( ( ) ( ) )⎥⎦
⎤

⎢⎣
⎡ η+=η⎟

⎠
⎞

⎜
⎝
⎛ ∫∫ η

b

a

Qb

a
dtttBdtfEtdBtfS ~  

( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ η= ∫η

b

a

Q dtttfE  

( ) ( )∫ η=
b

a
dtttf .  

In particular, considering ( ) 1≡tf  in (3.9), we obtain 

( )( ) ( ) ( ) ( ) ( )∫∫ η=η⎟
⎠
⎞

⎜
⎝
⎛=η

tt
dsssdBStBS

00
.1  (3.10) 

For simplicity, we interpret a stochastic process as an ( )2L -valued 

function. Then the notion of Pettis integrability in Bender [3, Definition 2.3] 
fits better than the pathwise integral: 

Definition 3.7. Let ( )2: LX →M  ( R⊂M  a Borel set). Then X is 

said to be Pettis integrable if [ ] ( )M1LXE ∈Ψ  for any ( ).2L∈Ψ  In that 
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case there is a unique ( )2L∈Φ  such that for all ( ),2L∈Ψ  

[ ] ( )[ ]∫ Ψ=ΦΨ
M

.dttXEE  

Φ is called the Pettis integral of X and is denoted by ( )∫M .dttX  

Note that by this definition we have, for a Pettis integrable X, 

( )[ ] ( )∫ ∫ ⎥⎦
⎤

⎢⎣
⎡ Ψ=Ψ

M M
dttXEdttXE  

for all ( ).2L∈Ψ  In particular, the Pettis integral interchanges with the 

S-transform; in fact, observe the case where ( ) :: η=Ψ Ie  with ( ).RS∈η  

We shall point out the relationship between the Pettis integral and         
the pathwise integral. Let [ ] R→baX ,:  be measurable and pathwise 

integrable such that the pathwise integral belongs to ( ).2L  If X is good 

enough to apply Fubini’s theorem, then we can interchange the integrals: 

( ) ( )[ ]∫∫ Ψ=⎥⎦
⎤

⎢⎣
⎡ Ψ⋅

b

a

b

a
dttXEdttXE ,  

where the integral on the left-hand side is the ordinary pathwise integral. 
Hence, the Pettis integral defined in Definition 3.7 coincides with the 
pathwise integral in that case. 

Now, according to Bender [3, Theorem 3.1], we describe the classical Ito 
integral and fractional Ito integral from an S-transform point of view. 

Let ba ≤≤0  and [ ] R→Ω×baX ,:  be a progressively measurable 

(with  respect to the filtration tF  generated by the Brownian motion ( ),sB  

)ts ≤≤0  process satisfying 

( ) .2 ∞<⎥⎦
⎤

⎢⎣
⎡∫

b

a
dttXE  
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Then the classical Ito integral ( ) ( )∫
b
a

tdBtX  with respect to the Brownian 

motion B exists. We calculate its S-transform in the following: let ,ηQ  

( ),RS∈η  be the measure defined by (3.7). Then, by the classical Girsanov 

theorem, ( ) ( ) ( )∫ η−=
t

duutBtB
0

:~  is a two-sided Brownian motion under 

the measure ,ηQ  and ( ) ( )∫
s
a

tBdtX ,~  ,bsa ≤≤  is a ηQ -martingale with 

zero expectation. Then, by (3.8), (3.10) and Fubini’s theorem, we obtain the 
following: 

( ) ( ) ( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡=η⎟

⎠
⎞

⎜
⎝
⎛ ∫∫ η

b

a

Qb

a
tdBtXEtdBtXS  

( ) ( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ η+= ∫ ∫η

b

a

b

a

Q dtttXtBdtXE ~  

( )[ ] ( )∫ η= η
b

a

Q dtttXE  

( )( ) ( ) ( )∫ ηη=
b

a
dtttSX  

( )( ) ( ) ( )( ) ( )∫ ηη=
b

a
dttBSdt

dtXS .  

As the S-transform is injective, it also can be taken to define the above 
integrals. Thus, we can summarize as follows: 

Theorem 3.8. (i) Let ba ≤≤0  and [ ] R→Ω×baX ,:  be a 

progressively measurable process such that ( ) .2 ∞<⎥⎦
⎤

⎢⎣
⎡∫

b
a

dttXE  Then the 

Ito integral ( ) ( )∫
b
a

tdBtX  is the unique element in ( )2L  with S-transform 

given by 
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( ) ( ) ( ) ( )( ) ( ) ( )∫∫ ηη=η⎟
⎠
⎞

⎜
⎝
⎛ b

a

b

a
dtttSXtdBtXS  

( )( ) ( ) ( )( ) ( )∫ ηη=
b

a
dttBSdt

dtXS .  (3.11) 

(ii) The Wiener integral ( ) ( ) ( ) ( )∫ ∈=
R

R ,,: 2LftdBtffI  is the unique 

element in ( )2L  with S-transform given by 

( ) ( )∫ η
R

.dtttf  (3.12) 

Drawing the conclusion by analogy, one can accordingly define the 

fractional integral of Wick-Ito type ( ) ( )∫
b
a H tdBtX  to be the unique random 

variable with S-transform 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )∫∫ ηη=η⎟
⎠
⎞

⎜
⎝
⎛ b

a H
b

a H dttBSdt
dtXStdBtXS .  (3.13) 

If we recall (3.3) and apply the S-transform on the Wiener integral 
following (3.9) as well as the fractional integration by parts rule (3.4), then 
we receive 

( )( ) ( ) ( [ ]) ( ) ( ) ( )η⎟
⎠
⎞

⎜
⎝
⎛=η ∫ −R

sdBstMSdt
dtBSdt

d H
H ,01  

[ ]( ) ( )∫ η= −R
dssstMdt

d H ,01  

( ) ( )∫ η= +
t H dssMdt

d
0

 

( ) ( ).tM H η= +  

Thus, (3.13) can be reformulated and we arrive at the following 
definition: 
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Definition 3.9. Let ( )2: LX →M  ( R⊂M  a Borel set). Then X         

is said to have a fractional Ito integral (S-transform approach) if 

( )( ) ( ) ( ) ( ) ( )M1LMXS H ∈⋅ηη⋅ +  for any ( )RS∈η  and there is a ( )2L∈Φ  

such that for all ( ),RS∈η  

( ) ( ) ( )( ) ( ) ( ) ( )∫ ηη=ηΦ +
M

.dttMtXSS H  (3.14) 

In this case, Φ is uniquely determined by the injectivity of the S-transform 

(see Remark 3.4) and it is denoted by ( ) ( )∫M ,tdBtX H  i.e., 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )∫∫ ηη=η⎟
⎠
⎞

⎜
⎝
⎛

+
MM

.dttMtXStdBtXS H
H  

Remark 3.10. The fractional Ito integral as defined by the S-transform 
approach in Definition 3.9 has expectation zero: 

( ) ( ) .0=⎥⎦
⎤

⎢⎣
⎡∫

b

a H tdBtXE  

In fact, for ( ) ( )∫=Φ
b
a H tdBtX ,  the S-transform at 0=η  implies 

[ ] [ ( ) ] ( ) ( ) ( )( ) ( ) ( ) ( )∫ =⋅=Φ=|⋅Φ=Φ +=η
η b

a
HI dttMtXSSeEE .0000:: 0  

Let us now introduce the Wick product in Bender [3, Definition 3.3]. 

Definition 3.11. Let ( )2, L∈ΨΦ  and assume that there is an element 

( ),2L∈Ψ◊Φ  that satisfies 

( ) ( ) ( ) ( ) ( ) ( )ηΨηΦ=ηΨ◊Φ SSS  for all ( ).RS∈η  

Then Ψ◊Φ  is called the Wick product of Φ and Ψ. 

The next result by Bender [3, Theorem 3.6] explores the relationship 
between the fractional Ito integral and the Wick product: 
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Theorem 3.12. Let ( )2: LX →R  and ( ).2LY ∈  Then 

( ) ( ) ( ) ( )∫ ∫ ◊=◊
R R

sdBsXYsdBsXY HH  

in the sense that if one side is well-defined, then so is the other, and both 
coincide. 

The straightforward proof can be carried out by calculating the 
S-transform of both sides. Theorem 3.12 leads us to the following: 

(i) In particular, this result implies that, for good random variables Y, 

( ) ( )( ) [ ]( ) ( )∫=−◊
R

., sYdBsbaaBbBY HHH 1  

(ii) Together with the fractional Ito isometry (Bender [3, Corollary 3.5]), 
this shows that for sufficiently good processes X, the fractional Ito integral is 

an ( )2L  limit of Wick-Riemann sums; for instance, see Duncan et al. [17]. 

(iii) Note that, in general, the Wick product does not coincide with the 
ordinary pathwise product. 

We now turn to the white noise calculus approach. So we assume          
the underlying probability space to be the white noise space, that is, Ω is 

( ),RS ′  the space of tempered distributions. The general idea of the white 

noise approach is as follows: Although the fractional Brownian motion 

( )2: LBH →R  is not differentiable on almost every path, it has a 

derivative, if we look at ( )∗→ SBH R:  (see Bender [4, Theorem 2.17]). 

Here ( )∗S  denotes a space of generalized random variables, the so-        

called Hida distributions; ( ) ( ) .2 ∗⊂ SL  For more information about Hida 

distributions, see Hida et al. [19] and Kuo [26]. Note that the S-transform    

can be extended to ( ) .∗S  Then, by Bender [4, Theorem 3.7], since 

( ) ( ) ( ) ( )tMtBdt
dS H

H η=η⎟
⎠
⎞⎜

⎝
⎛

+  for ( ),RS∈η  we get 
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( ) ( ) ( ) ( )( ) ( ) ( ) ( )η⎟
⎠
⎞⎜

⎝
⎛η=η⎟

⎠
⎞⎜

⎝
⎛ ◊ tBdt

dStXStBdt
dtXS HH  

( )( ) ( ) ( ) ( ) ( ),, RStMtXS H ∈ηηη= +  

where the diamond ◊  denotes extension of the Wick product to ( )∗S  such 

that 

( ) ( ) ( ) ,: ∗∗∗ →×◊ SSS  continuous mapping. 

This leads us to the white noise approach such that the fractional Ito integral 

can be defined as the ( )∗S -valued Pettis integral of ( ) ( ),tBdt
dtX H◊  if it 

exists; 

( ) ( ) ( ) ( )∫ ∫ ◊=
b

a

b

a HH dttBdt
dtXtdBtX .  (3.15) 

In fact, a formal calculation shows that for ( ),RS∈η  

( ) ( ) ( ) ( ) ( ) ( )∫∫ η⎟
⎠
⎞⎜

⎝
⎛ ◊=η⎟

⎠
⎞

⎜
⎝
⎛ b

a H
b

a H dttBdt
dtXStdBtXS  

( )( ) ( ) ( ) ( )∫ ηη= +
b

a
H tMtXS ,  

and hence (3.14) of Definition 3.9 will yield the required assertion. 

4. The White Noise Setting 

In the following, we present some background of the standard Gaussian 
white noise calculus which can be found in Hida et al. [19] and Kuo [26]. 

Let ( )RS  be the Schwartz space, i.e., the space of smooth rapidly 

decreasing functions on .R  Let ( )RS ′  denote the space of tempered 

distributions, which is the dual space of ( ).RS  Consider the Gel’fand triple: 

( ) ( ) ( )RRR SLS ′⊂⊂ 2  
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on the real line .R  Then we assume the underlying probability space 

( )P,, FΩ  to be the white noise space, that is, Ω is the space ( ),RS ′  F  is 

the σ-algebra generated by the open sets in ( )RS ′  with respect to the weak∗ 

topology of ( ).RS ′  The probability measure P is uniquely determined by    

the Bochner-Minlos theorem such that for all rapidly decreasing functions 
( ),RSf ∈  

{ } ( )
( )∫ ′

−=
⎭⎬
⎫

⎩⎨
⎧−=ωω

RS
ifdPfi .1,2

1exp,exp 2
0  (4.1) 

Here f,ω  denotes the dual action and 0⋅  is the usual ( )R2L -norm.     

The corresponding inner product is denoted by ( ) ., 0⋅⋅  Namely, for every 

( ),RSf ∈  the map R→Ω⋅ :, f  defined by ( ) ff ,, ω=ω⋅  (where  

f,ω  is by definition ( ),fω  i.e., the action of the distribution ω on the 

function )f  is a centered Gaussian random variable with variance equal to 
2
0f  under P. 

From relation (4.1) and the isometry [ ] 2
0

2, ffE =⋅  for ( ),RSf ∈  

we can extend g,⋅  to ( ).2 RLg ∈  Hence, for ( ),, 2 RLgf ∈  

[ ] ( ) .,,, 0gfgfE =⋅⋅  (4.2) 

For ,, R∈ba  let [ ]( )tba,1  be the indicator function as defined by 

(3.2). Then a continuous version of [ ]t,0, 1⋅  is a classical Brownian motion 

on the white noise space. Hence, approximating with step functions yields 

( ) ( )∫=⋅
R

,, tdBtff  (4.3) 

where ( ) ( )∫R tdBtf  denotes the classical Wiener integral of a function 

( ).2 RLf ∈  
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Equation (3.3) of Remark 3.1 shows that an fBm with arbitrary Hurst 
parameter H is given by a continuous version of the Wiener integral of        
the Mandelbrot and Van Ness type as shown in (1.1). Then, by Bender         

[4, Theorem 2.2], we can describe this result in terms of the operators HM ±  

as follows: 

Theorem 4.1. Let .10 << H  Further, let HM ±  be the operators as 

defined by (3.1). Then an fBm is given by a continuous version of 

[ ] .,0, tM H 1−⋅  

In the following, according to Bender [4, Theorems 2.4, 2.7 and Corollary 

2.8], we summarize several properties of the operators HM ±  for later use. 

Theorem 4.2. HM −  and HM +  are dual operators in a suitable sense, 

i.e., for nice functions, the following relation holds: 

( ) ( ) .,, 00 gfMgMf HH
+− =  

This yields the following relation: 

( [ ]) ( ) ( )∫ +− =
t HH dssfMtMf
00,0, 1  for ( )RSf ∈  and .10 << H  

Theorem 4.3. Let ( )1,0∈H  and ( ).RSf ∈  Then 

 (i) fM H
+  is continuous, 

(ii) ( [ ])0,0, tMf H 1−  is differentiable and 

( [ ]) ( ).,0, 0 tfMtMfdt
d HH

+− =1  

As in the case of a standard Brownian motion ( ),21=H  an fBm with 

Hurst parameter 10 << H  is nowhere differentiable on almost every path. 
However, we can show that HB  is differentiable as a mapping from R  into 

a space of stochastic generalized functions, the so-called Hida distributions. 
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Hence, we obtain a representation of its derivative as generalized Wiener 
integral. In order to show these, we proceed to fundamental results, referring 
to Bender [4, Section 2.3], Corlay et al. [15, Section 5.1] and Lebovits et al. 
[28, Section 4.1]. 

Let ( ) ( ),,,: 22 PLL GΩ=  where G  is the σ-field generated by 

( )., 2 RLff ∈⋅ �  

We recall the Wiener-Ito theorem (see Nualart [34, Theorem 1.1.2,         

p. 13]) which says that every ( )2L∈Φ  can be uniquely decomposed as a 

sum of multiple Wiener integrals: 

( ) ( )∑
∞

=

∈=Φ
0

2 ,ˆ,
n

n
nnn LffI R  

where ( )nL R2ˆ  denotes the set of all symmetric functions f in ( )nL R2  and 

( )fIn  denotes the nth multiple Wiener integral of f with respect to the 

Brownian motion, defined by 

( ) ( ) ( )∫= n tdBtffI n
n R

:  

( ) ( ) ( ) ( )∫ ∫ ∫ ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

∞− ∞−R n
t t

n tdBtdBtdBttfn n "" 211
2 ...,,!  

with the convention that ( ) 00 ffI =  for constants .0f  The above 

decomposition is called the Wiener chaos of Φ. Moreover, the ( )2L -norm 

0Φ  of Φ is given by 

( [ ]) ,!::
21

0

2
0

212
0 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=Φ=Φ ∑

∞

=n
nfnE  

where 0⋅  denotes the ( )nL R2 -norm for any n. 
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For ...,,2,1,0=n  define 

( ) ( ) ( ) ( )22 expexp1: x
dx
dxxh n

n
n

n −−=  (the nth Hermite polynomial) 

and 

( ) ( ) ( ) ( ) ( )xhxnxe n
n

n 2exp!2: 22141 −π= −−  (the nth Hermite function) 

( ) ( ) ( ) ( ) ( ).exp2exp!21 222141 x
dx
dxn n

n
nn −π−= −−  

Let A denote the operator .12
2

2
++−= x

dx
dA  Then we notice that the 

Hermite functions form an orthonormal basis of ( )R2L  and that the Hermite 

functions are the eigenvectors of A, satisfying ( ) .22 nn enAe +=  

For any ( )∑ ∞
==Φ 0 ,: n nn fI  the Wiener chaos expansion, satisfying the 

condition 

∑
∞

=

⊗ ∞<
0

2
0 ,!

n
n

n fAn  

defines the element ( )ΦΓ A  of ( )2L  by 

( ) ( )∑
∞

=

⊗=ΦΓ
0

,:
n

n
n

n fAIA  

where nA⊗  denotes the nth tensor power of the operator A. Both operators, A 

and ( ),AΓ  are densely defined in ( )R2L  and ( ),2L  respectively; they are 

invertible and the inverse operators 1−A  and ( ) 1−Γ A  are bounded on ( )R2L  

and ( ),2L  respectively (see Kuo [26]). 

Let us denote ( )2:0 Lϕ=ϕ  for ϕ in ( ),2L  i.e., the ( )2L -norm, and 

let ( ( ) )nAΓomD  be the domain of the nth iteration of ( ).AΓ  Define the 
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family of norms ( ) Z∈⋅ p  by 

( ) ( ) ( ),: 20 L
pp

p AA ΦΓ=ΦΓ=Φ  

( ) ( ( ) ).om, 2 pALp Γ∈Φ∀∈∀ DZ ∩  

For any ,N∈p  let 

( ) { ( ) ( ) ( )}22 tobelongsandexists;: LAL p
p ΦΓ∈Φ=S  

and define ( )p−S  as the completion of the space ( )2L  with respect to the 

norm .p−⋅  As in Kuo [26], we let ( )S  denote the projective limit of       

the sequence (( )) N∈ppS  and ( )∗S  the inductive limit of the sequence 

(( )) .N∈− ppS  Again this means that we have the equalities 

( ) ( )∩
N∈

=
p

pSS  resp. ( ) ( )∪
N∈

−
∗ =

p
pSS  

and that convergence in ( )S  ( resp.  in ( ) )∗S  means convergence in ( )pS  

for every p in N  (resp. convergence in ( )p−S  for some p in ;N  by Kuo 

[26], this is equivalent to convergence in the weak∗ topology). Moreover, by 
Kuo [26, p. 21, pp. 28-29], ( )pS  is a Hilbert space with norm p⋅  and ( )S  

is a countably Hilbert space. 

Definition 4.4. The space ( )S  is called the space of stochastic test 

functions and ( )∗S  the space of Hida distributions. 

By Kuo [26, p. 21], for any p in ,N  the dual space ( )∗pS  of ( )pS  is 

( ).p−S  Thus, we can write ( ),p−S  to denote the space ( ) .∗
pS  As the 

notation suggests, ( )∗S  is the dual space of ( ).S  Thus, we have the Gel’fand 

triple: 

( ) ( ) ( ) .2 ∗⊂⊂ SS L  
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We will note ,  the duality bracket between ( )∗S  and ( ),S  that is, 

the bilinear pairing of ( )∗S  and ( )S  such that for ( )∗∈Φ S  and ( ),S∈ϕ  

ϕΦ,  is the dual action. If Φ, ϕ belong to ( ),2L  then we have the equality 

( ) [ ];,, 2 ϕ⋅Φ=ϕΦ=ϕΦ EL  

see Bender [4, Section 2.3] and Lebovits and Lévy-Véhel [27, Section 2.3]. 

The concept of stochastic (Hida) test functions and stochastic 
distributions may seem rather abstract. The motivation for introducing these 
spaces, however, is very similar to that behind using Schwartz test functions 
and distributions. 

Definition 4.5. Let R⊂I  be an interval. Then a function ( )∗→Φ SI:  

is called a stochastic distribution process, or an ( )∗S -process, or a Hida 

process. 

Definition 4.6. Let .0 It ∈  A stochastic distribution process →Φ I:  

( )∗S  is said to be differentiable at ,0t  if the limit ( ) ( )
h

tht
h

00
0lim Φ−+Φ

→  

exists in ( ) .∗S  We note ( )0tdt
dΦ  the ( )∗S -derivative at 0t  of the stochastic 

distribution process Φ. Φ is said to be differentiable over I if it is 

differentiable at every 0t  in I; recall that convergence in ( )∗S  means, that 

there exists N∈p  such that we have convergence with respect to the norm 

.p−⋅  

Now, the Pettis integrability of the ( )2L -valued function as introduced in 

Definition 3.7 is extended to that of the ( )∗S -valued function: 

Definition 4.7. Assume that ( )∗→Φ SR:  is weakly in ( ),,1 dtL R  i.e., 

assume that for all ϕ in ( ),S  the mapping ϕΦ,6u  from R  to R  

belongs to ( ).,1 dtL R  Then there exists a unique element in ( ) ,∗S  noted 



Linear Stochastic Differential Equation 119

( )∫ Φ
R

duu  such that 

( ) ( )∫∫ ϕΦ=ϕΦ
RR

duuduu ,,  for all ϕ in ( ).S  

We say in this case that Φ is ( )∗S -integrable on R  in the Pettis sense; see 

Corlay et al. [15, Theorem 5.1]. 

In the sequel, when we do not specify a name for the integral of an ( )∗S -

integrable process Φ on ,R  we always refer to the integral of Φ in Pettis’ 
sense; see Kuo [26] for more details. The useful criterion of the integrability 
in the Pettis sense will be given by Definition 4.21 and Theorem 4.22 in 
terms of the S-transform, later on. 

Definition 4.8. For ( ),RS∈η  the Wick exponential of ,, η⋅  denoted 

:,: , η⋅e  is defined as the element of ( )S  given by 

( ) ( )∑
∞

=

⊗−η⋅ η=
0

1def, !::
n

n
nIne ( ( )).inequality 2L  

More generally, for ( ),2 RLf ∈  we can define :: , fe ⋅  as the ( )2L  random 

variable equal to .
2
02

1, ff
e

−⋅
 We will sometimes note f,exp ⋅◊  instead 

of .:: , fe ⋅  This random variable belongs to ( )PLp ,Ω  for every integer 
.1≥p  

We now recall the definition of the S-transform of an element Φ of 

( ) ,∗S  noted ( ),ΦS  ,ΦS  or [ ];ΦS  see Bender [4, Definition 3.4], Lebovits 

et al. [28, Section 4.1] and Corlay et al. [15, Section 5.1]. 

Definition 4.9. The S-transform ( ) ( )ηΦS  of an element Φ of ( )∗S  is 

defined as the function from ( )RS  to R  given by 

( ) ( ) ::, ,def η⋅Φ=ηΦ eS  for every ( ).RS∈η  
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We notice that ( ) ( )ηΦS  is nothing but 

[ ] [ ]η⋅−η⋅ Φ=Φ ,2
1

,
2
0:: eEeeE

n
 

when Φ belongs to ( );2L  we recall Definition 3.3. 

Define for ( )RS∈η  the probability measure ηQ  by 

.:: ,def η⋅η = edP
dQ

 

Then the probability measures ηQ  and P are equivalent. Hence, by definition 

( ) ( ) [ ]Φ=ηΦ ηQES  for every ( );2L∈Φ  we recall (3.8). 

The following lemma will be used later on. 

Lemma 4.10. (i) Let p be a positive integer and Φ be an element in 
( ).p−S  Then 

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ ηΦ≤ηΦ −

2
2
1exp ppS  

for any η in ( ).RS  

(ii) Let ∑∞
= ⋅=Φ 0 ,: k kk ea  belong to ( ) .∗S  Then the following 

equality holds for every η in ( ):RS  

( ) ( ) ( )∑
∞

=
η=ηΦ

0
., 2

k
Lkk eaS R  

We note that (i) is proved in Kuo [26, p. 79] and (ii) is verified by (3.12) 
of Theorem 3.8 as follows: for ( ),RS∈η  

 ( ) ( ) ( ) ( )∑
∞

=
η⋅=ηΦ

0
,

k
kk eSaS  
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( ) ( ) ( )∑ ∫
∞

=
η⎟

⎠
⎞

⎜
⎝
⎛=

0k
kk tdBteSa

R
 

( )∑
∞

=
η=

0
., 2

k
Lkk ea R  

Another useful tool in white noise analysis is the Wick product (Kuo    
[26, p. 92]): 

Definition 4.11. For every ( ) ( ) ( ) ,, ∗∗ ×∈ΨΦ SS  there exists a unique 

element of ( ) ,∗S  called the Wick product of Φ and Ψ and noted ,Ψ◊Φ  

such that for every ( ),RS∈η  

( ) ( ) ( ) ( ) ( ) ( ).ηΨηΦ=ηΨ◊Φ SSS  

For any ( )∗∈Φ S  and ...,,2,1,0=k  let k◊Φ  denote the element 

����

"
timesk

Φ◊◊Φ  of ( ) .∗S  Then we can generalize the definition of ◊exp  to the 

case where Φ belongs to ( ) .∗S  

Definition 4.12. For any ( )∗∈Φ S  such that ∑ ∞+
=

◊Φ
0 !k

k

k  converges in 

( ) ,∗S  define the element Φ◊exp  of ( )∗S  by 

.!exp
0

def
∑
+∞

=

◊
◊ Φ=Φ

k

k

k  

This is called Wick exponential of Φ. 

For f in ( )R2L  and ,,
def

f⋅=Φ  it is easy to verify that Φ◊exp  given by 

Definition 4.12 exists and coincides with :: , fe ⋅  given by Definition 4.8. 

Remark 4.13. Let Φ be deterministic. Then, for all ( ) ,∗∈Ψ S  Ψ◊Φ  

.ΦΨ=  Moreover, let ( )( ) R∈ttX  be a Gaussian process and let H  be the 
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subspace of ( )2L  defined by ( ){ }( )
.;:

2L
ttXvect RR ∈=H  If X and Y are 

two elements of ,H  then [ ].XYEXYYX −=◊  

The following results on the S-transform will be used in the sequel; for 
proofs and a brief summary, see Bender [4, Theorem 3.6], Corlay et al. [15, 
Section 5.1], Kuo [26, p. 39] and Lebovits and Lévy-Véhel [27, Section 2.4]. 

Theorem 4.14. The S-transform verifies the following properties: 

(i) The map ( ),: ΦΦ SS 6  from ( )∗S  to ( ) ,∗S  is injective. 

(ii) Let ( )∗→Φ SR:  be an ( )∗S -process. If Φ is ( )∗S -integrable over 

,R  then 

( ) ( ) ( )( ) ( )duuSduuS ∫∫ ηΦ=η⎟
⎠
⎞

⎜
⎝
⎛ Φ

RR
 for all ( ).RS∈η  

(iii) Let ( )∗→Φ SR:  be an ( )∗S -process differentiable over .R  Then, 

for every ( ),RS∈η  the map ( ) ( )[ ]( )ηΦ uSu 6  is differentiable over R  

and verifies 

( ) ( ) ( )[ ]( )[ ].ηΦ=η⎥⎦
⎤

⎢⎣
⎡ Φ tSdt

dtdt
dS  

We recall that the sample paths of fBm are almost surely non-
differentiable. However, fBm is differentiable as a stochastic distribution 
process as shown in the following. 

First we shall find [ ].,0 tMdt
d H 1−  This in turn depends on the following 

property of Hermite functions as given in Bender [4, Lemma 2.14]: 

Lemma 4.15. Assume ( )1,0∈H  and ne  is the nth Hermite function. 

Then there is a constant 0>HC  such that 

( ) ( ) ( ) .1max 125+≤+
∈

nCxeM Hn
H

x R
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Then the following result in Bender [4, Lemma 2.15] is essential: 

Lemma 4.16. Let ( )1,0∈H  and ( ).RSf ∈  Then [ ] →⋅− R:,01HM  

( )RS ′  is differentiable and 

[ ] ( ) ( )∑
∞

=
+− =

0
,,0

k
kk

HH eteMtMdt
d 1  (4.4) 

where the limit is in ( ).RS ′  

Before we prove Lemma 4.16, we recall that one can reconstruct ( )RS  

(resp. ( )),RS ′  the space of Schwartz test functions (resp. the space of 

tempered distributions), as the projective limit (resp. the inductive limit), as 

follows: Observe that ( ) ,22 kk ekAe +=  where 12
2

2
++−= x

dx
dA  and 

ke  are the Hermite functions which form an orthonormal basis of ( ).2 RL  

Then, for ,Z∈p  define 

( ) ( ) ( ) ( )∑
∞

=

×∈+==
0

22
0

22
0

2 ,,,,22:
k

k
pp

p LfpefkfAf RZ  (4.5) 

where the last equality follows from the fact that ke  is an eigenfunction of A 

with eigenvalue ( ),22 +k  and 0⋅  denotes the usual ( )R2L -norm. 

For ,N∈p  define the spaces 

( ) { ( ) }∞<∈= pp fLfS ;: 2 RR  

and ( )RpS−  as being the completion of the space ( )R2L  with respect to the 

norm ,p−⋅  that is, 

( ) ( )∑
∞

=

−−
− +==

0

2
0

22
0

2 .,22:
k

k
pp

p efkfAf  (4.6) 
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Then it is well-known that ( )RS  is the projective limit of the sequence 

( ( )) NR ∈ppS  and that ( )RS ′  is the inductive limit of the sequence 

( ( )) ,NR ∈− ppS  that is, 

( ) ( )∩
N

RR
∈

=
p

pSS       and    ( ) ( )∪
N

RR
∈

−=′
p

pSS .  

Thus, convergence in ( )RS  is nothing but convergence in ( )RpS  for 

every N∈p  and that convergence in ( )RS ′  is convergence in ( )RpS−  for 

some .N∈p   

To summarize, we have a sequence of norms on ( ):RS  

.22
1

2
0

2
1

2 """" ≤≤≤≤≤≤≤≤ −− pp fffff  

The space ( )RS  is topologised by an increasing sequence of norms, and 

hence it is a countably Hilbert space. Moreover, we note that for any ,N∈p  

the dual space ( )RpS ′  of ( )RpS  is ( );RpS−  see Kuo [26, pp. 17-18], for 

more details. 

Proof of Lemma 4.16. We refer the proof to Bender [4, p. 90]. We first 

mention that the Hermite functions ke  form an orthonormal basis in ( )R2L  

and hence we can write 

[ ] ( [ ] ) ( ) ( )∑ ∑ ∫
∞

=

∞

=
+−− ⎟

⎠
⎞

⎜
⎝
⎛==

0 0 00 ,,,0,0
k k

k
t

k
H

kk
HH edsseMeetMtM 11  

where the last equality is a consequence of Theorem 4.2. Hence, 

[ ] [ ] ( ) ( )
2

10

,0,0

−

∞

=
+

−− ∑−
−+

k
kk

H
HH

eteMh
tMhtM 11  

( ) ( ) ( ) ( )
2

10

1

−

∞

=

+
++∑ ∫ ⎟

⎠
⎞

⎜
⎝
⎛ −=

k
k

ht

t k
H

k
H eteMdsseMh  
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( ) ( ) ( ) ( ) ( )∑ ∫
∞

=

+
++

− ⎟
⎠
⎞

⎜
⎝
⎛ −+=

0

2
2 .122

k

ht

t k
H

k
H teMdsseMhk  (4.7) 

Here the last equality follows from (4.6) and from the fact that ke  are 

orthogonal, i.e., ( ) 0, 0 =kj ee  if ,kj ≠  which effectively removes the 

second summation. We next see that from Lemma 4.15, the right-hand side 
of (4.7) converges uniformly in h. Thus, we can pass the limit as 0→h  
under the summation. Finally, 

[ ] [ ] ( ) ( )
2

100
,0,0lim

−

∞

=
+

−−
→ ∑−

−+

k
kk

H
HH

h
eteMh

tMhtM 11  

( ) ( ) ( ) ( ) ( )∑ ∫
∞

=

+
++→

− =⎟
⎠
⎞

⎜
⎝
⎛ −+=

0

2

0
2 ,01lim22

k

ht

t k
H

k
H

h
teMdsseMhk  

because Theorem 4.3(i) tells us that k
H eM +  is continuous. Thus, with 

convergence in 1−⋅  (for the norm, see (4.6)), 

[ ] ( [ ] ) ( ) ( )∑ ∑ ∫
∞

=

∞

=
+−− ⎟

⎠
⎞

⎜
⎝
⎛==

0 0 00,,0,0
k k

k
t

k
H

kk
HH edsseMeetMtM 11  

and since the Schwartz distributions ( ),RS ′  that is continuous linear 

functionals on ( ),RS  is equal to the union over p of ( ) ( ),: RR pp SS −=′  i.e., 

( ) ( )∪
N

RR
∈

−=′
p

pSS ,  we get the above equality with convergence in ( ).RS ′  

This completes the proof of Lemma 4.16. 

Because of the identity ( ) ( )tMtB H
H ,0, 1−⋅=  ((3.3) of Remark 3.1), 

Lemma 4.16 might suggest that 

( ) ( ) ( ) .,
0

∑
∞

=
+⋅=

k
kk

H
H eteMtBdt

d  



K. Narita 126

But the integrand of this Wiener integral is not an element of ( ),2 RL  but a 

tempered distribution. So we need to extend the Wiener integral to tempered 
distributions. 

Let ( ) .,2 NR ∈∈ pLf  Then we can use (4.3) and get 

( ) ( ) ( ) ;, 1 p
p

p fItdBtff −
−

− ==⋅ ∫R  

in general, ( )fIn  means the nth multiple Wiener integral of f with respect to 

the Brownian motion ( ).tB  Further, by definition of the p−⋅ -norm, i.e., 

( ) ( ) ( ),20 L
pp

p AA ΦΓ=ΦΓ=Φ −−
−  and due to the fact that ( )fI1  

is a chaos expansion consisting of that single term, we obtain 

( ) ( ) ., 0011 p
pp

pp ffAfAIfIf −
−−

−− ====⋅  (4.8) 

In (4.8), we used (4.3) and Ito’s isometry such that 

( ) [ ] .,, 2
0

22 ffELf =⋅∈∀ R  

Hence we have, for all ,N∈p  

( ) ( ) ;, p
p

p ftdBtff −
−

− ==⋅ ∫R  (4.9) 

for the norm ,p−⋅  see (4.6). Using (4.9), we can extend the Wiener integral 

to ( ).RSf ′∈  However, as follows from Bender [4, p. 90], one has to be 

cautious, because when f,⋅  exists only as an element of ( )p−S  (and  not 

( )),2L  then also ( ) ( )∫R tdBtf  is an element of ( )∗S  but not ( )2L  and so it 

is a Hida distribution but not (necessarily) a random variable. 

Recall that by (4.8), we can apply the Ito isometry not only to ( )R2L  

functions but also to tempered distributions as follows: If we assume that 
( )RSIF ′→:  is differentiable, then we see that 
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( )
p

tthth
Fdt

dFFh
−

+
−

→
−−⋅ 1

0
,lim  

( ) ( )( ) ( )
ph

tFdt
dtFhtFh

−

−

→
−−+= 1

0
lim  

.0=  

This yields the following theorem by Bender [4, Theorem 2.17], which 
allows us to calculate the derivative of :HB  

Theorem 4.17. Let R⊂I  be an interval and let ( )RSIF ′→:  be 

differentiable. Then ( )tF,⋅  is differentiable as a stochastic distribution 

process and 

( ) ( ) .,, tFdt
dtFdt

d ⋅=⋅  

Hence, by Lemma 4.16, we obtain that HB  is differentiable for 

10 << H  as a stochastic distribution process and 

( ) ( ) ( ) .,
0

∑
∞

=
+⋅=

k
kk

H
H eteMtBdt

d  

We can find even a simpler expression for ,HBdt
d  though. For ,R∈t  

we define the distribution 

( ) ( )tfMfM HH
t ++ =δ :,D  

Then, by Bender [4, p. 91], we have the following: 

( ) ( )
2

10 −

∞

=
++∑ δ−

k

H
tkk

H MeteM D  

( ) ( ) ( )∑ ∑
∞

=

∞

=
++

− δ−+=
0

2

0

2 ,22
n k

n
H

tkk
H eMeteMn D  
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( ) ( ) ( ) ( ) ( ) ( )∑ ∑
∞

=

∞

=
++

−
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+=

0

2

0
0

2 ,22
n k

n
H

nkk
H teMeeteMn .0=  

Thus, we get the following corollary: 

Corollary 4.18. For ,10 << H  fBm HB  is differentiable over R  as a 
stochastic distribution process and 

( ) ., H
tH MtBdt

d
+δ⋅= D  

Definition 4.19. For ,10 << H  the derivative of HB  in ( ) ,∗S  

( ) H
tH MtW +δ⋅= D,:  

is called the fractional white noise. 

Using the preceding results, we can obtain the S-transform of the fBm 
and the fractional white noise: 

Theorem 4.20. Let .10 << H  Then, for any ( ),RS∈η  

(i) ( )( ) ( ) ( ( )) ,,0, 0tMtBS H
H 1−η=η  

(ii) ( )( ) ( ) ( ) ( ).tMtWS H
H η=η +  

Proof of Theorem 4.20. Item (i) is obtained by the duality bracket 

between ( )∗S  and ( )S  (recall the description after Definition 4.4). In fact, 

( )( ) ( ) ( ) [ ( ) ] ( [ ]) .,0,::::, 0
,, tMetBEetBtBS H

HHH 1−
η⋅η⋅ η=⋅==η  

Let ( )∗→Φ SR:  be an ( )∗S -process differentiable over .R  Notice 

Theorem 4.14(iii), that is, the S-transform of Φ satisfies, for every 
( ),RS∈η  

( ) ( ) ( )[ ]( )[ ].ηΦ=η⎥⎦
⎤

⎢⎣
⎡ Φ tSdt

dtdt
dS  

Then item (ii) is obtained by Theorem 4.3(ii), because ( )tWH  is the 

derivative of ( ).tBH  Hence, the proof is completed. 
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Now, the integrability of a stochastic distribution process X can be 
defined in terms of the S-transform: 

Definition 4.21. A stochastic distribution process ( )∗→ SIX :  is 

integrable in the white noise (Pettis) sense, if the following are satisfied: 

(i) ( )[ ]( )η⋅XS  is measurable for all ( )RS∈η  and ( )[ ]( ) ( )ILXS 1∈η⋅  

for all ( ).RS∈η  

(ii) There exists ( )∗∈Φ S  such that ( )[ ]( ) [ ]( )∫ ηΦ=η
I

SdttXS .  

In this case, Φ is unique by injectivity of the S-transform (Theorem 
4.14(i)). It is called the white noise integral of X and is denoted by 

( )∫=Φ
I

dttX .  

The following criterion by Kuo [26, Theorem 13.5] is useful for 

integrability in ( ) :∗S  

Theorem 4.22. Assume that ( )∗→ SIX :  satisfies: 

(i) ( )[ ]( )η⋅XS  is measurable for all ( ).RS∈η  

(ii) There exist a natural integer p, a real a and a function ( )dtILL ,1∈  

such that 

( )[ ]( ) ( ) ( ),exp 2
patLtXS η≤η  

where 2
0

2 η=η p
p A  and 0⋅  is the ( )R2L -norm (see (4.5)). 

Then X is ( )∗S -integrable (over I) in the white noise (Pettis) sense. 

For example, by Bender [4, Theorems 3.11 and 3.12], ( )∫
T

H dttW
0

 and 

( ) ( )∫ ◊
T

HH dttWtB
0

 exist in the white noise (Pettis) sense. These examples 

provide motivation for the following definition of fractional Ito integral: 
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Definition 4.23. A stochastic (distribution) process [ ] ( )∗→Φ ST,0:  is 

fractional Ito integrable provided that HW◊Φ  is white noise (Pettis) 

integrable and we shall use the notation: 

( ) ( ) ( ) ( )∫ ∫ ◊Φ=Φ
T T

HH dttWttdBt
0 0

.:  

When the stochastic distribution process is an ( )2L -valued process, the 

following criterion holds (see Bender [3, Theorem 2.8]): 

Theorem 4.24. Let ( )2: LX →R  such that ( )[ ]( )ηtXSt 6  is 

measurable for all ( )RS∈η  and ( ) 0tXt 6  is in ( ),,1 dtL R  where 0⋅  

denotes the ( )2L  norm. Then X is ( )∗S -integrable in the white noise (Pettis) 

sense and 

( ) ( )∫∫ ≤
RR

.0
0

dttXdttX  

This result is based on the fact that the Pettis integral is an extension of 
the Bochner integral (see Kuo [26, p. 247]). 

In the white noise setting, Lebovits and Lévy-Véhel [27] used the notion 
about the integral in the following Bochner sense: 

Definition 4.25. Let I be a subset of R  endowed with the Lebesgue 

measure. One says that ( )∗→ SIX :  is Bochner integrable on I if it 

satisfies the two following conditions: 

(i) X is weakly measurable on I, i.e., ( ) ϕ,uXu 6  is measurable on I 

for every ( ).S∈ϕ  

(ii) There exists N∈p  such that ( ) ( )puX −∈ S  for almost every Iu ∈  

and ( ) ptXu −6  belongs to ( ).1 IL  

The Bochner integral of X on I is denoted ( )∫ I
dssX .  
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The properties of the Bochner integral are given by Kuo [26] as follows: 

Proposition 4.26. If ( )∗→ SIX :  is Bochner integrable on I, then the 

following hold: 

 (i) There exists an integer p such that 

( ) ( )∫∫ −
−

≤
I p

pI
dssXdssX .  

(ii) X is also Pettis integrable on I and both integrals coincide on I. 

Remark 4.27. Proposition 4.26 shows that there is no risk of confusion 
by using the same notation for both the Bochner integral and the Pettis 
integral; see Lebovits and Lévy-Véhel [27, Appendix A]. 

5. The Operators HM  and their Derivatives 

In the following, we shall generalize the previous stochastic integration 
with respect to fBm to the case of mBm. We first focus on the representation 
of fBm HB  with Hurst parameter ( ),1,0∈H  the so-called harmonizable 

one ((1.2) and (1.3)). We next introduce the operator, denoted ,HM  that will 

be useful for the definition of the integral with respect to fBm and mBm. Our 
description is based on the results in Corlay et al. [15, Section 5.1], Lebovits 
and Lévy-Véhel [27, Section 3.1] and Lebovits et al. [28, Section 4.1]. 

We note û  or ( )uF  the Fourier transform of a tempered distribution u 

and we let ( )R1
locL  denote the set of measurable functions which are locally 

integrable on .R  We also identify, here and in the sequel, any function f of 

( )R1
locL  with its associated distribution, also noted .fT  

We will say that a tempered distribution v is of function type if there 
exists a locally integrable function f such that fTv =  (in  particular, φ,v  

( ) ( )∫ φ=
R

dtttf  for φ  in ( )).RS  
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Let H be a fixed real in ( ).1,0  Then, following Elliott and Van Der Hoek 

[18, pp. 303-304], we define an operator, denoted ,HM  which is specified in 

the Fourier domain by 

( )n ( ) ( ) ( )1 22 ˆ: , .−π= ∈H
HM u y y u y yC H R  (5.1) 

Here and hereafter, ( )HC  is the constant as given by (1.4), appearing in the 

harmonizable representation of the fBm. This operator is well defined on the 

homogeneous Sobolev space of order ,2
1 H−  denoted ( )R2

HL  and defined by 

( ) { ( ) ( ) },and,ˆ;: 12 ∞<∈=′∈= HlocfH uLfTuSuL RRR  (5.2) 

where 
( )

( )∫ ξξξ= −
R

du
HC

u H
H

221
2

2 ˆ1:  derives from the inner product 

on ( ),2 RHL  defined by 

( )
( ) ( )∫ ξξξξ= −

R
.ˆˆ1:, 21

2 dvu
HC

vu H
H  (5.3) 

Then, by Lebovits and Lévy-Véhel [27, Lemma 3.1], we have the following: 

Lemma 5.1. ( ( ) )HHL ,,2 R  is a Hilbert space. If ( ],21,0∈H  then 

the space ( )R2
HL  is continuously embedded in ( ).1 RHL  If [ ),1,21∈H  

then the space ( )RHL1  is continuously embedded in ( ).2 RHL  

Since ( )n
HM u  belongs to ( )R2L  for every u in ( ),2 RHL  HM  is well 

defined as its inverse transform, 

( ) ( ) ( ( )n ) ( )1: ,2= −
πH HM u x M u xF  for almost every .R∈x  

Further, by Lebovits and Lévy-Véhel [27, Proposition 3.2], we have the 
following: 

Proposition 5.2. The operator HM  is an isometry from ( ( ) )HHL ,,2 R  

to ( ( ) ( ) ).,, 22
RR LL  
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Let ( )RE  denote the space of simple functions on ,R  which is the set of 

all finite linear combination of functions [ ]( )⋅ba,1  with a and b in .R  It is 

easy to check that both ( )RS  and ( )RE  are subsets of ( ).2 RHL  It will be 

useful in the sequel to have an explicit expression for ( )fM H  when f is in 

( )RS  or in ( ).RE  

For the indicator function [ ]( )tba,1  as introduced in (3.2), it holds that 

[ ]( ) ( )
( ) ( ) ( )⎟

⎠
⎞⎜

⎝
⎛ −π+Γ

π=
212cos212

2,
HHHC

xbaM H 1  

.2323 ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−−

−
−× −− HH xa

xa
xb

xb  

Further, by Biagini et al. [9, Section 3] and Elliott and Van Der Hoek   
[18, p. 303], for f in ( ),RS  the following hold for almost every real x: 

( ) ( ) ( ) ( ) ( )∫ <<−−γ= −R
,21023 Hdt

t
xftxfxfM HHH  (5.4) 

( ) ( ) ( ) ( ),21== HxfxfM H  (5.5) 

( ) ( ) ( ) ( )∫ <<
−

γ= −R
,12123 Hdt

xt
xfxfM HHH  (5.6) 

where 

( ) ( ) ( )⎟
⎠
⎞⎜

⎝
⎛ −π−Γ

π=γ
212cos212

2:
HHHC

H  

( ) ( )( )

( ) ( )
.

212cos212

sin12 21

⎟
⎠
⎞⎜

⎝
⎛ −π−Γ

π+Γ=
HH

HH  

When f belongs to ( ),RS  it follows from Elliott and Van Der Hoek [18, 

Appendix] that 
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( ) ( ) ( ) ( ) ,23
⎥⎦
⎤

⎢⎣
⎡ −−α= ∫ −

R
dttfxtxtdx

dxfM H
HH  

where 

( ) ( ) ( )
.

212cos212

2
21:

⎟
⎠
⎞⎜

⎝
⎛ −π+Γ

π−=
−
γ−

=α
HHHCH

H
H  (5.7) 

Remark 5.3. For the understanding of the construction of the stochastic 
integrals with respect to fBm and mBm, we refer to the following description 
in Lebovits and Lévy-Véhel [27, Proposition 3.3 and Remark 3.5]: 

 (i) In order to extend the Wiener integral with respect to fBm to an 
integral with respect to mBm, we will use the equality: 

( ) ( ).2, RR HLH =E  

(ii) Because the space ( )RS  is dense in ( )R2
HL  for the norm ,H⋅  it is 

also possible to define the operator HM  on the space ( )RS  and extend it, by 

isometry, to all elements of ( ).2 RHL  This is the approach of Elliott and Van 

Der Hoek [18] and Biagini et al. [9] (with a different normalization constant). 
This clearly yields the same operator as the one defined by (5.1). However, 
this approach does not lend itself to an extension to the case where the 
constant H is replaced by a Hurst function h, which is what we need for 
mBm. Therefore, it is possible to define the operator HM  on the space 

( )RE  and extend it, by isometry, to all elements of ( ).2 RHL  This extension 

coincides with (5.1). 

By (5.3), we can get the following: 

( ) [ ] [ ] HH ststR ,0,,0:, 11=  

( )
( ) ( )∫ ξ

ξ

−−
=

+

ξ−ξ

R
dee

HC H

isit

122
111  
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[ ] .,,2
1 222 R∈−−+= ststst HHH  

Thus, as in the case of standard Brownian motion, i.e., in the white noise 

setting, we have that the process ( ( )) ,~
RtH tB ∈  defined for all ( ) Ω×∈ω R,t  

by 

( ) ( ) ( ) [ ] ,,0,:,~:~ tMtBtB HHH 1ω=ω=ω  (5.8) 

is a Gaussian process which admits a continuous version noted =:HB  

( ( )) .R∈tH tB  Indeed, under the probability measure P, the process HB  is a 

fractional Brownian motion since we have the equations: 

( ) ( )[ ] [ ] [ ][ ]sMtMEsBtBE HHHH ,0,,0, 11 ⋅⋅=  

[ ]( ) [ ]( ) ( )R2,0,,0 LHH sMtM 11=  

[ ] [ ] ( ),,,0,,0 stRst HH == 11  (5.9) 

where we used Proposition 5.2. 

By (5.9), we observe that the constant ( )HC
π2  in formula (5.1) is given so 

that for all ( ),1,0∈H  the process HB  defined by (5.8) is a normalized 

fBm. 

The properties of the operator HM  are given by Lebovits and Lévy-

Véhel [27, Theorem 3.7] as follows: 

Theorem 5.4. (i) For all ( ),1,0∈H  the operator HM  is bijective from 

( )R2
HL  into ( ).2 RL  

(ii) For all ( )1,0∈H  and ( )gf ,  in ( ( ) ( )) ,222 RR HLL ∩  

( ) ( ) ( ) ( ).,, 22 RR LHLH gfMgMf =  

Moreover, the equality above remains true when f belongs to ( )( ) ∩RLLoc
1  
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( )R2
HL  and g belongs to ( );RS  in this case, the equality reads 

( ) ( ) ( ),,, 2 RLHH gfMgMf =  

where ,  denotes the duality bracket between ( )RS ′  and ( ).RS  

(iii) There exists a constant D such that for every couple ( )kH ,  in 

( ) ,1,0 ∗× N  

( ) ( ) ( ) ( ) .1max 32+≤
∈

kHC
DxeM kHx R

 

In order to define the stochastic integral with respect to mBm, we shall 
consider the heuristic derivative of HM  with respect to H and use the 

operator H
M H
∂

∂  later on. Following Lebovits and Lévy-Véhel [27, Section 

3.2], define the operator ,H
M H
∂

∂  specified in the Fourier domain, by 

n
( ) ( ) ( ) )( ( )1 22 ˆ: log , ,−∂ π= − β + ∈

∂
HH

H
M u y y y u y yH C H

R  

where ( ) ( )HCHCH ′=β :  with ( )HC  as defined in (1.4) and ( )HC′  

denotes the derivative of the analytic map ( ).HCH 6  

Equation (5.8) suggests that we can replace the constant H by a 
continuous deterministic function h, ranging in ( ).1,0  Here, we recall 

Definition 2.2, that is, the definition of the mBm with Hurst function ( ).th  

Then, by Remark 2.3(iv), the covariance of the mBm reads 

( )
( )

( )( ) ( )( ) ( ) ,2
1:, ,,, 222,

2

⎥⎦
⎤

⎢⎣
⎡ −−+= ststst hhhst

h ststshCthC
hC

stR  (5.10) 

where ( ) ( )
2:,

shthh st
+=  and ( )⋅C  has been given in (1.4). 
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As described in Lebovits and Lévy-Véhel [27, Sections 4 and 5], the 
operator HM  in (5.1) is defined on a distribution space, and hence we can 

not apply the considerations of Elliott and Van Der Hoek [18] about the links 
between the operator HM  and Riesz potential operator. However, it is 

crucial for our purpose that HM  is bijective from ( )R2
HL  into ( )R2L  

(Theorem 5.4(i)). 

Define the bilinear form h,  on ( ) ( )RR EE ×  by 

[ ] [ ] ( ).,,0,,0 stRst h=11  

Then by Lebovits and Lévy-Véhel [27, Proposition 4.2], h,  is an inner 

product for every function h. Define the linear map hM  by 

( ( ) ) ( ( ) ( ) )RRR 2,,,,: 2
Lhh LM →E  

[ ] [ ]( ) ( ) [ ]( ) [ ]( ) ( ).,0:,0:,0,0 thHHthh tMtMtMt =|== 1111 6  

 (5.11) 

Define the process ( ) [ ]( ) .,,0,~ R∈⋅= ttMtB h
h 1  Then, by Kolmogorov’s 

criterion, this process admits a continuous version which will be denoted 

( )tBh  and called multifractional Brownian motion (mBm). Then, by 

Lebovits and Lévy-Véhel [27, Eq. (4.2) and Lemma 4.3], we summarize as 
follows: 

Lemma 5.5. (i) Almost surely, for every real t, 

( ) ( ) [ ]( ) ( ) ( ).,0, thHHthh tBtMtB =|=⋅= 1  (5.12) 

(ii) The process ( )tBh  is a normalized mBm. 

(iii) The map hM  is an isometry from ( ( ) )h,,RE  to ( ( ),2 RL  

( ) )., 2 RL  
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Using (5.8) and the equality in Theorem 5.4(ii), we can write as follows: 
for every real t and almost surely, 

 ( ) [ ]( )tMtB HH ,0, 1⋅=  

[ ]( ) ( )∑
∞

=
⋅=

0
2,,0,

k
kLkH eetM R1  

[ ] ( ) ( )∑
∞

=
⋅=

0
,,,0 2

k
kLkH eeMt R1  

( ) ( )∑ ∫
∞

=
⋅⎟

⎠
⎞

⎜
⎝
⎛=

0 0
.,

k
k

t
kH eduueM  

Thus, by Lebovits and Lévy-Véhél [27, Eq. (5.10)], we can write (5.12) 
under the following chaos decomposition of mBm: 

Almost surely, for every real t, 

( ) ( )( ) ( )∑ ∫
∞

=
⋅⎟

⎠
⎞

⎜
⎝
⎛=

0 0
.,

k
k

t
kthh edsseMtB  (5.13) 

Moreover, by Lebovits and Lévy-Véhél [27, Eq. (5.11)], we can define 

multifractional white noise ( )( ) R∈= thh tWW :  as the ( )∗S -derivative of ,hB  

by 

( ) ( )( ) ( )∑ ∫
∞

=
⋅⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛=

0 0
,,:

k
k

t
kthh edsseMdt

dtW  (5.14) 

assuming that h is differentiable. Then we summarize the result in Lebovits 
and Lévy-Véhel [27, Theorem-Definition 5.1] as follows: 

Theorem 5.6. Let ( )1,0: →Rh  be a 1C  deterministic function such 

that its derivative function h′  is bounded. Then the process hW  defined by 

(5.14) is an ( )∗S -process which verifies, in ( ) ,∗S  the following equality: 
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( ) ( )( ) ( )∑
∞

=
⋅=

0
,

k
kkthh eteMtW  

( ) ( ) ( ) ( )∑ ∫
∞

=
= ⋅⎟

⎠
⎞

⎜
⎝
⎛ |

∂
∂′+

0
0

.,
k

k
t

thHk
H edsseH

Mth  (5.15) 

Moreover, the process hB  is ( )∗S -differentiable and verifies 

( ) ( )tWtdt
dB

h
h =  in ( ) ;∗S  (5.16) 

this process is called multifractional white noise. 

When the function h is constant, identically equal to H, we will write 

( )( ) R∈= tHH tWW :  and call the ( )∗S -process HW  a fractional white noise. 

This process was defined and studied in Elliott and Van Der Hoek [18, Eq. 
(4.2) and Proof of Theorem A.6] and Biagini et al. [9, Eqs. (3.21) and 
(3.22)]. By Lebovits et al. [28, Eq. (4.4)], we can rewrite (5.15), for every t, 
under the form: 

( ) ( )( ) ( ) ( )( )thtH
BthtWtW thh ,1

∂
∂′+=  in ( ) ,∗S  (5.17) 

where ( )( )( ) ( )1,0,11 ,: ×∈= RHtHtBB  is a fractional Gaussian field, defined, 

for all ( ) ( )1,0, ×∈ RHt  and all ,Ω∈ω  by ( ) ( ) ( ) =ω=ω :,:,1 tBHtB H  

[ ]( )tM H ,0, 1ω  and where ( )( )tW th  is nothing but ( ) ( ).thHH tW =|  

The function ,fg  introduced by Lebovits and Lévy-Véhel [27, Lemma 

5.5], plays essential roles in the proof of Theorem 5.6 and properties of the  
S-transform of mBm (Theorem 6.1 in Section 6); it is instrumental to solve 
the SDE encountered later: 

Lemma 5.7. For ( )1,0∈H  and ( ),RSf ∈  define ( ) RR →× 1,0:fg  by 

( ) ( ) ( )∫=
t

Hf dxxfMHtg
0

.:,  (5.18) 



K. Narita 140

Then: 

(i) The function fg  belongs to ( )( ).,1,0 RR ×∞C  

(ii) ,R∈∀x  ( )( ) ( ( ) ( ))∫
∞ − −′−+′α=
0

21 ,duuxfuxfuxfM H
HH  where 

Hα  has been defined by (5.7). In particular, the function ( ) 6Hx,  

( ) ( )xfM H  is differentiable on ( ).1,0×R  

(iii) Assume that ( )1,0: →Rh  is differentiable. Then, for any real ,0t  

[ ( )( )] ( )( ) ( ) ( ) ( ) ( ) ( )∫ == |
∂

∂′+=|
0

000 000 .,
t

thH
H

thttf dssfH
MthtfMthtgdt

d  

6. Stochastic Integral with Respect to mBm 

The following theorem due to Lebovits and Lévy-Véhel [27, Theorem 
5.12] makes explicit the S-transform of mBm, multifractional white noise 
and generalized functionals of mBm. 

We denote by γ the heat kernel density on ,RR ×+  i.e., 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

π
=γ t

x
t

xt 2exp
2
1:,

2
 

if 0≠t  and ( ) 0:, =γ xt  if .0=t  

Theorem 6.1. Let ( )1,0: →Rh  be a 1C  function and ( )( ) R∈th tB  

( ( )( ) )R∈th tWresp.  be an mBm (resp. multifractional white noise). Then, for 

( )RS∈η  and ,R∈t  the following hold: 

(i) ( )[ ]( ) [ ]( ) ( ) ( )( ),,,0, 2 thtgtMtBS Lhh η=η=η R1  where ηg  has been 

defined in Lemma 5.7. 
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(ii) 

( )[ ]( ) [ ( )( )]thtg
dt
dtWS h ,η=η  

( )( ) ( ) ( ) ( ) ( ) ( )∫ =|η
∂

∂′+η=
t

thH
H

th dssH
MthtM

0
.  

(iii) For N∈p  and ( ),RpSF −∈  

( )( )[ ]( ) ( )
( )( ) ( ) .,,

0
2 ⎟

⎠
⎞

⎜
⎝
⎛ η−⋅γ=η ∫

t
th

th
h duuMtFtBFS  

Proof. By (5.13), Lemma 4.10(ii), Theorem 5.4(ii) and (5.18), assertion 
(i) is verified as follows: 

  ( )( ) ( ) ( ) [ ]( ) ( ) ( )∑
∞

=
η=η

0
22 ,,,0

k
LkLkthh eetMtBS RR1  

( ) [ ]( ) ( )R2,,0 Lth tM η= 1  

[ ] ( )( ) ( ) ( )( ).,,,0 2 thtgMt Lth η=η= R1  

Equation (5.17) and Theorem 4.14(iii) imply that 

( )[ ]( ) ( ) ( ) ( )[ ]( ) ( )( ),, thtgdt
dtBSdt

dtdt
dBStWS h

h
h η=η=η⎥⎦

⎤
⎢⎣
⎡=η  

and hence assertion (ii) is verified by Lemma 5.7(iii). Further, assertion (iii) 
is verified by Theorem 7.3 in Kuo [26, p. 63] with ( ) [ ]( )tMf th ,01=  and by 

assertion (i) above. Thus, the proof is completed. 

Now, we present the multifractional Wick-Ito integral with respect to 
mBm, according to Lebovits and Lévy-Véhel [27, Definition 5.1] and Corlay 
et al. [15, Definition 5.3]. 

From here to the last section, we will assume that h is in 1C  function on 
R  with bounded derivative. 

Then, recalling the definition of the ( )∗S -integrability (Definition 4.7), 

we proceed to the following: 
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Definition 6.2. Let ( )∗→ SR:Y  be a process such that the process 

( ) ( )tWtYt h◊6  is ( )∗S -integrable on .R  Then the process Y is said to be 

hBd ◊ -integrable on R  or integrable on R  with respect to mBm .hB  The 

integral of Y with respect to hB  is defined by 

( ) ( ) ( ) ( )∫ ∫ ◊=◊
R R

.: dssWsYsBdsY hh  

For an interval I of ,R  define 

( ) ( ) ( ) ( ) ( )∫∫ ◊◊ =
R

.: sBdsYssBdsY hII h 1  

When ( ) ( ),1,0∈≡ Hth  the multifractional Wick-Ito integral coincides 

with the fractional Ito integral as defined in Elliott and Van Der Hoek [18], 
Biagini et al. [9] and Bender [3, 4]. In the particular case when ( ) ,21≡th  

the multifractional Wick-Ito integral coincides with the classical Ito integral 
with respect to standard Brownian motion, if Y is Ito integrable. 

As shown in Lebovits and Lévy-Véhel [27, Proposition 5.14] and Corlay 
et al. [15, Proposition 5.4], the multifractional Wick-ito integral satisfies the 
following properties: 

Proposition 6.3. (i) Let ( )ba,  in .,2 ba <R  Then ( ) ( )bBtBd h
b
a h∫ =◊1  

( ),aBh−  almost surely. 

(ii) Let ( )∗→ SIX :  be a hBd ◊ -integrable process over I, an interval 

of .R  Assume that ( ) ( )∫ ◊
I h sBdsX  belongs to ( ).2L  Then 

( ) ( ) .0=⎥⎦
⎤

⎢⎣
⎡∫ ◊

I h sBdsXE  

The assertion (ii) is verified as follows: Let ( ) ( )∫ ◊
I h sBdsX  be in ( ).2L  

Consider the definition of the S-transform (Definition 3.3 and Definition 4.9), 
the definition of Wick product ◊ (Definition 3.11 and Definition 4.11), the 
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interchangeability between the S-transform and the integration (Theorem 
4.14(ii)), the S-transform of ( )tWh  (Theorem 6.1(ii)), and the property of the 

function fg  (Lemma 5.7). Then we obtain that 

  ( ) ( ) ( ) ( ) ( )0⎟
⎠
⎞

⎜
⎝
⎛=⎥⎦

⎤
⎢⎣
⎡ ∫∫ ◊◊

I hI h sBdsXSsBdsXE  

( ) ( ) ( )0⎟
⎠
⎞

⎜
⎝
⎛ ◊= ∫ I h dssWsXS  

( )( ) ( ) ( )( ) ( )∫=
I h dssWSsXS 00  

( )( ) ( ) ( )( )∫=
I

shsgds
dsXS ,0 0  

( )( ) ( )∫ =⋅=
I

sXS .000  

Example 6.4. Let 0>T  be fixed. Set ( ) ( )∫ ◊=
T

hh tBdtBI
0

,:  that is, 

( ) ( ) ( ) ( )∫ ∫ ◊=◊=
T T

h
h

hh dttBdt
tdBdttBtWI

0 0
.  

Define 

( ) ( ) ( ) ( ) ( );: 222 Th
hhhh TTBTBTBTB −=◊=◊  

here the last equality follows from Remark 4.13. Then 

( ) ( ( ) ( ) ).2
1

2
1 222 Th

hh TTBTBI −== ◊  

This is verified as follows: The definition of Wick product ◊ (Definition 3.11 
and Definition 4.11), the interchangeability between the S-transform and the 
integration (Theorem 4.14(ii)), and the S-transforms of ( )tBh  and ( )tWh  

(Theorem  6.1(i)-(ii)) yield the following: for η in ( ),RS  
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( ) ( ) ( )η⎟
⎠
⎞

⎜
⎝
⎛∫ ◊T

hh tBdtBS
0

 

( )( ) ( ) ( )( ) ( )∫ ηη=
T

hh dttWStBS
0

 

( )( ) [ ( )( )]∫ ηη=
T

dtthtgdt
dthtg

0
,,  

( )( )ThTg ,2
1 2

η=  

( )( ) ( )( )2
2
1 η= TBS h  

( ) ( )( ) ( )η◊= TBTBS hh2
1  

( ( ) ( ) ) ( ).2
1 22 η⎟

⎠
⎞⎜

⎝
⎛ −= Th

h TTBS  

Thus, the assertion results from the injectivity of the S-transform (Remark 
3.4 and Theorem 4.14(i)). 

Remark 6.5. Let RR →:f  be a deterministic function which belongs 

to ( )RR;1C  with bounded derivative. Then the process defined by 

( ) ( ) ( )∫ ◊=
t

h sBdsftZ
0

:  

is Gaussian, and the following integration-by-parts formula holds: 

( ) ( )
( )

( ) ( ) ( ) ( )∫∫ ′−=◊ t
hh

t L
h dssBsftBtfsBdsf

00
,

2

 (6.1) 

which leads to 

[ ( ) ] ( ) ( ) ( ) ( ) ( )∫ ∫ ′′+=
t t

h
th dsduusRufsfttftZ

0 0
222 ,E  

( ) ( ) ( )∫ ′−
t

h dsstRsftf
0

.,2  (6.2) 



Linear Stochastic Differential Equation 145

Equation (6.1) can be derived from the simple Ito formula concerning mBm 
( )tBh  (Theorem 8.1 in the further Section 8) which is given by Lebovits and 

Lévy-Véhel [27, Theorem 6.9]. In fact, we apply Theorem 8.1 to the function 
( ) ( )xtfxtF =:,  beforehand. Then, since 

( ) ( )tfx
Fxtft

F =
∂
∂′=

∂
∂ ,      and     ,02

2
=

∂

∂

x
F  

we can verify (6.1) by the following equalities: 

( )( ) ( )( ) ( )( ) ( )tBdtBtx
FdttBtt

FtBtdF hhhh
◊

∂
∂+

∂
∂= ,,,  

( )[ ] ( )( )dttBt
x
FttRdt

d
hh ,,2

1
2

2

∂

∂
⎟
⎠
⎞⎜

⎝
⎛+  

 ( ) ( ) ( ) ( ).tBdtfdttBtf hh
◊+′=  

7. SDE Driven by mBm 

Let us consider the following mixed multifractional stochastic 
differential equation (mixed multifractional SDE): 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ,0,2121 ≥β+β+α+α= ◊ ttZdtXttdttXtttdX  (7.1) 

( ) ( ) ( ),: 2211 tBtBtZ hγ+γ=  

( ) ( ) .0 ∗∈ SX  

Here 1γ  and 2γ  are positive constants, 21B  is a standard Brownian motion 

(sBm), i.e., fBm ( )tBH  with ,21=H  and ( )( ) == ≥ :: 0thh tBB  ( ( ) ) 0≥tthB  

is a multifractional Brownian motion (mBm) with Hurst function ( ).th  

Further, iα  and ,2,1, =β ii  are deterministic functions such that 

[ ) ,,0:, R→∞βα ii  continuously differentiable. 
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We call ( )tZ  mixed multifractional Brownian motion (mixed mBm). 

Precisely, equation (7.1) reads as follows: 

( ) ( ) ( ) ( )[ ] ( )[ ( ) ( )]tBdtBdtdttXtttdX h
◊◊ γ+γβ+α+α= 2211121  

( ) ( )[ ( ) ( )]tBdtBdtXt h
◊◊ γ+γβ+ 22112  

( ) ( ) ( )[ ]dttXtt 21 α+α=  

[ ( ) ( ) ( ) ( )]tBdttBdt h
◊◊ βγ+βγ+ 122111  

[ ( ) ( ) ( ) ( ) ( ) ( )] .0,222121 ≥βγ+βγ+ ◊◊ ttBdtXttBdtXt h  

Equation (7.1) can be written by the integral equation: 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( )∫ ∫ ◊β+β+α+α+=
t t

sZdsXssdssXssXtX
0 0 2121 ,0  

where the equality holds in ( ) .∗S  Rewriting the equation in terms of 

derivatives in ( ) ,∗S  we get the equation: 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) .0,2121 ≥◊β+β+α+α= tdt
tdZtXtttXttdt

tdX  (7.2) 

If we notice useful properties of Wick product, which are summarized in 
Remark 7.4 at the end of this section, equation (7.2) reads as follows: 

  ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ( ) ( ))tWtWtXtttXttdt
tdX

h22112121 γ+γ◊β+β+α+α=  

( ) ( ) ( )[ ] ( ) ( ( ) ( ))tWtWttXtt h2211121 γ+γ◊β+α+α=  

( ) ( ) ( ( ) ( ))tWtWtXt h22112 γ+γ◊β+  

( ) ( ) ( )[ ] ( ) ( ) ( ) ( )tWttWttXtt h◊βγ+◊βγ+α+α= 12211121  

( ) ( ) ( ) ( ) ( ) ( )tWtXttWtXt h◊βγ+◊βγ+ 222121  

( ) ( ) ( )[ ] ( ) ( ) ( ) ( )tWttWttXtt h⋅βγ+⋅βγ+α+α= 12211121  
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( ) ( ) ( ) ( ) ( ) ( ) ,0,222121 ≥◊βγ+◊βγ+ ttWtXttWtXt h  

( ) ( ) .0 ∗∈ SX  

Here ( )tdt
dBW h

h =:  is the multifractional white noise defined by (5.14)-

(5.17) ( 21W  is the standard white noise as derived from ( ) ).21≡| thhW  In the 

last equality of equations above, since ( ) ,2,1,, =γβ jit ji  are deterministic, 

we used the property such that the Wick product ◊  coincides with the 
ordinary product (see Remark 7.4(ii) at the end of this section): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).122111122111 tWttWttWttWt hh ⋅βγ+⋅βγ=◊βγ+◊βγ  

Theorem 7.1. The ( )∗S -process ( )( ) 0≥ttX  defined by 

( ) ( )( ) ( ) ( )( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ +−◊◊= ∫ ◊◊ t

XdssAsAtAtX
0

0exp~exp  (7.3) 

is the unique solution of SDE (7.1) in ( ) .∗S  Here 

( ) ( ) ( ) ( )∫ ∫ ◊β+α=
t t

sZdsdsstA
0 0 22 ,:  (7.4) 

that is, 

( ) ( ) ( ) ( ( ) ( ))∫ ∫ ◊◊ γ+γβ+α=
t t

h sBdsBdsdsstA
0 0 221122 ,  

( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ◊◊ βγ+βγ+α=
t t t

h sBdssBdsdss
0 0 0 2221212 .  

Further, 

( ) ( ) ( ) ( ( ) ( )),:~
221111 tWtWtttA hγ+γβ+α=  (7.5) 

that is, 

( ) ( ) ( ) ( ( ) ( )),~
221111 tWtWtttA hγ+γ◊β+α=  

since ( ) ,2,1,, =γβ jit ji  are deterministic (see Remark 7.4(ii)). 
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Proof. We notice that for fixed ( ),RS∈η  the S-transform [ ]( )ηΦS  is a 

linear functional of ( ) :∗∈Φ S  

[ ]( ) [ ]( ) [ ]( ) R∈ηΨ+ηΦ=ηΨ+Φ babSaSbaS ,,  

(Definition 3.3, Definition 4.9). 

Our proof is proceeded by using the following properties of the S-transform: 
for every ( ),RS∈η  

[ ]( ) [ ]( ) [ ]( )ηΨηΦ=ηΨ◊Φ SSS  (Definition 3.11, Definition 4.11), 

[ ]( ) [ ]( ) Ψ=Φ⇒ηΨ=ηΦ SS  (Remark 3.4, Theorem 4.14(i)), 

( ) ( ) ( )[ ]( )duuSduuS ∫∫ ηΦ=η⎥⎦
⎤

⎢⎣
⎡ Φ

RR
 (Theorem 4.14(ii)), 

( )[ ]( ) ( ) ( )η⎥⎦
⎤

⎢⎣
⎡=η dt

tdXStXSdt
d  (Theorem 4.14(iii)), 

( )[ ]( ) ( )( )thtgdt
dtWS h ,η=η  (Lemma 5.7 and Theorem 6.1(ii)), 

[ ( )]( ) ( ) ( )tMtWS η=η 2121  (Theorem 6.1(ii) with ( ) ).21≡th  

First of all, applying the S-transform to both sides of equation (7.2) and 
denoting by ηy  the map ( )[ ]( )ηtXSt 6  for every ( ),RS∈η  we get the 

following: 

( ) [ ( ) ( ) ( )]tyttty ηη α+α=′ 21  

[ ( ) ( ) ( )] ( ) ( ) [ ( )( )]⎟
⎠
⎞⎜

⎝
⎛ γ+ηγβ+β+ ηη thtgdt

dtMtytt ,221121  

( ) ( ) ( ) ( ) [ ( )( )] ( )tythtgdt
dtMtt ηη ⎥⎦

⎤
⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ γ+ηγβ+α= ,221122  

( ) ( ) ( ) ( ) [ ( )( )] .,221111 ⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ γ+ηγβ+α+ η thtgdt

dtMtt  
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Define 

( ) ( ) ( ) ( ) ( ) [ ( )( )] ,,: 221122 ⎟
⎠
⎞⎜

⎝
⎛ γ+ηγβ+α= η thtgdt

dtMtttP  

( ) ( ) ( ) ( ) ( ) [ ( )( )] .,: 221111 ⎟
⎠
⎞⎜

⎝
⎛ γ+ηγβ+α= η thtgdt

dtMtttQ  

Then we have the linear differential equation of the first-order: 

( ) ( ) ( ) ( ) ( ) ( )[ ]( ),00, η=+=′ ηηη XSytQtytPty  (7.6) 

and hence 

( )
( )

( )
( )

( ) .0
0

00

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+= ∫ η
−

η
∫∫ t duuPdssP

ydsesQety
st

 (7.7) 

We shall find an explicit expression for ( )tyη  in the following steps: 

Step 1. Recalling the linearity of [ ]( )⋅ΦS  with respect to Φ, we rewrite 

( )tQ  as follows: 

( ) ( ) ( ) ( [ ( )]( ) [ ( )]( ))ηγ+ηγβ+α= tWStWStttQ h221111  

[ ( ) ( ) ( ( ) ( ))]( )ηγ+γβ+α= tWtWttS h221111  

[ ( )]( )η= tAS ~             (7.8) 

with ( )tA~  as given by (7.5). In equations above, by Remark 3.6 and 

Definition 4.9, we used the property such that ( )[ ]( ) ( ),ttS ii α=ηα  ;2,1=i  

notice that ( )tiα  are deterministic and that [ ( ) ] 1:: =ηIeE  for ( ) =ηI  

( ) ( )∫ η
R

.sdBs  

Step 2. Recalling the linearity of [ ]( )⋅ΦS  with respect to Φ, again, we 

rewrite ( )tP  as follows: 

  ( ) ( ) ( ) ( [ ( )]( ) [ ( )]( ))ηγ+ηγβ+α= tWStWStttP h221122  

[ ( ) ( ) ( ( ) ( ))]( ).221122 ηγ+γβ+α= tWtWttS h  
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Therefore, the interchangeability between the S-transform and the integration 
(Theorem 4.14(ii)) yields the following: 

  ( ) [ ( ) ( ) ( ( ) ( )]( )∫ ∫ ηγ+γβ+α=
t t

h dssWsWssSdssP
0 0 221122  

{ ( ) ( ) ( ( ) ( ))} ( )η⎥⎦
⎤

⎢⎣
⎡ γ+γβ+α= ∫

t
h dssWsWssS

0 221122  

( ) ( ) ( ( ) ( )) ( )η⎥⎦
⎤

⎢⎣
⎡ γ+γβ+α= ∫ ∫

t t
h dssWsWsdssS

0 0 221122  

( ) ( ) ( ( ) ( )) ( )η⎥⎦
⎤

⎢⎣
⎡ γ+γ◊β+α= ∫ ∫

t t
h dssWsWsdssS

0 0 221122  

( ) ( ) ( ( ) ( )) ( )η⎥⎦
⎤

⎢⎣
⎡ γ+γβ+α= ∫ ∫ ◊◊t t

h sBdsBdsdssS
0 0 221122  

( ) ( ) ( ) ( )η⎥⎦
⎤

⎢⎣
⎡ β+α= ∫ ∫ ◊t t

sZdsdssS
0 0 22  

( )[ ]( )η= tAS  (7.9) 

with the function ( )tA  as given by (7.4). In the fourth equality of equations 

above, we used the property that if ( ) ,ji t γβ  ,2,1, =ji  are deterministic, 

then the Wick product ◊  coincides with the ordinary product (see Remark 
7.4(ii)): 

( ) ( ( ) ( )) ( ) ( ( ) ( )).2211222112 sWsWssWsWs hh γ+γβ=γ+γ◊β  

Step 3. Equation (7.9) implies the following: 

   
( ) ( )[ ]( )η=

∫ tASdssP
ee

t
0  

( )[ ]( )( )∑
∞

=

η=
0

!
1

k

ktASk  

[ ( ) ]( )∑
∞

=

◊ η=
0

!
1

k

ktASk  
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( ) ( )η
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∑

∞

=

◊

0
!

1

k

ktAkS  

[ ( )( )]( ).exp η= ◊ tAS  (7.10) 

Here, for ,1≥k  k◊Φ  denotes the kth Wick power of ( )∗∈Φ S  and 

( )Φ◊exp  the Wick exponential (Definition 4.12). By the same argument as 

taken in (7.9) and (7.10), the linearity of ( )ΦS  with respect to ( )∗∈Φ S  

yields that for ( ) ( ) ( )[ ]( )∫ η−=−∈η
t

tASdssPS
0

,R  and 

( )
[ ( )( )]( ).exp0 η−= ◊−∫ tASe

t dssP
 (7.11) 

Thus, considering (7.8) and (7.11), by the interchangeability between the     
S-transform and the integration, we get the following: 

( )
( )

[ ( )]( ) [ ( )( )]( )∫ ∫ η−η= ◊−∫t tduuP
dssASsASdsesQ

s

0 0
exp~0  

[ ( ) ( )( )]( )∫ η−◊= ◊t
dssAsAS

0
exp~  

( ) ( )( ) ( ).exp~
0

η⎥⎦
⎤

⎢⎣
⎡ −◊= ∫ ◊t

dssAsAS  (7.12) 

Therefore, by (7.7), (7.10) and (7.12), we obtain the expression for ( ):tyη  

( )
( )

( )
( )

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+= ∫ η
−

η
∫∫ t duuPdssP

ydsesQety
st

0
000  

[ ( )( )]( ) ( ) ( )( ) ( ) ( )[ ]( )
⎭
⎬
⎫

⎩
⎨
⎧ η+η⎥⎦

⎤
⎢⎣
⎡ −◊η= ∫ ◊◊ 0exp~exp

0
XSdssAsAStAS

t
 

( )( ) ( ) ( )( ) ( ) ( ).0exp~exp
0

η⎥⎦
⎤

⎢⎣
⎡

⎭
⎬
⎫

⎩
⎨
⎧ +−◊◊= ∫ ◊◊ XdssAsAtAS

t
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By the injectivity of the S-transform defined by ( ) ( ) ( )( ) ( )η=η tXStytX 6  

for every ( ),RS∈η  we conclude the required expression (7.3) for ( ).tX  

The uniqueness of the solution of (7.1) follows from the uniqueness of the 
solution of the linear differential equation (7.6) and the injectivity of the       
S-transform. Hence, the proof is completed. 

Example 7.2. Consider the equation: 

( ) ( ) ( )tZdtXtdX ◊=  

( ) ( ( ) ( )),2211 tBdtBdtX h
◊◊ γ+γ=  (7.13) 

( ) .0 0 R∈= xX  

This is the mixed multifractional SDE (7.1) with coefficients ( ) =α t1  

( ) ( ) 012 ≡β=α tt  and ( ) .12 ≡β t  Then, by (7.4) and (7.5), we notice that 

( ) ( ) ( )tBtBtA h2211 γ+γ=  and ( ) .0~
≡tA  Moreover, in order to rewrite 

(7.3), we notice the distributive law of the operation ◊ (Remark 7.4(i)) and 
consider that ( ) ,0 0 R∈= xX  that is, ( )0X  is deterministic. Then we can 

replace the Wick product by the ordinary product, and hence ( )( ) ◊◊ tAexp  

( ) ( )( ).exp0 0 tAxX ◊=  Thus, by (7.3), we obtain the expression for the 

( )∗S -process X as 

( ) ( ( ) ( )).exp 22110 tBtBxtX hγ+γ= ◊  (7.14) 

This ( )tX  is called geometric mixed multifractional Brownian motion 

(geometric mixed mBm). 

Remark 7.3. Using Janson [23, equality 3.16], we see that X in (7.14) is 

an ( )2L -valued process that may be represented as 

( ) ( ) ( ) ( ( ) ) .2
1exp 22

2
2
122110 ⎟

⎠
⎞⎜

⎝
⎛ γ+γ−γ+γ= th

h tttBtBxtX  (7.15) 
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Example 7.2 is the same as Corlay et al. [15, Theorem 5.7]; it is also a 
consequence of Holden et al. [20, Theorem 3.1.2]. 

For simplicity of consideration, we shall verify (7.15) in the particular 
case of :01 =γ  Taking the S-transforms of both sides of (7.14) with ,01 =γ  

we have that for ( ),RS∈η  

( )[ ]( ) ( )( ) ( )η
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
γ=η ∑

∞

=

◊

0
20 !

1

k

k
h tBkSxtXS  

[ ( )( ) ( )]∑
∞

=

ηγ=
0

20 !
1

k

k
h tBSkx  

[ ( )( )]∑
∞

=
ηγ=

0
20 ,!

1

k

kthtgkx  

( ( )( )).,exp 20 thtgx ηγ=  (7.16) 

Here we used the property that ( )[ ]( ) ( )( )thtgtBS h ,η=η  (Theorem 6.1(i)). 

On the other hand, since ( ) ( ) ( )thHHh tBtB =|=  a.s., it is easy to see (in view 

of Bender [3, p. 978] and Lebovits and Lévy-Véhel [27, lines 4-6, p. 34, 
Proof of Theorem 6.9]) that ( )tBh  is a Gaussian variable with mean equal    

to ( )( ) ( ) ( )( )∫ η=η
t

th thtgduuM
0

,  and variance equal to ( )tht2  under the 

probability measure ;ηQ  ηQ  is defined by (3.7) such that ( ) ( )tBtB 21:~
=  

( )∫ η−
t

dss
0

,  ( ),RS∈η  is a (two-sided) Brownian motion under the 

measure .ηQ  Recall the S-transform as rewritten by (3.8), i.e., ( ) ( ) =ηΦS  

[ ],ΦηQE  ( ).2L∈Φ  Notice that the right-hand side of (7.15) with 01 =γ  is 

the ( )2L -valued process. Then, taking the S-transform and considering the 

moment generating function for ( ),tBh  we get that for ( ),RS∈η  
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( )[ ]( ) ( ) ( )
⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ γ−γ=η η th

h
Q ttBExtXS 22

220 2
1exp  

( )( ) ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ γ−⎟

⎠
⎞⎜

⎝
⎛ γ+γ= η

thth ttthtgx 22
2

22
220 2

1exp2
1,exp  

( ( )( )).,exp 20 thtgx ηγ=  (7.17) 

Equation (7.17) coincides with (7.16). Therefore, the injectivity of the         
S-transform implies the required expression (7.15) when .01 =γ  

Example 7.3. Consider the equation: 

( ) ( )( ) ( )tZddttUmtdU ◊+−α=  

 ( )( ) ( ( ) ( )),2211 tBdtBddttUm h
◊◊ γ+γ+−α=  (7.18) 

( ) .0 0 R∈= uU  

Here ( ( )) R∈ttB 21  and ( ( )) R∈th tB  are assumed to be independent. This is 

the mixed multifractional SDE (7.1) with coefficients ( ) ,1 mt α≡α  

( ) ,2 α−≡α t  ( ) 11 ≡β t  and ( ) ,02 ≡β t  where α and m are constants, and 

.0>α  Then, by Theorem 7.1, we obtain the unique solution ( )tU  as 

( ) ( )tt emeutU α−α− −+= 10  

( ) ( ) ( ) ( )∫ ∫ ◊−α◊−α− γ+γ+
t t

h
stst sBdesBde

0 02211 .  (7.19) 

This ( )tU  is called mixed multifractional Ornstein-Uhlenbeck process 

(mixed mOU process). In fact, by (7.4) and (7.5), we observe that 

( ) ttA α−=  and ( ) ( ( ) ( )).~
2211 tWtWmtA hγ+γ+α=  Therefore, by (7.3), we 

get the following: 

 ( ) ( ) ( ( ) ( )) ( )
⎭
⎬
⎫

⎩
⎨
⎧ +α◊γ+γ+α◊α−= ∫ ◊◊ t

h udsssWsWmttU
0 02211 expexp  
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( ) ( ) ( ( ) ( ))
⎭
⎬
⎫

⎩
⎨
⎧ +γ+γ+ααα−= ∫

t
h udssWsWmst

0 02211expexp  

( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ +◊γ+◊γ+α= ∫ ∫∫ αααα− t t

h
st sst udssWedssWedsmee

0 0 020 211  

( ) ( ) ( ) .1
0 0 02211

⎭
⎬
⎫

⎩
⎨
⎧ +γ+γ+−= ∫ ∫ ◊α◊ααα− t t

h
sstt usBdesBdeeme  (7.20) 

Hence, expression (7.19) holds. In the third equality of equations above, we 
used the property such that the Wick product coincides with the ordinary 
product, since α and ,jγ  ,2,1=j  are deterministic (see Remark 7.4(ii) 

below). 

Example 7.3 is the same as Corlay et al. [15, Theorem 5.9]. 

At the end of this section, according to Holden et al. [20, Section 2.4 and 
Chapter 3], we summarize familiar properties of Wick product as the 
following remark; these play roles in the proofs of Sections 7 and 8. 

Remark 7.4. (i) In Wick product, commutative law, associative law and 
distributive law hold: 

,FGGF ◊=◊  

( ) ( ) ,HGFHGF ◊◊=◊◊  

( ) .BFAFBAF ◊+◊=+◊  

(ii) If at least one of F and G is deterministic, e.g., ,0 R∈= aF  then the 

Wick product coincides with the ordinary product in the deterministic case: 

,GFGF ⋅=◊  in particular, if ,0=F  then .0=◊ GF  

(iii) When applied to ordinary stochastic differential equations, 
derivative product rule holds as in the case of ordinary calculus: 

( ) .dt
dVUVdt

dUVUdt
d ◊+◊=◊  
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These are verified by taking the S-transforms of both sides of the equality 
and considering the injectivity of the S-transform. 

8. Ito Formula 

By the S-transform approach, Lebovits and Lévy-Véhel [27, Theorem 

6.9] showed the simple Ito formula in ( )2L  for 2,1C  functions with sub-
exponential growth as follows: 

Theorem 8.1. Let 0>T  and ( )1,0: →Rh  be a 1C  function such that 

h′  is bounded on .R  Let f be a [ ]( )RR,,02,1 ×TC  function. Furthermore, 

assume that there are constants 0≥C  and ( [ ]
( ) )th

Tt t2
,0max41 ∈<λ  such 

that for all ( ) [ ] ,,0, R×∈ Txt  

[ ]
( ) ( ) ( ) ( ) .,,,,,,,max

2

2

2

,0
x

Tt
Cext

x
fxtx

fxtt
fxtf λ

∈
≤

⎭
⎬
⎫

⎩
⎨
⎧

∂

∂
∂
∂

∂
∂  

Then, for all [ ],,0 Tt ∈  the following holds in ( ):2L  

( )( ) ( ) ( )( ) ( )( ) ( )∫ ∫ ◊
∂
∂

+
∂
∂

+=
T T

hhhh tBdtBtx
fdttBtt

ffTBTf
0 0

,,0,0,  

( )[ ] ( )( )∫ ∂
∂

⎟
⎠
⎞⎜

⎝
⎛+

T
hh dttBt

x
fttRdt

d
0 2

2
.,,2

1  (8.1) 

Here ( )stRh ,  denotes the covariance function of mBm ,hB  that is, 

( ) ( ) ( )[ ]sBtBEstR hhh =,  (see Remark 2.3(iv) and (5.10)); we observe that 

( )[ ] ( ) ( ) ( )( ) [ ( ) ].log2, 212 thth
h tdt

dthttthtttRdt
d =+′= −  

The simple Ito formula (8.1) can be rewritten by the stochastic differentials: 

( )( ) ( )( ) ( )( ) ( )tBdtBtx
fdttBtt

ftBtdf hhhh
◊

∂
∂

+
∂
∂

= ,,,  

( )[ ] ( )( ) .,,2
1

2

2
dttBt

x
fttRdt

d
hh

∂

∂
⎟
⎠
⎞⎜

⎝
⎛+  
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Proposition 8.2. Let ( )1,0: →Rh  be a 1C  function such that h′  is 

bounded on .R  Consider the equation: 

( ) ( ) ( ) ( ) ,0, ≥σ+μ= ◊ ttBdtXdttXtdX h  

( ) ,0 0 R∈= xX  (8.2) 

where μ and 0>σ  are constants. Recall that (8.2) can be rewritten in terms 

of derivatives in ( ) :∗S  

( ) ( ) ( ) ( ) ( )( ) ( ),tXtWtWtXtXtdt
dX

hh ◊σ+μ=◊σ+μ=  

( ) .0 0 R∈= xX  

Then the unique solution of (8.2) is given by 

( ) ( )( ) .0,exp0 ≥σ+μ= ◊ ttBtxtX h  (8.3) 

This ( )tX  is called multifractional Wick exponential or geometric 

multifractional Brownian motion (geometric mBm). Further, ( )tX  is an 

( )2L  -valued process with expression such that 

( ) ( ) ( ) .0,2
1exp 22

0 ≥⎟
⎠
⎞⎜

⎝
⎛ σ−σ+μ= tttBtxtX th

h  (8.4) 

This is analogous to the formula in Biagini et al. [9, (3.31)] and Elliott and 
Van Der Hoek [18, (4.9)] where the case of the constant Hurst parameter 

( )1,0∈H  is discussed. 

Proof. Equation (8.2) is the special case of SDE (7.1) with coefficients 
such that 

,1,0 21 =γ=γ  

( ) ( ) ( ) ( ) .,0,,0 2121 σ≡β≡βμ≡α≡α tttt  

Equations (7.4) and (7.5) in Theorem 7.1 imply that ( ) ( )tBttA hσ+μ=  and 
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( ) ;0~
≡tA  by (6.1) in Remark 6.5, observe that ( ) ( )∫ σ=σ ◊t

hh tBtBd
0

.  

Hence, (8.3) follows from (7.3). The uniqueness is guaranteed by Theorem 
7.1. The expression (8.4) for the solution ( )tX  can be verified as follows: 

1. Proof by the S-transform. We first notice the Wick exponential 
defined by the Wick power (Definition 4.12). Then, by the S-transform, we 
get the following: for ( ),RS∈η  

  [ ( ( ))]( ) [ ( ) ]( )∑
∞

=

◊◊ η=η
0

!
1exp

k

k
hh tBSktBS  

( [ ( )]( ))∑
∞

=

η=
0

!
1

k

k
h tBSk  

( ( ( ))) ( ( )( ))∑
∞

=
ηη ==

0
,,exp,!

1

k

k thtgthtgk  

since ( )[ ]( ) ( )( )thtgtBS h ,η=η  (Theorem 6.1(i)). Thus, taking the S-transforms 

of the both sides of (8.3), we get that for ( ),RS∈η  

( )[ ]( ) ( ( )( )).,exp0 thtgtxtXS ησ+μ=η  

On the other hand, for ( ),RS∈η  let ηQ  be the probability measure as 

defined by (3.8). Recall the S-transform under ,ηQ  i.e., ( ) ( ) [ ],Φ=ηΦ ηQES  

( ).2L∈Φ  Further, notice that ( )tBh  is a Gaussian variable with mean equal 

to ( )( )thtg ,η  and variance equal to ( )tht2  under .ηQ  Take the S-transforms 

of the both sides of (8.4) under ηQ  and consider the moment generation 

function for ( ).tBh  Then, by the same argument as in the proof of (7.17), we 

get the following: for ( ),RS∈η  

( )[ ]( ) ( ) ( )
⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ σ1−σ+μ=η η th

h
Q ttBtExtXS 22

0 2exp  



Linear Stochastic Differential Equation 159

( )( ) ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ σ1−σ1+σ+μ= thth

h ttthtgtx 2222
0 22,exp  

( ( )( )).,exp0 thtgtx hσ+μ=  

Therefore, the injectivity of the S-transform implies that ( )tX  of the form 

(8.3) has the expression (8.4). 

2. Proof by the Ito formula. Define the function ( )xtf ,  by 

( ) ( ) .2
1exp:, 22

0 ⎟
⎠
⎞⎜

⎝
⎛ σ−σ+μ= thtxtxxtf  

Let ( )ttRh ,  be the covariance function of mBm ( ).tBh  Then, since 

( )[ ] ( ) ( ) ( )( ) [ ( ) ],2log2, 22 thth
h tdt

dtthtthtttRdt
d =+′=  

we have 

( ) ( )[ ] .,2
1, 2

⎭
⎬
⎫

⎩
⎨
⎧ σ−μ=

∂
∂ ttRdt

dxtft
f

h  

Further, we have 

( ) ( ) .,,, 2
2

2
σ=

∂

∂σ=
∂
∂ xtf

x
fxtfx

f  

Hence, Theorem 8.1 on Ito formula applied to ( )( )tBtf h,  yields 

( )( ) ( )( ) ( )[ ] ( )( ) ( )tBdtBtfdtttRdt
dtBtftBtdf hhhhh

◊σ+
⎭⎬
⎫

⎩⎨
⎧ σ−μ= ,,2

1,, 2  

( )[ ] ( )( ) dttBtfttRdt
d

hh
2,,2

1 σ+  

( )( ) ( )( ) ( ).,, tBdtBtfdttBtf hhh
◊σ+μ=  

Thus, ( )( )tBtf h,  satisfies SDE (8.2). By the uniqueness of the solution of 

(8.2), we obtain that ( ) ( )( ),, tBtftX h=  completing the proof. 
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The following Ito formula for geometric mBm is a consequence of 
Theorem 8.1. 

Theorem 8.3. Let 0>T  and ( )1,0: →Rh  be a 1C  function such that 

h′  is bounded on .R  Consider SDE (8.2). Let F be a [ ]( )RR,,02,1 ×TC  

function with the sub-exponential growth as given in Theorem 8.1. Then, for 

all [ ],,0 Tt ∈  the following equality holds in ( ):2L  

( )( ) ( )( ) ( )( ) ( ) dttXtXtX
FtXtt

FtXtdF
⎭⎬
⎫

⎩⎨
⎧ μ

∂
∂+

∂
∂= ,,,  

( )( ) ( ) ( )tBdtXtXtX
F

h
◊σ

∂
∂+ ,  

( )[ ] ( )( ) ( ) .,,2
1 22

2

2
dttXtXt

X
FttRdt

d
h σ

∂

∂
⎟
⎠
⎞⎜

⎝
⎛+  (8.5) 

If we define 

( ) ( ) ( ) ( ),: tBdtXdttXtXd h
◊◊ σ+μ=  

then (8.5) can be simplified as 

( )( ) ( )( ) ( )( ) ( )tXdtXtX
FdttXtt

FtXtdF ◊
∂
∂+

∂
∂= ,,,  

( )[ ] ( )( ) ( ) .,,2
1 22

2

2
dttXtXt

X
FttRdt

d
h σ

∂

∂
⎟
⎠
⎞⎜

⎝
⎛+  

Proof. For 0≥t  and ,R∈x  define 

( ) ( ) .2
1exp:, 22

0 ⎟
⎠
⎞⎜

⎝
⎛ σ−σ+μ= thtxtxxtf  

Set 
( ) ( ) ( )( ) ( ).,,,:,,,: XtFxtftFxtGxtfX ===  

Then 

( ) ( ) ( ) ( ),,,,, xtt
fXtX

FXtt
Fxtt

G
∂
∂

∂
∂

+
∂
∂

=
∂
∂  
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( ) ( ) ( ),,,, xtx
fXtX

Fxtx
G

∂
∂

∂
∂=

∂
∂  

( ) ( ) ( ) ( ) ( ).,,,,, 2

22

2

2

2

2
xt

x
fXtX

Fxtx
fXt

X
Fxt

x
G

∂

∂
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂

∂
=

∂

∂  

Let ( )tX  be the solution of SDE (8.2). Then, by (8.4) of Proposition 8.2, we 

have 

( ) ( )( ) ( )( ) ( )( )( ) ( )( ).,,,,,, tXtFtBtftFtBtGtBtftX hhh ===  

Further, by applying Theorem 8.1 to ( )( ),, tBtG h  we get the following: 

( )( ) ( )( ) ( )( ) ( )tBdtBtx
GdttBtt

GtBtdG hhhh
◊

∂
∂+

∂
∂= ,,,  

( )[ ] ( )( )dttBt
x
GttRdt

d
hh ,,2

1
2

2

∂

∂
⎟
⎠
⎞⎜

⎝
⎛+  

( )( ) ( )( ) ( )( ) dttBtt
ftXtX

FtXtt
F

h ⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

∂
∂+

∂
∂= ,,,  

( )( ) ( )( ) ( )tBdtBtx
ftXtX

F
hh

◊
∂
∂

∂
∂

+ ,,  

( )[ ] ( )( ) ( )( )
⎩
⎨
⎧

⎟
⎠
⎞⎜

⎝
⎛

∂
∂

∂

∂
⎟
⎠
⎞⎜

⎝
⎛+ tBtx

ftXt
X

FttRdt
d

hh ,,,2
1 2

2

2
 

( )( ) ( )( ) .,, 2

2
dttBt

x
ftXtX

F
h ⎪⎭

⎪
⎬
⎫

∂

∂
∂
∂

+                       (8.6) 

Substitute the following equations to (8.6): 

( ) ( ) ( )[ ] ,,2
1,, 2 ⎟

⎠
⎞⎜

⎝
⎛ σ−μ=

∂
∂ ttRdt

dxtfxtt
f

h  

( ) ( ) ( ) ( ) .,,,,, 2
2

2
σ=

∂

∂σ=
∂
∂ xtfxt

x
fxtfxtx

f  
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Then we get the following: 

( )( )tBtdG h,  

( )( ) ( )( ) ( )( ) ( )[ ] dtttRdt
dtBtftXtX

FtXtt
F

hh ⎭⎬
⎫

⎩⎨
⎧ ⎟

⎠
⎞⎜

⎝
⎛ σ−μ

∂
∂+

∂
∂= ,2

1,,, 2  

( )( ) ( )( ) ( )tBdtBtftXtX
F

hh
◊σ

∂
∂+ ,,  

( )[ ] ( )( ) ( )( )
⎩
⎨
⎧

σ
∂

∂
⎟
⎠
⎞⎜

⎝
⎛+ 22

2

2
,,,2

1 tBtftXt
X

FttRdt
d

hh  

( )( ) ( )( ) dttBtftXtX
F

h
⎭
⎬
⎫

σ
∂
∂+ 2,,  

( )( ) ( )( ) ( )( ) dttBtftXtX
FtXtt

F
h ⎭⎬

⎫
⎩⎨
⎧ μ

∂
∂+

∂
∂= ,,,  

( )( ) ( )( ) ( )tBdtBtftXtX
F

hh
◊σ

∂
∂+ ,,  

( )[ ] ( )( ) ( )( ) .,,,2
1 22

2

2
dttBtftXt

X
FttRdt

d
hh σ

∂

∂
⎟
⎠
⎞⎜

⎝
⎛+  (8.7) 

Since ( )( ) ( )( )tBtGtXtF h,, =  and ( ) ( )( ),, tBtftX h=  equation (8.7) is 

equivalent to the following: 

( )( ) ( )( ) ( )( ) ( )( ) ( ) dttXtXtX
FtXtt

FtBtdGtXtdF h ⎭⎬
⎫

⎩⎨
⎧ μ

∂
∂+

∂
∂== ,,,,  

( )( ) ( ) ( )tdBtXtXtX
F

h
◊σ

∂
∂+ ,  

( )[ ] ( )( ) ( ) .,,2
1 22

2

2
dttXtXt

X
FttRdt

d
h σ

∂

∂
⎟
⎠
⎞⎜

⎝
⎛+  

Therefore, we obtain the formula (8.5), completing the proof. 
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9. Multifractional Black-Scholes Equation 

In this section, we shall derive the governing partial differential equation 
(PDE) for the price of a European call, that is, a multifractional version of the 
Black-Scholes equation based on mBm. The derivation results from the 
approach used by Black and Scholes [12] under the following assumptions 
on the financial market: 

(i) Trading takes place continuously in time. 

(ii) The riskless interest rate r is known and constant over time. 

(iii) The asset pays no dividend. 

(iv) There are no transaction costs in buying or selling the asset or the 
option, and no taxes. 

(v) The assets are perfectly divisible. 

(vi) There are no penalties to short selling and the full use of proceeds is 
permitted. 

(vii) There are no riskless arbitrage opportunities. 

The evolution of the asset price X at time t is assumed to follow the 
geometric mBm as described by SDE (8.2), i.e., 

( ) ( ) ( ) ( ) ( ) ,00, 0 >=σ+μ= ◊ xXtBdtXdttXtdX h  

where μ is the expected rate of return, σ is the volatility and ( )tBh  is the 

mBm with Hurst function ( ).th  Both μ and σ are assumed to be constants, 

and ( ) ( )1,0: →Rth  is assumed to be a 1C  function such that h′  is 

bounded. 

We shall follow the Delta hedging method as taken in Kwok [25, pp. 
101-103]. 

Consider a portfolio which involves short selling of one unit of a 
European call option and long holding of ( )tΔ  units of the underlying asset. 
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The value of the portfolio ( )( )tXt,Π  is given by 

( ) ( ),tXtF Δ+−=Π  

where ( )( )tXtFF ,=  denotes the call price. Note that ( )tΔ  changes with 
time t, reflecting the dynamic nature of hedging. Then Kwok [25, Remarks, 
p. 103] cited Carr and Bandyopadhyay [14] to describe the notion of 
financial gain on the hedged portfolio as follows: The number of units of the 
underlying asset in the hedged portfolio is assumed to be constant, that is, 

( ) ( )tdXtdF Δ+−  is seen to be the differential financial gain on the portfolio 

over dt as the self-financing portfolio. Thus, we take the setting such that the 
differential change of portfolio value Π to be 

( ) ( ).tdXtdFd Δ+−=Π  

Since F is a stochastic function of ( ),tX  we can apply Theorem 8.3 on 

Ito formula to compute its differential. Hence, 

( )( ) ( ) ( )tdXttXtdFd Δ+−=Π ,  

( ) ( )[ ] ( ) dttX
X

FttRdt
dtXX

F
t
F

h
⎭
⎬
⎫

⎩
⎨
⎧

σ
∂
∂

⎟
⎠
⎞⎜

⎝
⎛+μ

∂
∂+

∂
∂−= 22

2

2
,2

1  

( ) ( ) ( ){ ( ) ( ) ( )}tBdtXdttXttBdtXX
F

hh
◊◊ σ+μΔ+σ

∂
∂−  

( )[ ] ( ) ( ) ( ) dttXX
FttX

X
FttRdt

d
t
F

h
⎭
⎬
⎫

⎩
⎨
⎧

μ⎟
⎠
⎞⎜

⎝
⎛

∂
∂−Δ+σ

∂
∂

⎟
⎠
⎞⎜

⎝
⎛−

∂
∂−= 22

2

2
,2

1  

( ) ( ) ( ).tBdtXX
Ft h

◊σ⎟
⎠
⎞⎜

⎝
⎛

∂
∂−Δ+  

The cumulative financial gain on the portfolio at time t, denoted by 
( )( )( ),, tXtG Π  is given by 

( )( )( )tXtG ,Π  

( ) ( ) ( )∫ ∫ Δ+−=
t t

udXudF
0 0
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( )[ ] ( ) ( ) ( )∫ ⎭
⎬
⎫

⎩
⎨
⎧

μ⎟
⎠
⎞⎜

⎝
⎛

∂
∂−Δ+σ

∂
∂

⎟
⎠
⎞⎜

⎝
⎛−

∂
∂−=

t
h duuXX

FuuX
X

FuuRdu
d

u
F

0
22

2

2
,2

1  

( ) ( ) ( )∫ ◊σ⎟
⎠
⎞⎜

⎝
⎛

∂
∂−Δ+

t
h uBduXX

Fu
0

.  

The stochastic component of the portfolio gain stems from the last term: 

( ) ( ) ( )∫ ◊σ⎟
⎠
⎞⎜

⎝
⎛

∂
∂−Δ

t
h uBduXX

Fu
0

.  If we choose the dynamic hedging strategy 

by choosing ( ) ( )( )uXuX
Fu ,

∂
∂=Δ  at all times ,tu <  then the financial gain 

becomes deterministic at all times. By no riskless arbitrage opportunities, the 
financial gain should be the same as the gain from investing on the risk free 

asset with dynamic position whose value equals ( ) ( )( )., uXuX
FuXF

∂
∂+−  

The deterministic gain from this dynamical position of the riskless asset is 
given by 

( ) ( ) ( )( )∫ ⎟
⎠
⎞⎜

⎝
⎛

∂
∂+−=

t
duuXuX

FuXFrtM
0

.,:  

By equating these two deterministic gains, ( )( )( )tXtG ,Π  and ( ),tM  we get 

( )( ) ( )[ ] ( )( ) ( ) 22
2

2
,,2

1, σ
∂
∂

⎟
⎠
⎞⎜

⎝
⎛−

∂
∂− uXuXu

X
FuuRdu

duXuu
F

h  

( )( ) ( ) ( )( ) .,,, tuuXuX
FuXuXuFr <⎟

⎠
⎞⎜

⎝
⎛

∂
∂+−=  

Rearranging, we obtain 

( )( ) ( )[ ] ( )( ) ( )uXuXu
X

FuuRdu
duXuu

F
h

2
2

2
2 ,,2

1,
∂

∂
⎟
⎠
⎞⎜

⎝
⎛σ+

∂
∂  

( )( ) ( ) ( )( ) .,0,, tuuXurFuXuXuX
Fr <=−

∂
∂+  
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This is satisfied for any asset price X if ( )XtF ,  satisfies the equation 

( )[ ] .0,2
1 2

2

2
2 =−

∂
∂+

∂

∂
⎟
⎠
⎞⎜

⎝
⎛σ+

∂
∂ rFXX

FrX
X

FttRdt
d

t
F

h  

Note that the parameter μ, which is the expected rate of return of the asset, 
does not appear in the equation above. 

In conclusion, we arrive at the following result: 

Theorem 9.1. The no-arbitrage price of a European call is given by 
( )( ),, tXtF  where ( )XtF ,  is the solution of the following PDE: 

( )[ ] ,0,2
1 2

2

2
2 =−

∂
∂+

∂
∂

⎟
⎠
⎞⎜

⎝
⎛σ+

∂
∂ rFXX

FrX
X

FttRdt
d

t
F

h  (9.1) 

where r denotes the riskless interest rate. At expiry, the payoff of the 
European call is given by 

( ) { },0,max, KXXTF −=  (9.2) 

where T is the time of expiration and K is the strike price; this is the terminal 
payoff condition. 

If ( ) ( ),1,0∈≡ Hth  then 

( )[ ] ( ) ( ( ) ( ) ( )( )) ( ) Hth
th

Hthh thttthtttRdt
d

≡
−

≡ +′=|⎟
⎠
⎞⎜

⎝
⎛ |log22

1,2
1 12  

[ ( )] ( ) ,|2
1 122 −

≡ == H
Hth

th Httdt
d  

and hence (9.1) coincides with the fractional result of Necula [33] where the 
case of the Hurst parameter ( )1,21∈H  is investigated. 
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