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Abstract

Theory of fractional Brownian motion (fBm) is exclusively developed
by many researchers and used for modeling long-range dependence
when studying processes in computer networks, in financial markets
as well as in hydromechanics, climatology, and hydrography.

The fBm By (t), where t > 0, is a Gaussian process with stationary

increments and has the so-called Hurst parameter H e (0, 1) which

characterizes self-similarity of distributions and roughness of paths.
However, the stationarity of increments of fBm restricts substantially
its applicability for modeling processes with long memory. In
particular, it does not allow us to model processes whose regularity of
paths and “memory depth” change in time. A generalization of the
fBm is the multifractional Brownian motion (mBm), denoted by
Received: April 4, 2014; Accepted: May 18, 2014
2010 Mathematics Subject Classification: 60G22, 60H05, 60H10, 60J65, 91B25.
Keywords and phrases: fractional Brownian motion, multifractional Brownian motion,
stochastic differential equation, S-transform, white noise theory, Wick-Ito integral, Ito
formula, asset pricing, Black-Scholes equation.




88 K. Narita

B (t), where the constant Hurst parameter H in By (t) is substituted
by a time-dependent Hélder continuous Hurst function h(t) taking its
values in (0, 1). As such, mBms are useful as stochastic models for

phenomena that exhibit non-stationarity, for example, risky asset in
financial market, traffic in modern telecommunication networks or
signal processing.

0. Introduction

In this paper, we shall obtain explicit expression for solutions of
linear stochastic differential equations (SDEs) driven by mBm with time-

dependent coefficients. Here SDEs are described in a space (S)* of
generalized random processes (the Hida space of stochastic distributions) and
the stochastic integrals with respect to mBms are defined in (S)* as the

multifractional Wick-1to sense. More precisely, we introduce the S-transform
of a mean square integrable random variable ®; for @ fixed, this is the
functional S[®](n) operating on deterministic functions n and is fully

characterized as the expectation on ® multiplied by the factor, like the
exponential martingale induced by m. Then the Wick product ®¢W¥ of @
and ¥ is characterized by the defining equation such that S[® ¢ W¥](n) =
S[®](n) - S[¥](n). Further, the S-transform and the diamond ¢ denoting the

Wick product can be extended to (S)*. This leads us to the white noise

approach such that the multifractional Wick-1to integral can be defined as

x ) e b
the (S)*-valued integral of F(t)o% By (t), if it exists; J'aF(t)doBh(t)
b d d . . .
= ja F(t)Oa By, (t)dt, where th(t) denotes the multifractional white
noise. We notice that the multifractional Wick-1to integral is the extension of
the fractional Wick-Ito integral with respect to fBm with the constant Hurst
parameter H = 1/2 and the classical Ito integral with respect to the standard

Brownian motion that is the fBm with H = 1/2.
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Our investigation is based on the method of the S-transform which is
much simpler and does not make use of the complicated constructions from
the white noise calculus. Moreover, the injective property of the S-transform
enables us to solve the above-mentioned SDEs.

Thus, for fundamental results, referring to Bender [3, 4], Corlay et al.
[15], Lebovits and Lévy-Véhel [27] and Lebovits et al. [28], we shall proceed
to discuss important notions such as fBm (Section 1), mBm (Section 2),
S-transform approach (Section 3), white noise setting (Section 4), white noise
operators My (Section 5) and stochastic integral with respect to mBm

(Section 6). In the sequel, we shall obtain explicit expression for solutions of
the linear SDEs driven by mBm (Theorem 7.1, Section 7). Moreover, we
shall derive Ito formula for geometric mBm from the simple one for mBm
Bh(t) (Theorem 8.3, Section 8). As an application, we shall obtain a

multifractional version of the Black-Scholes equation, that is, the pricing
partial differential equation (PDE) related to European call option, where a
risky asset process is modeled by geometric mBm (Theorem 9.1, Section 9).

Our theorem on expression for solutions of SDEs corresponds to an
extension of the result in Lebovits and Lévy-Véhel [27] where the solutions
of SDEs are limited to geometric mixed multifractional Brownian motion
and mixed multifractional Ornstein-Uhlenbeck process. Ito formula for
geometric mBm corresponds to an extension of that in Lebovits and Lévy-
Véhel [27] where the simple case for mBm is investigated. In addition, the
multifractional version of the pricing PDE corresponds to an extension of the
result in Necula [33] where the market is considered under the fBm
environment with the constant Hurst parameter H in (1/2, 1).

1. Fractional Brownian Motion

Fractional Brownian motion was introduced in 1940 by Kolmogorov
[24] as a way to generate Gaussian “spirals” in a Hilbert space, and then
popularized in 1968 by Mandelbrot and Van Ness [31] by its relevance
to model natural phenomena; hydrology, finance, signals and images
processing, and telecommunications.
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Let (Q, F, P) be a complete probability space. Then the fractional

Brownian motion is defined as a Brownian motion with a constant parameter
H which is called Hurst parameter:

Definition 1.1. A real-valued random process By = (By(t))p is

called (two-sided, normalized) fractional Brownian motion (fBm) with Hurst
parameter H < (0, 1) provided that

(i) By (t) is a Gaussian process,

(i) B4(0) =0 as.,

(iii) E[By ()] =0,

(v) E[By (0BG ()] = 2 [t +[sPH —[t-s "]t s e R,

where E[-] denotes the mathematical expectation.

Especially the case H =1/2 leads to the standard Brownian motion

(sBm). In this sense, fBm appears as a generalization of sBm. It is well
known that fBm By is a semimartingale if and only if H = ]/2, i.e., in the

case of a classical sBm. Hence, Ito’s stochastic integration theory for
semimartingales cannot be applied, if H = 1/2.

Remark 1.2. FBm By is not a stationary process, but has stationary

increments. In fact, from Definition 1.1(iv), we can deduce the following
expression for the variance of the increment of the process in an interval:

E[(By (t) - By (5))2] = [t — s [?".

Moreover, since By is a Gaussian process, we have that for all n > 1,

n/2
Ell B () By (9] = 2 =1 "5 2 1= s ™.

Remark 1.3. By the Kolmogorov criterion, a process X = (X(t))g

admits a continuous modification if there exist constants oo >1, B > 0, and
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k > 0 such that
E[ X(®) - X(s)|*] < k[t - s [P

for all s, t € R. Noticing the nth moment of the fBm in Remark 1.2, by the

Kolmogorov continuity criterion, we deduce that fBm has a version with
continuous trajectories.

FBm is the only centered Gaussian process with stationary increments.
The Hurst parameter H governs different properties of the fBm, for instance,
the self-similarity of the process, the correlation of the increments and the
roughness of the path. We summarize these according to Bertrand et al. [8] as
follows:

1. Self-similarity. For all ¢ > 0,

By (o) t € R}~ (cH By (1): t < R},

law
where ~ means the equivalence in the sense of probability law. Thus, H

means the self-similar index.

2. Correlation of the increments. Stationary increments means that for
all h, s, t e R,

E[(BH (t + h) = By (1))(By (s + h) — By (s))]
= E[(By (t — s+ h) = By (t = s))[[(Bn (h) — By (0))]
= pp(t-s).
In contrast with sBm, the increments of fBm are correlated. They even
display long-range dependence or long memory when H > 1/2, that is, for
all h =0,

D Ipn(k)] = e,

keZ

More precisely, let Y(j) = By (j +1) — By (j) denote the increments of
fBmand r(j):= E[Y(j)Y(0)] = py(j — 0) its correlation. Then the following
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is well-known:

e if H =1/2, then the increments are independent;

o if H >1/2, then ZT(OZ_OJ r(k)| = +oo, thus, we have long memory of
the increments;

e if H <1/2, then ZTZ_OJ r(k)| < +oo, thus, we have short memory of
the increments.

3. Roughness of the path. In spite of its usefulness, fBm model has

some limitations, an important one of them is that the roughness of its path
remains everywhere the same.

In order to explain this important issue, based on Ayache and Lévy-
Véhel [1], we introduce the notion of pointwise Holder exponent which
provides a measure of the local Holder regularity of a process path in
neighborhood of some fixed point t.

Let (X (t)) g be a stochastic process whose paths are with probability 1
continuous and nowhere differentiable functions (this is the case of fBm
paths). Let a € [0, 1) and t be fixed. One says that a path X (t, ®) belongs to

the pointwise Holder space C“(t), if forall s € R small enough, one has
| X(t+s, 0)— X(t, ®)| < C(o)]s ]|

The pointwise Holder exponent of the path X(t, ) at the point t, is defined
as
ay (t, ®) = sup{a € [0, 1); X(-, ) € C*(t)}.

Then the roughness of fBm path remains everywhere the same, that is,
P(Vt, 0By, (1) = H)=1

From a geometrical point of view, H determines the (constant) roughness
of the sample paths of the fBm and is linked to the fractal (or Hausdorff)
dimension D of the graph by the simple relation D = 2 — H.
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With regard to the construction of fBm, there are well-known results, one
is nonanticipative stochastic integral representation and the other is spectral
representation as follows:

1. Moving average representation. This was introduced by Mandelbrot
and Van Ness [31] in 1968, and presented by Samorodnitsky and Taqqu
[38, Chap. 14] in 1994, in the slightly modified form as follows:

12
B (1) = gy gy [ [~ 9 V2 - o Voleee), ()

where for all reals x and 0,
) xe, if x>0,
(X)+ = .
0, otherwise,

and Vy =T (2H +1)sin(nH) is a normalizing factor such that Var(By (1))

=1 and the kernel (t - s)H‘]/ 2 rules the dependence between the process
increments. We note that

—n . 12
\/F(ZFF(lHJFJlr)f/Ig)( 1) {Jo [(1+s)H Y2 _ M2 24 +%} :

where T'(-) is the Gamma function. In (1.1), (B(t)),.r denotes the ordinary

two-sided Brownian motion, that is,

B(1) - By (t), fort >0,
®= {BZ(—t), fort <0,

where By(t) and B,(t) are two independent Brownian motions for t > 0.

We can rewrite (1.1) as follows:

Y2
B (0 = iy gz 69 V2 - () V2laece

+f ;(t - s)”‘”ZdB(s)} for t >0, Ly
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Y2
B () = iy sy ] 69 Y2 - - V2laee

- tO (—s)H ‘VZdB(s)} for t < 0. Ly’

2. Harmonizable representation. This was first defined by Kolmogorov
[24] in 1940 as follows:

-1

1 el -
By (t) = C(H)JR|§|H+V2 dW (&) forall t € R, (1.2)

where dW is “the Fourier transform of the white noise”, that is, the unique

complex-valued stochastic measure which satisfies, for all f e L2 (R),
IR f(x)dW(x) = IR f(g)dv(/(g), almost surely, (1.3)

dW being the usual real-valued white noise (i.e., a Brownian measure). Here

f denotes the Fourier transform of f:
f(e) = j Re_igxf(x)dx.

For all the technical details, we refer to Samorodnitsky and Taqqu [38, pp.
325-326]. Equation (1.3) implies that By (t) is real-valued. The constant

C(H) in (1.2) is deduced from the requirement that E[BH(1)2] =1, and
defined by

_(2cos(nH)T(2 - 2H)\Y?
C(H)'z( H({-2H) j

271 Y2
- (F(ZH T D)sin(e )) ' (14)
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Here the last equality follows from Euler’s reflection formula such that

T

[(2)I(1-2z)=-2[(2)[(-z) = sin(nz)

which is derived from Euler’s expression for the trigonometric function
sin(nz) in terms of infinite product. In fact, from the relation that T'(1 + z) =

zI'(z), we have formal calculations, heuristically, as follows:

m = T(2H)T(L - 2H)

n_ (2H)[(2H)(1 - 2H)I(1- 2H)
< sin(n(2H)) ~ (2H)(L - 2H)
n T(QH+1)I(2-2H)
< Sin(x(2A)) ~ (2H)(1-2H)
. _ 2nH(-2H)
< sin@mH)) = Fon s 1T - 2H)
2nH (1 - 2H)

< 2sin(rH)cos(nH) = I'(2H +1)Ir(2-2H)

2cos(nH)'(2-2H) 2n
H(l-2H) - T'(2H +1)sin(nH)’

It is known that the probability laws of the processes defined by (1.1) and
(1.2) are equivalent. Hence, in (1.1) and (1.2), we used the same notation
(By (t));c to denote the fBm.

2. Multifractional Brownian motion

Since the intensity of the long-range dependence depends on both Hurst
parameter H < (0, 1) and the lag h, once fixed the lag, the autocorrelation
only depends on the Hurst parameter. Hence, the most immediate
generalization of the fBm can be obtained by allowing H to vary over time,
that is, the constant Hurst parameter H in equations (1.1) and (1.2) will be
substituted by a time-dependent Hurst exponent h(t).
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This idea was proposed by Lévy-Véhel [29] in 1995. In fact, in some real
datasets there is evidence that the roughness of the sample path varies with
location. In such cases, a single number, i.e., Hurst parameter H or fractal
(Hausdorff) dimension D, may not provide an adequate global description of
the roughness of the sample path and there is motivation for developing
models which allow for varying roughness. Lévy-Véhel [29] has considered
such datasets in Image Analysis and Signal Processing contexts, and these
led him to consider a generalization of fBm which he calls multifractional
Brownian motion.

The first representation is a mean average approach and was proposed by
Peltier and Lévy-Véhel [35] in1995, subsequently to Lévy-Véhel [29]:

Definition 2.1. Let h:[0, ) — (0,1) be Holder continuous with
exponent B > 0. Then, for each t >0, relation (1.1)’ defines the value

By (t) with H =h(t). For t >0, the following random process is called

multifractional Brownian motion (mBm) with Hurst function h(t):

Bro)() ok [7 - 9M0¥2 (5 O¥2)0m(s)
hO™ = Th®) + 1/2) |J o

+ I; (t— S)h(t)—l/2 dB(s)}. (2.1)

The second representation is a spectral approach introduced by Benassi
etal. [7].

Definition 2.2. Let h:[0, ©) — (0,1) be Holder continuous with
exponent 3 > 0. Then, for each t > 0, relations (1.2) and (1.3) define the
real value By (t) with H = h(t). For t > 0, the following random process

is called multifractional Brownian motion (mBm):

1 el -1 -
Bh(t)(t) = C(h(t)) I]R | £ |h(t)+1/2 dw (EJ) (2.2)
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with dW (€) as appeared in (1.2), and C(x) as given by (1.4), i.e., C(x) =

21 y2
(F(Zx + 1)sin(Xn)j '
The processes Bpy)(t) in Definitions 2.1 and 2.2 are well defined (i.e.,

square integrable) if the function h(-) is Holderian of order 0 < B <1 on

[0, 1]. Cohen [13] proved the equality in distribution of both processes

normalized in such a way that E[Bh(t)(t)z] = t2"® From these definitions,

it is easy to see that mBm is a zero mean Gaussian process whose increments
are in general neither independent nor stationary; recall that fBm has
stationary correlated increments for H = 1/2. When h(t) = H forall t > 0,

mBm is of course just fBm with constant Hurst parameter H.

For the sake of simplicity, the mBm with Hurst function h(-) defined by

(2.1) or (2.2), is denoted by (X(t));>o. Then we summarize as follows:
Remark 2.3. MBm X(t) satisfies the following properties:
(i) X(t) is a Gaussian process,
(i) X(0)=0 as.,
(iii) E[X(t)]=0, t > 0, that means the process is centered,

(iv) it follows from Ayache et al. [2, Proposition 4] that the
autocovariance of X(t) of the standard mBm, namely of an mBm with

E[X2(1)] =1, is given by

E[X (1) X (s)]= D(h(t), h(s))[ ") + |5 [MON) | ¢ (L]

where

JI(2x +1)[(2y + 1)sin(nx)sin(ny)
2I(x + y + 1)sin(n(x + y)/2)

D(x, y) =
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The mBm X(t) is a continuous process for all t > 0 with probability

one. This was shown in Peltier and Lévy-Véhel [35, Proposition 3], by the
help of skilful splittings of the Ito integral representation, some fundamental
inequalities and the Kolmogorov criterion.

Remark 2.4. At each point s, the mBm X(t) := Bpy)(t) is locally
asymptotically self-similar with index h(s) in the following sense: assume
that h(t) is Holder continuous with exponent B and that sup;sq h(t) <
min(1, B). Consider X(s + pu)— X(s), i.e., the increment process of the

mBm at time s, and lag pu. Then Benassi et al. [6] proved that

lim (X(s + p#(i)— X(s)] law (Bn(s)(U)yer, -
p ueR,

p—0*

where (Bh(s)(u))UE]R+ is an fBm with parameter h(s) defined on R_. The

above distributional equality states that at any point s, there exists an fBm
with parameter h(s) tangent to the mBm.

Remark 2.5. Unlike fBm’s, the increments of mBm X (t) = Byy)(t) are

no longer stationary nor self-similar, and its path regularity explicitly varies
with time. More precisely, the following properties of mBm are known by
Ayache et al. [2, Propositions 1 and 2]: Assume that 3 > suptsg h(t). Then

(i) With probability one, for each ty, the Holder exponent at point
tg > 0 of mBm is h(tg); recall that the Holder exponent of a process X(t)

at point s is defined as

X(s+h)—X(s) _ 0}.

ayx (s, o) = Sup{a; k!E}ﬂo o

A “large” a.x (s, ®) means that X is smooth at s, while irregular behavior of

X at s translates into o close to 0.
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(ii) With probability one, for each interval [a, b] = R, the graph of
mBm (X(t))te[a, b Verifies the following property:

dimy {X(t);t e[a, b]} =dimg{X(t); t € [a, b]} = 2—min{h(t); t € [a, b]},

where dimy and dimg denote the Hausdorff dimension and the box

dimension, respectively.

We note that there is a Gaussian process generalizing the mBm and
having the Holder regularity that can be a very “irregular function” (see
Ayache and Lévy-Véhel [1]).

We can refer statistical study of fBm and mBm, and modeling in finance,
to Bertrand et al. [8] and Bianchi [11].

The following Sections 3-6 provide the necessary backgrounds on the
S-transform and the white noise theory to define a stochastic integral and to
handle stochastic differential equations (SDEs) driven by mBm.

3. The S-transform Approach

Since the fractional Brownian motion (fBm) with Hurst parameter
H = 1/2 is not a semimartingale, the integration theory of the Ito type

cannot be applied to this family of processes. Therefore, different extensions
have been proposed. The first one was introduced by Lin [30], who proved
that an interesting class of processes is integrable with respect to an fBm and
derived an analogue of the Black-Scholes formula in financial market. In this
case, the integration theory is based on the ordinary pathwise product in
defining the integral:

n-1

[ ot 8B (0= 1im > oy, 0) (B () - By (t)
k=0

lim
| A|—0

for suitable integrand o(t, ®). Here and hereafter, A:a =1ty <t} <--- <t,

=b, |A|=maxgck<n_1(tk+1 — tk ). However, this integral, in general, does
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not have expectation zero. Moreover, Rogers [36] and Dasgupta and
Kallianpur [16] showed an arbitrage opportunity in the Black-Scholes model
under the pathwise integral setting as described above.

Thus, the second integration theory for the fBm was introduced by
Duncan et al. [17]. This integration is based on the method of the Wick
product, that is, the Wick product ¢ is used instead of the ordinary product
in Riemann sums:

n-1

[ ot o)aB 1) = ot ©)0 (B () — By (1),
0

lim
|A|—>0 -
for suitable integrand o(t, ). An important property is that this integral has

expectation zero, i.e.,
b
E[ j s(t, ®)dBy (t)} - 0.
a

Duncan et al. [17] began to define the Wick product of two exponential
functions &(f)0&(g) = &(f + g) and also extended to define the Wick
product of two functionals in the space of the linear span of the exponential

functions which is dense in LP(Q) (p > 1). Further, they extended to more
general functionals, including the functionals of the form j;o f(t)dBy (t) for

suitably given f. This integral by the method of the Wick product has been
further developed by Hu and Qksendal [22] in a fractional white noise
setting. As an application, they obtained no-arbitrary result in the Black-
Scholes model. However, in this setting, the underlying probability space
depends on the Hurst parameter H of the fBm, i.e., one has to consider
different spaces for different parameters. Moreover, H >1/2 is assumed in
constructing the appropriate spaces. Regarding this matter, Elliott and Van
Der Hoek [18], in white noise setting, presented a new framework for fBm in
which processes with all Hurst parameters in (0,1) could be considered
under the same probability measure. As an application, they obtained the no-
arbitrage result in the Black-Scholes model.
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Stochastic integration theory with respect to fBms was also developed by
Hu [21]. Hu mainly used the integral kernels Ky (t, s) and ny(t, s) such
that

t t
By (t) = IO Ky (t, s)dB(s) and B(t) = IOnH(t, s)dBy (5)

with fBm By(t) (0<H <1) and sBm B(t), and extended the

correspondence between fBm and sBm to that between nonlinear functionals
of fBm and nonlinear functionals of sBm. Further, Hu used Wiener chaos
expansion and idea of creation operator from quantum field theory in order to
define stochastic integral. In fact, he introduced ‘algebraically integrable
integrands’ for which stochastic integral could be defined. This integral has
expectation zero and relates to the method of the Wick product, Malliavin
calculus and Skorohod integral; for more details, see Biagini et al. [10],
Mishura [32] and Nualart [34].

On the other hand, Bender [3, 5] gave a motivation for a simple
definition of the fractional Ito integral and generalized the models in Hu and
ksendal [22] and Elliott and VVan Der Hoek [18]. This definition is based on
the S-transform, an important tool in the white noise analysis, but carries
over to an arbitrary probability space on which a two-sided Brownian motion
lives. Concerning the definition of stochastic integrals, the S-transform
approach is equivalent to the white noise definition as developed in Hu and
ksendal [22], Elliott and Van Der Hoek [18] and Bender [4], as long as we

suppose the integrand and the integral to be LZ(Q) -valued. However, the
S-transform approach is much simpler and does not make use of the

complicated constructions from the white noise calculus.

In the following, we briefly present the basic idea of the concept of the
S-transform according to Bender [3]; we also refer a summary to Rostek [37].

First, we have to introduce some notation. For 0 < o < 1, the Riemann-

Liouville fractional integrals (the fractional integrals of Weyl’s type) are
defined by
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14000 = [ 1O 0" at = 2 [ e e

1% (x) = ﬁj_}; Ft)(x — )Lt = ﬁj: f(x - t)t* Lt

if the integrals exist for almost all x € R. These fractional integrals are
nothing but normalized blurred version of the function f, either averaging
over future or over past function values. On the other hand, the fractional
derivatives of Marchaud’s type are given by

» f(x)- f(x+t)dt

(03 .
Dot = r{1- oc).[ tl+a

and

DY f = lim DY .f,

e—0"

if the limit exists in LP(R) for some p >1. The notation D{f e

LP(R) indicates convergence in the LP(R)-norm. Concerning the latter

representation

DYf = lim Oof(x)_f(x”)

e—0"

t~%dt,

ra- oc).[

we can interpret this fractional derivative as a weighted sum, this time
averaging difference quotients yielding a blurred version of the first
derivative f.

Based on these definitions, for given Hurst parameter H e (0, 1),
consider the fractional integrals 12 f with o = H —=1/2 (1/2 < H <1), and
the fractional derivatives DY f with oo =1/2 - H (0 < H < 1/2). Then the

operators Mr are defined as
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KDz M2, 0<H <,
Mrf: f, H:%, (3.1)
KytH Y2 %<H <1,

Here

0 _1/2
Ky =T(H +1/2){.[0 [+ s)H_l/2 —sH_V2]2d3+%} .

We notice that Kyy = V&,/Z with Vi = I'(2H +1)sin(nH) as given in (1.1).
We recall a construction of fBm starting from a Brownian motion.

Let (QQ, F, P) be a probability space that carries a two-sided Brownian
motion B; observe B in equation (1.1). For a, b € R, we define the indicator

function
1, ifa<t<h,

1a, b](t)=+-1, ifb<t<a, (3.2)
0, otherwise.

By Bender [3, Theorems 2.1 and 2.6], we note the properties of the

operators I\/IL4 as the following remarks:

Remark 3.1. The fBm can be represented in terms of the operators I\/IL4
and the indicator function 1[0, t]: For 0 < H <1, let the operators M{' be
defined by (3.1). Then M 1[0, t] e L?(R) and an fBm By is given by a
continuous version of the Wiener integral

By (t) = j R(M_H 1[0, t])(s)dB(s). (3.3)

This is the well-known Mandelbrot and Van Ness representation (1.1); more
details can be found in Bender [4].
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Remark 3.2. Using the operators MiH, one can formulate the useful
fractional integration by parts rule:

[ fOMH)E)ds = [ M 1)s)gs)0s (3.4)

for rapidly decreasing functions f and g on R.

The S-transform is an important tool in white noise analysis. Here we
give a definition and state some results that do not depend on properties of

the white noise space. We first introduce some notation. | B(f) denotes the

Wiener integral JR f(s)dB(s) for function f e L?(R); we notice that the

underlying probability space is given by (Q, F, P) that carries a two-sided
Brownian motion B. If there is no danger of confusion, then we shall drop the
superscript B. | f |, is the usual L?(R)-norm, and the corresponding inner
product is denoted by (f, g),.

Let G be the o-field generated by {I(f): f € R}. Then we define
(L%) = L3(Q, G, P) and denote by | @ lp the (L%) norm. We also denote
by S(R) the Schwartz space of smooth rapidly decreasing functions. Then,

based on Bender [3, Definition 2.2], we define the S-transform on (L2):
Definition 3.3. For @ e (L?), the S-transform is defined by
def I(n)
S(®)(n) = E[@-:e""V:], m e S(R). (3.5)
Here the Wick exponential of 1(n) is defined by

1 2
def 1(m)-5In
el g 2Inlo

= eprR n(s)dB(s) — %IR nz(s)dsj. (3.6)

Hence, (3.5) is rewritten as

S(@) () = E[cb - exp[ [RELCR RHZ(S)dSH, neS®),
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From now on, the S-transform of an element @ of (L2) is noted by S®
or S[®].

By Definition 3.3, for @ e (L2) fixed, the S-transform is a functional
from S(R) to R, i.e.,, S(®):S(R) > R.

Remark 3.4. The mapping @ > S(®) is injective: If S(®)(n) =
S(W¥)(n) for all n e S(R), then ® =P. This result is well known in the

white noise setting; an elementary proof can be found in Bender [3, Theorem
2.2].

By Bender [3, Theorem 2.3], we can characterize (L2) convergence in
terms of the S-transform:

Remark 3.5. Let @, be a sequence in (L?) and @ e (L?). Then the
following assertions are equivalent:

(i) @, (strongly) convergesto @ e (L2).

(i) [ @ o — | © [, and for all n  S(R), S(®y)(n) - S(®)(n).
It is easy to prove the following property of the Wick exponential:
Remark 3.6. Let f, g Lz(R). Then

E[: el(f) . . al(9) )= elf+9)o.

In particular, since (S el (f) () = E[: el(f) ... gl ;] for n e S(R),
we have

s:e'Mym=eMo  nesm)

Further, by Remark 3.6, we have E[: e!(f) ]=1for f e L%(R). Hence,
we can define a probability measure on G by

def
dQ; S el gp (3.7)
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We notice that P and Q; are equivalent. Thus, with the measures Qs

n € S(R), we can rewrite the S-transform as

(5®)(n) = EN[o] (38)

In the following, we briefly summarize several properties of the
S-transform according to Bender [3, Sections 2 and 3].

The S-transform of a simple Wiener integral f:f(t)dB(t) for

deterministic function f is

s( j ;f(t)dB(t)j(n) - J' abf(t)n(t)dt. (3.9)

In fact, since B(t):= B(t)—jén(s)ds for n € S(R) is a two-sided Brownian

motion under the measure Q,,, equation (3.8) yields
Su:f(t)dB(t)J (n)=E U:f(t)(dé(t) ¥ n(t)dt)}
_ g™ { j :f(t)n(t)dt}

b
- j _fOn(at

In particular, considering f(t) =1 in (3.9), we obtain
t t
S(B()(n) = 5{ [, 198(5)|0) = [ (o). (3.10)

For simplicity, we interpret a stochastic process as an (L2)-valued

function. Then the notion of Pettis integrability in Bender [3, Definition 2.3]
fits better than the pathwise integral:

Definition 3.7. Let X : M — (L?) (M c R a Borel set). Then X is
said to be Pettis integrable if E[X¥]e L}(M) for any ¥ e (L?). In that
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case there is a unique @ € (L2) such that for all ¥ € (L2),

E[o¥] = j Elx@wla

@ is called the Pettis integral of X and is denoted by IM X (t)dt.

Note that by this definition we have, for a Pettis integrable X,
IM E[X (t)¥]dt = EUM X(t)‘Pdt}

for all ¥ e (LZ). In particular, the Pettis integral interchanges with the

S-transform; in fact, observe the case where ¥ = e' ™) : with n € S(R).

We shall point out the relationship between the Pettis integral and
the pathwise integral. Let X :[a, b] - R be measurable and pathwise

integrable such that the pathwise integral belongs to (L2). If X is good

enough to apply Fubini’s theorem, then we can interchange the integrals:
b b
EU X (t)dt - ‘}’} - I E[X (t)¥]dt,
a a

where the integral on the left-hand side is the ordinary pathwise integral.
Hence, the Pettis integral defined in Definition 3.7 coincides with the
pathwise integral in that case.

Now, according to Bender [3, Theorem 3.1], we describe the classical Ito
integral and fractional Ito integral from an S-transform point of view.

Let 0<a<b and X :[a, b]xQ — R be a progressively measurable
(with respect to the filtration F; generated by the Brownian motion B(s),

0 < s <'t) process satisfying

EU:| X(t)|2dt} <o,
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. . b . .
Then the classical Ito integral jax(t)dB(t) with respect to the Brownian

motion B exists. We calculate its S-transform in the following: let Qn'

n € S(R), be the measure defined by (3.7). Then, by the classical Girsanov
theorem, B(t) = B(t)—J'(tJ n(u)du is a two-sided Brownian motion under

the measure Q,,, and _[: X(t)dB(t), a<s<b, isa Qy-martingale with

zero expectation. Then, by (3.8), (3.10) and Fubini’s theorem, we obtain the
following:

sU: X(t)dB(t)j (m) = E™ U: X(t)dB(t)}

En U: X ()dB(t) + j; X(t)n(t)dt}

= [PES X @)t

- [ (sx @) mmen

= [ sxan e & sy ma

As the S-transform is injective, it also can be taken to define the above
integrals. Thus, we can summarize as follows:

Theorem 3.8. (i) Let 0<a<b and X :[a, b]xQ—>R be a

progressively measurable process such that EU: | X(t) |2dt} < oo, Then the

. b . . . .
Ito integral ja X (t)dB(t) is the unique element in (L?) with S-transform

given by
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s( [ x0e0 |0 - [ sx @) mmoe
- [Psxoym EseomE @

(ii) The Wiener integral 1(f) = jR f()dB(t), f e L2(R), is the unique
element in (L?) with S-transform given by
IR f(t)n(t)dt. (3.12)

Drawing the conclusion by analogy, one can accordingly define the

fractional integral of Wick-Ito type J:X(t)dBH (t) to be the unique random

variable with S-transform
b b d
([ xwden 0o = [ sxapmg sEaome 13

If we recall (3.3) and apply the S-transform on the Wiener integral
following (3.9) as well as the fractional integration by parts rule (3.4), then
we receive

FECHOIORS- S RULER DO
- % [ M0, t(s)n(s)s

S NUBRIOLE

= (MIm)(0).

Thus, (3.13) can be reformulated and we arrive at the following
definition:
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Definition 3.9. Let X : M — (L?) (M c R a Borel set). Then X

is said to have a fractional Ito integral (S-transform approach) if
S(X() MM () e X(M) for any 1 e S(R) and there is a @ e (L?)
such that for all n e S(R),

S(®)(n) = IM S(X(®) (M (M) ()t (3.14)

In this case, @ is uniquely determined by the injectivity of the S-transform
(see Remark 3.4) and it is denoted by jM X(t)dBy (t), i.e.,

(], xdBw® = [ | sxeonmmatm et

Remark 3.10. The fractional Ito integral as defined by the S-transform
approach in Definition 3.9 has expectation zero:

EU:x(t)dBH (t)} - 0.

In fact, for ® = f:x(t)dBH (t), the S-transform at n = 0 implies

b
Ef@] = E[0-: '™ o = S@)(0) = | S(X@)©O M} -0)(®)ct = 0.

Let us now introduce the Wick product in Bender [3, Definition 3.3].

Definition 3.11. Let @, ¥  (L?) and assume that there is an element

DOV e (L?), that satisfies
S(®OW¥)(m) = S(P)(n)S(¥)(n) forall n e S(R).
Then @ O is called the Wick product of ®@ and V.

The next result by Bender [3, Theorem 3.6] explores the relationship
between the fractional Ito integral and the Wick product:
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Theorem 3.12. Let X : R — (L?) and Y e (L?). Then
YO X(s)dBy(s)=| Y OX(s)dBy (s
[ X©)dBy(s)=[ Y oX(5)dBy(5)

in the sense that if one side is well-defined, then so is the other, and both
coincide.

The straightforward proof can be carried out by calculating the
S-transform of both sides. Theorem 3.12 leads us to the following:

(i) In particular, this result implies that, for good random variables Y,
Y 0(By (b) - B () = [ 1a, b(s)YdB (s),

(ii) Together with the fractional Ito isometry (Bender [3, Corollary 3.5]),
this shows that for sufficiently good processes X, the fractional Ito integral is

an (L2) limit of Wick-Riemann sums; for instance, see Duncan et al. [17].

(iii) Note that, in general, the Wick product does not coincide with the
ordinary pathwise product.

We now turn to the white noise calculus approach. So we assume
the underlying probability space to be the white noise space, that is, Q is
S'(R), the space of tempered distributions. The general idea of the white

noise approach is as follows: Although the fractional Brownian motion

By : R — (L?) is not differentiable on almost every path, it has a
derivative, if we look at By : R — (S)" (see Bender [4, Theorem 2.17]).
Here (S)" denotes a space of generalized random variables, the so-

called Hida distributions; (L?) = (S)*. For more information about Hida
distributions, see Hida et al. [19] and Kuo [26]. Note that the S-transform
can be extended to (S)". Then, by Bender [4, Theorem 3.7], since

S{-§¢ Br (00 = (MIn)©) for 1 < S(R), we get
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S(X(1)0 5 B 0 (n) = SXOY [ B 0] (0

= S(XO)MMI)(t), neS®),

where the diamond ¢ denotes extension of the Wick product to (S)* such
that

0:(S)" x(S)" = (S)", continuous mapping.
This leads us to the white noise approach such that the fractional Ito integral
can be defined as the (S)"-valued Pettis integral of X(t)O% By (1), if it

exists;

b b d
ja X (t)dBy (t) = Ia X(1)0 < By (D). (3.15)

In fact, a formal calculation shows that for n € S(R),

s[ [RCL: <t)j<n> = [ 5[ x00 G Ba )

b
= [ sxapmmm).
and hence (3.14) of Definition 3.9 will yield the required assertion.

4. The White Noise Setting

In the following, we present some background of the standard Gaussian
white noise calculus which can be found in Hida et al. [19] and Kuo [26].

Let S(R) be the Schwartz space, i.e., the space of smooth rapidly
decreasing functions on R. Let S'(R) denote the space of tempered

distributions, which is the dual space of S(R). Consider the Gel’fand triple:

S(R) c L2(R) = S'(R)



Linear Stochastic Differential Equation 113

on the real line R. Then we assume the underlying probability space
(©, F, P) to be the white noise space, that is, Q is the space S'(R), F is

the c-algebra generated by the open sets in S'(R) with respect to the weak”
topology of S’(R). The probability measure P is uniquely determined by

the Bochner-Minlos theorem such that for all rapidly decreasing functions
f € S(R),

I s PO TdP(@) = EXD{_%| f |§}’ i =1 (4.1)

Here (o, f) denotes the dual action and |-|, is the usual L2(R)-norm.
The corresponding inner product is denoted by (-, -);. Namely, for every
f € S(R), themap (-, f):Q — R defined by (-, f)(»)=(w, f) (where
(o, ) is by definition w(f), i.e., the action of the distribution ® on the

function f) is a centered Gaussian random variable with variance equal to

| f |S under P.
From relation (4.1) and the isometry E[(;, f>2] =|f |é for f € S(R),

we can extend (-, g) to g LZ(R). Hence, for f, g LZ(R),

E[¢, )¢ 9)]=(f, 9)o- (4.2)

For a,beR, let 1[a, b](t) be the indicator function as defined by
(3.2). Then a continuous version of (-, 1[0, t]) is a classical Brownian motion

on the white noise space. Hence, approximating with step functions yields
o By=1_f(t)dB(t), 4.3
RS IRIOLE #3)

where J'R f(t)dB(t) denotes the classical Wiener integral of a function

f e L2(R).
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Equation (3.3) of Remark 3.1 shows that an fBm with arbitrary Hurst
parameter H is given by a continuous version of the Wiener integral of
the Mandelbrot and Van Ness type as shown in (1.1). Then, by Bender

[4, Theorem 2.2], we can describe this result in terms of the operators ME

as follows:

Theorem 4.1. Let 0 < H <1. Further, let MiH be the operators as
defined by (3.1). Then an fBm is given by a continuous version of

(-, MmH1]o, 1]).

In the following, according to Bender [4, Theorems 2.4,2.7 and Corollary

2.8], we summarize several properties of the operators M f for later use.

Theorem 4.2, Mﬁ and Mf are dual operators in a suitable sense,
i.e., for nice functions, the following relation holds:

(f, Ml_'g)o :(Mff: g)o-

This yields the following relation:

(f, MmH 1o, t]), = I;(Mf f)(s)ds for f € S(R)and 0 < H <1.

Theorem 4.3. Let H € (0,1) and f e S(R). Then
(i) M+H f is continuous,

(i) (f, mH1jo, t]), is differentiable and
d
S (f MH 1[0, t])y = M £ (1),

As in the case of a standard Brownian motion (H =1/2), an fBm with

Hurst parameter 0 < H <1 is nowhere differentiable on almost every path.
However, we can show that By is differentiable as a mapping from R into

a space of stochastic generalized functions, the so-called Hida distributions.
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Hence, we obtain a representation of its derivative as generalized Wiener
integral. In order to show these, we proceed to fundamental results, referring
to Bender [4, Section 2.3], Corlay et al. [15, Section 5.1] and Lebovits et al.
[28, Section 4.1].

Let (L?)=L%(Q G, P), where G is the o-field generated by
(- f>feL2(R)'

We recall the Wiener-1to theorem (see Nualart [34, Theorem 1.1.2,
p. 13]) which says that every ® e (L2) can be uniquely decomposed as a

sum of multiple Wiener integrals:
0 ~
® = Ip(fn),  fn e (R,
n=0

where [2(R™) denotes the set of all symmetric functions f in L>(R") and
I,(f) denotes the nth multiple Wiener integral of f with respect to the

Brownian motion, defined by

1,(f) = jRn f(t)dB"(t)

_ nljRUl Ui f(ty, ..., tn)dB(tl))dB(tz) dB(tn)J

with the convention that 1(fy)= fy for constants fy. The above

decomposition is called the Wiener chaos of ®. Moreover, the (Lz)-norm

| @, of @ is given by

. 2
@, = (E[@?)¥2 = [znu fy |§J ,

n=0

where |-|, denotes the L2(R™)-norm for any n,



116 K. Narita
Forn=0,1, 2, ..., define
n
h, (%) = (-1)" exp(xz)(;j—n exp(—x?) (the nth Hermite polynomial)
X
and

e,(x) = (11)_]/"'(2n n!)_l/2 exp(—x2/2)hn(x) (the nth Hermite function)
- (P e 2)L o),
X

2

Let A denote the operator A = —d—2+ x? +1. Then we notice that the
dx

Hermite functions form an orthonormal basis of LZ(R) and that the Hermite

functions are the eigenvectors of A, satisfying Ae,, = (2n + 2)e,,.

Forany @ =)’ C:ZO I,(f,), the Wiener chaos expansion, satisfying the

condition

0

i A2, B < oo,
n=0

defines the element T'(A)® of (Lz) by
D(A)D = > 1,(A®" ),
n=0

where A®" denotes the nth tensor power of the operator A. Both operators, A

and T(A), are densely defined in L>(R) and (L?), respectively; they are
invertible and the inverse operators A~ and 1“(A)_l are bounded on Lz(]Ri)

and (LZ), respectively (see Kuo [26]).
Let us denote || ¢ [y =1 ¢ 2) for ¢ in (L?), i.e., the (L?)-norm, and

let Dom(I'(A)") be the domain of the nth iteration of T'(A). Define the
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family of norms (|- ), by
[ @, =1 TR o = [ T(APD | 2),

Vp e Z, V@ e (L?) N Dom(T'(A)P).
Forany peN, let

(Sp)={De (L?); T(A)P® exists and belongs to (L)}

and define (S_y) as the completion of the space (Lz) with respect to the

norm |-_,. As in Kuo [26], we let (S) denote the projective limit of

the sequence ((’Sp))peN and (S)" the inductive limit of the sequence
((S—p))peN' Again this means that we have the equalities
(S) =[] Sp) resp. (8)" = | J (S-p)
peN peN
and that convergence in (S) (resp. in (S)") means convergence in (Sp)
for every p in N (resp. convergence in (S_p) for some p in N; by Kuo

[26], this is equivalent to convergence in the weak” topology). Moreover, by
Kuo [26, p. 21, pp. 28-29], (S ) is a Hilbert space with norm |- ||p and (S)

is a countably Hilbert space.

Definition 4.4. The space (S) is called the space of stochastic test
functions and (S)* the space of Hida distributions.

By Kuo [26, p. 21], for any p in N, the dual space (Sp)* of (Sp) is
(S_p). Thus, we can write (S_,), to denote the space (Sp)*. As the

notation suggests, (S)* is the dual space of (S). Thus, we have the Gel’fand
triple:

(S) = (1) = (8)~.
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We will note ((, )) the duality bracket between (S)* and (S), that is,
the bilinear pairing of (S)* and (S) such that for ® e (S)" and ¢ € (S),
((®, @)) is the dual action. If @, ¢ belong to (L?), then we have the equality

(@, 9)) = (@, 0)(2) = E[D - o];

see Bender [4, Section 2.3] and Lebovits and Lévy-Veéhel [27, Section 2.3].

The concept of stochastic (Hida) test functions and stochastic
distributions may seem rather abstract. The motivation for introducing these
spaces, however, is very similar to that behind using Schwartz test functions
and distributions.

Definition 4.5. Let | — R be an interval. Then a function ® : | — (S)"

is called a stochastic distribution process, or an (S)* -process, or a Hida
process.

Definition 4.6. Let ty € I. A stochastic distribution process @ : | —

D(tg + h) — D(tp)

(S)" is said to be differentiable at tg, if the limit lim;,_, .

exists in (S)*. We note %)(to) the (S) -derivative at t, of the stochastic

distribution process ®. @ is said to be differentiable over | if it is
differentiable at every t in I; recall that convergence in (S)* means, that
there exists p € N such that we have convergence with respect to the norm

I-1-p-

Now, the Pettis integrability of the (L2) -valued function as introduced in
Definition 3.7 is extended to that of the (S)" -valued function:

Definition 4.7. Assume that @ : R — (S)* is weakly in LY(R, dt), i.e.,

assume that for all ¢ in (S), the mapping u — (@, ¢)) from R to R

belongs to LX(R, dt). Then there exists a unique element in (S)*, noted
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J'R ®(u)du such that

<<‘[]R ®(u)du, (p>> = IR ({(®d(u), ))du forall ¢ in (S).

We say in this case that @ is (S)"-integrable on R in the Pettis sense; see
Corlay et al. [15, Theorem 5.1].

In the sequel, when we do not specify a name for the integral of an (S)" -

integrable process @ on R, we always refer to the integral of @ in Pettis’

sense; see Kuo [26] for more details. The useful criterion of the integrability
in the Pettis sense will be given by Definition 4.21 and Theorem 4.22 in
terms of the S-transform, later on.

Definition 4.8. For n € S(R), the Wick exponential of (-, n), denoted

- el™ - is defined as the element of (S) given by

el i(m)—m(n@”) (equality in (L2)).
n=0

More generally, for f e L?(R), we can define et ) asthe (L?) random

()5

f 2
variable equal to e ‘0. We will sometimes note expo<-, f) instead

of : ¢ 7 ;. This random variable belongs to LP(Q, P) for every integer
p>1.

We now recall the definition of the S-transform of an element @ of
(S)", noted S(®), Sd, or S[®]; see Bender [4, Definition 3.4], Lebovits
et al. [28, Section 4.1] and Corlay et al. [15, Section 5.1].

Definition 4.9. The S-transform S(®)(n) of an element ® of (S)" is
defined as the function from S(R) to R given by

S(D)(n) dif (@, : glvm ) for every n e S(R).
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We notice that S(®)(n) is nothing but

L
E[@:eb™ ]=e 2" ‘OE[CDe<"”>]
when @ belongs to (L?); we recall Definition 3.3.

Define for n € S(R) the probability measure Q,, by

40y el
dpP

Then the probability measures Q,, and P are equivalent. Hence, by definition

S(®)(n) = En [@] for every @ e (L?); we recall (3.8).
The following lemma will be used later on.

Lemma 4.10. (i) Let p be a positive integer and ® be an element in
(S_p)- Then

1, 12
@) <oy exflnf?)
for any nin S(R).
(i) Let @ = Zc’kozo a (- e) belong to (S)*. Then the following
equality holds for every n in S(R):

S(@)(n) = D a(n, &) 2wy
k=0

We note that (i) is proved in Kuo [26, p. 79] and (ii) is verified by (3.12)
of Theorem 3.8 as follows: for n € S(R),

S@)(n) = > aS((- &) ()
k=0
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- éaKSUR ek(t)dB(t)j M)

M8

(M, &) 2(R)-

=
Il

0

Another useful tool in white noise analysis is the Wick product (Kuo
[26, p. 92]):

Definition 4.11. For every (@, ¥) e (S)" x (S)", there exists a unique
element of (S)*, called the Wick product of ® and ¥ and noted ® ¢,
such that for every n € S(R),

S(@0¥)(m) = S(@)()S(¥)(n)-

For any @ e (S)* and k=0,1 2, ..., let ®% denote the element
k times

®O---0® of (S). Then we can generalize the definition of exp” to the

case where @ belongs to (S)".

+00 (I)Ok

Definition 4.12. For any @ < (S)" such that Zkzo—k,

converges in

(S)*, define the element exp® @ of (S)* by

def I2 50k
exp<> D = CDk—l
k=0

This is called Wick exponential of ®.
5 def o
Forfin L°(R) and ® = (;, f), itis easy to verify that exp” @ given by
Definition 4.12 exists and coincides with : e f) given by Definition 4.8.

Remark 4.13. Let ® be deterministic. Then, for all ¥ € (S)", ® 0¥
= @Y. Moreover, let (X(t)), g be a Gaussian process and let H be the
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2
subspace of (L?) defined by H = vectp {X(t); t € ]R}‘L ). If X and Y are
two elements of H, then X 0Y = XY — E[XY].

The following results on the S-transform will be used in the sequel; for
proofs and a brief summary, see Bender [4, Theorem 3.6], Corlay et al. [15,
Section 5.1], Kuo [26, p. 39] and Lebovits and Lévy-Véhel [27, Section 2.4].

Theorem 4.14. The S-transform verifies the following properties:
(i) Themap S : @ = S(®), from (S)* to (S)*, is injective.

(i) Let ® : R — (S)" be an (S)"-process. If @ is (S)” -integrable over
R, then

SUR (D(u)duj(n) - jRS(cp(u))(n)du for all ) e S(R).

(iii) Let @ : R — (S)" be an (S)" -process differentiable over R. Then,
for every m € S(R), the map u — [S(®)(u)](n) is differentiable over R

and verifies
s| S 00 = g sleol

We recall that the sample paths of fBm are almost surely non-
differentiable. However, fBm is differentiable as a stochastic distribution
process as shown in the following.

First we shall find % M H 1[0, t]. This in turn depends on the following

property of Hermite functions as given in Bender [4, Lemma 2.14]:

Lemma 4.15. Assume H e (0,1) and e, is the nth Hermite function.

Then there is a constant Cy > 0 such that

max| (MHPe,)(x) |<Ch(n+ 1)5/12.
xeR
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Then the following result in Bender [4, Lemma 2.15] is essential:

Lemma 4.16. Let H € (0,1) and f e S(R). Then M™1[0, ]: R —
S'(R) is differentiable and

d o0
M0, - I(Z:(:)(MI'ek)(t)ek, (4.4)

where the limitis in S'(R).

Before we prove Lemma 4.16, we recall that one can reconstruct S(R)

(resp. S'(R)), the space of Schwartz test functions (resp. the space of

tempered distributions), as the projective limit (resp. the inductive limit), as
2

follows: Observe that Aey = (2k + 2)e, where A= —3—2 +x% +1 and
X

e, are the Hermite functions which form an orthonormal basis of LZ(R).

Then, for p € Z, define
[E =] APE S =D (2k+2)°P(f, e )5, (b, )eZxX(R), (45)
k=0
where the last equality follows from the fact that e, is an eigenfunction of A

with eigenvalue (2k + 2), and |- |, denotes the usual L?(R)-norm.

For p € N, define the spaces
Sp(R) = {f e LA(R); | f [, < oo}
and S_,(R) as being the completion of the space LZ(R) with respect to the
norm |-|_,, thatis,

|2 = ATPER = (2K +2)2P(F, )3 (4.6)
k=0
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Then it is well-known that S(R) is the projective limit of the sequence
(SID(}R))peN and that S'(R) is the inductive limit of the sequence

(S_p(R)) peny: thatis,

SR)=[] Sp(®) and S'(R)= [ ] S_p(R).

peN peN
Thus, convergence in S(R) is nothing but convergence in S,(R) for

every p € N and that convergence in S'(R) is convergence in S_(R) for

some p € N.

To summarize, we have a sequence of norms on S(R):

2 2 2 2 2
---s|f|_ps---s|f|_1s|f|os|f|ls---s|f|ps---.

The space S(R) is topologised by an increasing sequence of norms, and
hence it is a countably Hilbert space. Moreover, we note that forany p € N,
the dual space Sj,(R) of Sy(R) is S_,(R); see Kuo [26, pp. 17-18], for
more details.

Proof of Lemma 4.16. We refer the proof to Bender [4, p. 90]. We first

mention that the Hermite functions e, form an orthonormal basis in LZ(R)
and hence we can write

ME 1[0, t] = > (MP 1[0, t], e )pex = ZU;(Mfek)(s)dsjek,
k=0 k=0

where the last equality is a consequence of Theorem 4.2. Hence,

MH 1[0, t + h]- M 1o, t]_§:(|\/|Hek)(t)ek 2
h e A

-1

2

ISR M Pe) (5)ds - (M He )0 e
ph e

-1
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o0 i 2
=Y mlsg@s-mbegw] . @
k=0

Here the last equality follows from (4.6) and from the fact that e, are
orthogonal, i.e., (ej, ek)0 =0 if j =k, which effectively removes the
second summation. We next see that from Lemma 4.15, the right-hand side

of (4.7) converges uniformly in h. Thus, we can pass the limitas h — 0
under the summation. Finally,

ME1f0,t+h]- M1, 1] i(m He)(t)e 2
h a + Sk k

lim
h—0

-1
I h“ﬂ‘o[% [ ey ) - (Mfek><t)j2 -0
k=0

because Theorem 4.3(i) tells us that M+Hek is continuous. Thus, with

convergence in |-|_; (for the norm, see (4.6)),

MH 1o, t] = Z:(M_H 1[0, t], ey ok = Z(J;(Mfek)(s)ds)ek
k=0 k=0

and since the Schwartz distributions S'(R), that is continuous linear

functionals on S(R), is equal to the union over p of S,(R) := S_y(R), ie,

S(R)= |J s p(R), we get the above equality with convergence in S'(R).
peN

This completes the proof of Lemma 4.16.

Because of the identity By (t) = (., M 10, t)) ((3.3) of Remark 3.1),
Lemma 4.16 might suggest that

LB = < kZ::,)(M+“ek>(t)ek>.
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But the integrand of this Wiener integral is not an element of L?(R), but a

tempered distribution. So we need to extend the Wiener integral to tempered
distributions.

Let f e LZ(R), p € N. Then we can use (4.3) and get
I 0y =] |, f<t>dB(t)H_p STNEN

in general, 1,,(f) means the nth multiple Wiener integral of f with respect to

the Brownian motion B(t). Further, by definition of the | -|_,-norm, ie.,
o], =T(A)Pa |, = T(A) P | 2), and due to the fact that Iy(f)
is a chaos expansion consisting of that single term, we obtain
16 P =) |y = (AP E) g = | APF Iy =[ T|_,. (48)
In (4.8), we used (4.3) and Ito’s isometry such that
vf e L2(R), E[( f)2]=]f3.

Hence we have, forall p € N,
I 0 =] ], f<t>d8<t>H_p 1Ly, @9)

for the norm | -|_p, see (4.6). Using (4.9), we can extend the Wiener integral

to f € S'(R). However, as follows from Bender [4, p. 90], one has to be

cautious, because when (-, f) exists only as an element of (S_j,) (and not
(L)), then also IR f(t)dB(t) is an element of (S)* but not (L?) and so it
is a Hida distribution but not (necessarily) a random variable.

Recall that by (4.8), we can apply the Ito isometry not only to LZ(R)

functions but also to tempered distributions as follows: If we assume that
F : 1 —> S'(R) is differentiable, then we see that
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Ilm“ < h_l(Ft h — Ft)—iFt>H
h—0|| \ ' + dt “p

_ m}‘ N (F(E -+ h) - F(O) - S F() ‘_p

=0.

This yields the following theorem by Bender [4, Theorem 2.17], which
allows us to calculate the derivative of By :

Theorem 4.17. Let | < R be an interval and let F: 1 — S'(R) be

differentiable. Then (-, F(t)) is differentiable as a stochastic distribution
process and

S Fo) = SF)

Hence, by Lemma 4.16, we obtain that By is differentiable for

0 < H <1 as a stochastic distribution process and

& Bt = < kZ:;)(M+“ek>(t)ek>.

We can find even a simpler expression for %BH, though. For t € R,

we define the distribution
BroMI, f)=(MI 1))
Then, by Bender [4, p. 91], we have the following:

2

o0

> (P vy -5 oM
k=0

-1

0

o 2
=D (n+ 2)_2<Z(Mrek)(t)ek N ,en>
n=0

k=0
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2

= > @+ 272 > M Pe )0 (e ey - (MHe) ()| =0.
n=0 k=0

Thus, we get the following corollary:

Corollary 4.18. For 0 < H <1, fBm By is differentiable over R as a
stochastic distribution process and

d
B =( 8o MmT).

Definition 4.19. For 0 < H <1, the derivative of By in (S)",

) H
Wh () =(, 8t o M)
is called the fractional white noise.

Using the preceding results, we can obtain the S-transform of the fBm
and the fractional white noise:

Theorem 4.20. Let 0 < H < 1. Then, for any n € S(R),
(i) S(Bu () () = (n, M71(0, 1)),

(i) SWh (1) (n) = (M Im) (V).
Proof of Theorem 4.20. Item (i) is obtained by the duality bracket
between (S)* and (S) (recall the description after Definition 4.4). In fact,

S(Br (1) () = (B (1), : " ™ ) = E[By (1) : €™ ™ 1] = (n, MM 1[0, t]),.

Let ®:R —(S)" be an (S)"-process differentiable over R. Notice

Theorem 4.14(iii), that is, the S-transform of @ satisfies, for every
n € S(R),

S| S O] = Sl

Then item (ii) is obtained by Theorem 4.3(ii), because Wy (t) is the

derivative of By (t). Hence, the proof is completed.
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Now, the integrability of a stochastic distribution process X can be
defined in terms of the S-transform:

Definition 4.21. A stochastic distribution process X : 1 — (S)" is
integrable in the white noise (Pettis) sense, if the following are satisfied:

(i) S[X(-)](n) is measurable for all n € S(R) and S[X(-)](n) € L}(1)
for all n € S(R).

(ii) There exists ® e (S)* such that L S[X ()] (m)dt = S[®](n).

In this case, @ is unique by injectivity of the S-transform (Theorem
4.14(i)). It is called the white noise integral of X and is denoted by

D = jl X (t)dt.

The following criterion by Kuo [26, Theorem 13.5] is useful for
integrability in (S)":

Theorem 4.22. Assume that X : | — (S)” satisfies:

(i) S[X(-)](n) is measurable for all n € S(R).

(ii) There exist a natural integer p, a real a and a function L e Ll(l, dt)
such that

| S[X@®](M)] < Lt)exp(@n[3),
where |n|f) =| APq |§ and |-|, isthe L2(R)-norm (see (4.5)).
Then X is (S)" -integrable (over 1) in the white noise (Pettis) sense.
For example, by Bender [4, Theorems 3.11 and 3.12], j()T W (t)dt and

T o : : :
Io By (1) OWH (t)dt exist in the white noise (Pettis) sense. These examples

provide motivation for the following definition of fractional Ito integral:
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Definition 4.23. A stochastic (distribution) process @ : [0, T] — (S)" is
fractional Ito integrable provided that ® OWy is white noise (Pettis)
integrable and we shall use the notation:

T T
JO D(t)dBy (t) = JO D(t) OWy (t)dt.
When the stochastic distribution process is an (L2) -valued process, the
following criterion holds (see Bender [3, Theorem 2.8]):
Theorem 4.24. Let X :R — (L?) such that t > S[X(t)](n) is

measurable for all n € S(R) and t = || X(t) |, isin LY(R, dt), where |- lo

denotes the (L?) norm. Then X is (S)" -integrable in the white noise (Pettis)
sense and

H LR X (t)dt

This result is based on the fact that the Pettis integral is an extension of
the Bochner integral (see Kuo [26, p. 247]).

S MR

In the white noise setting, Lebovits and Lévy-Véhel [27] used the notion
about the integral in the following Bochner sense:

Definition 4.25. Let | be a subset of R endowed with the Lebesgue

measure. One says that X : 1 — (S)* is Bochner integrable on I if it
satisfies the two following conditions:

(i) X is weakly measurable on I, i.e., u > ({(X(u), @)) is measurable on |

for every ¢ e (S).
(ii) There exists p € N such that X(u) € (S_,) for almost every u < |

and u — | X(t)[|_, belongs to (1)

The Bochner integral of X on I is denoted L X(s)ds.
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The properties of the Bochner integral are given by Kuo [26] as follows:

Proposition 4.26. If X : 1 — (S)" is Bochner integrable on I, then the

following hold:

(i) There exists an integer p such that

HII X(s)ds

<[ IX©)1 s
-p

(ii) X is also Pettis integrable on I and both integrals coincide on I.

Remark 4.27. Proposition 4.26 shows that there is no risk of confusion
by using the same notation for both the Bochner integral and the Pettis
integral; see Lebovits and Lévy-Véhel [27, Appendix A].

5. The Operators My and their Derivatives

In the following, we shall generalize the previous stochastic integration
with respect to fBm to the case of mBm. We first focus on the representation
of fBm By with Hurst parameter H < (0, 1), the so-called harmonizable

one ((1.2) and (1.3)). We next introduce the operator, denoted M, that will

be useful for the definition of the integral with respect to fBm and mBm. Our
description is based on the results in Corlay et al. [15, Section 5.1], Lebovits
and Lévy-Véhel [27, Section 3.1] and Lebovits et al. [28, Section 4.1].

We note G or F(u) the Fourier transform of a tempered distribution u

and we let L}OC (R) denote the set of measurable functions which are locally

integrable on R. We also identify, here and in the sequel, any function f of

L},c(R) with its associated distribution, also noted Ty .

We will say that a tempered distribution v is of function type if there
exists a locally integrable function f such that v =T (in particular, (v, ¢)

- JR f(t)¢(t)dt for ¢ in S(R)).
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Let H be a fixed real in (0, 1). Then, following Elliott and Van Der Hoek
[18, pp. 303-304], we define an operator, denoted M, which is specified in
the Fourier domain by

M (U)(y) = ﬁﬂ y[2Hagy), yer (5.1)

Here and hereafter, C(H) is the constant as given by (1.4), appearing in the
harmonizable representation of the fBm. This operator is well defined on the

homogeneous Sobolev space of order %— H, denoted L2H (R) and defined by

LA(R):={ueS(R); G=Tq, f eLfpe(R)and Jul,; <o},  (5.2)

1
C(H)*

where |u ||ﬁ| = IR|§|1_2H |G(¢) [°de derives from the inner product

on L3 (R), defined by

1 DT —
04 = [ Il ?Hae)iE)de, (5.3)

Then, by Lebovits and Lévy-Véhel [27, Lemma 3.1], we have the following:
Lemma 5.1. (L% (R), (, )y ) is a Hilbert space. If H < (0,1/2], then
the space L3 (R) is continuously embedded in LY/ (R). If H e[1/2,1),

then the space LYH (R) is continuously embedded in L2H (R).

Since M (u) belongs to L?(R) for every u in LY (R), My is well
defined as its inverse transform,
My (U)(x) = 2—171:]:(I\/I/H(\u))(—x), for almost every x e R.

Further, by Lebovits and Lévy-Véhel [27, Proposition 3.2], we have the
following:

Proposition 5.2. The operator My, is an isometry from (L2H R), (, )y)

o (L(R), {, )i2(m))
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Let £(R) denote the space of simple functions on R, which is the set of

all finite linear combination of functions 1[a, b](-) with a and b in R. It is

easy to check that both S(R) and &£(R) are subsets of L2 (R). It will be
useful in the sequel to have an explicit expression for M (f) when f is in
S(R) orin &E(R).

For the indicator function 1[a, b](t) as introduced in (3.2), it holds that

V2n
2C(H)T(H + ]/2)cos(g(H - ]/2))

My (Ua, b)) (x) =

y b-x 3 a—x
|b_x|3/2—H |a_x|3/2—H '
Further, by Biagini et al. [9, Section 3] and Elliott and Van Der Hoek
[18, p. 303], for fin S(R), the following hold for almost every real x:

MH(f)(x)zijRMdt O0<H<Y2), (54)

|t|3/2—H
My (f)(x) = f(x) (H =1/2), (5.5)
My (F)(X) = 74 .[R%dt Y2 < H <1), (5.6)
where
N
TH =

2C(H)T(H —UZ)COS(%(H —1/2))

_ (T(2H +D)sin(xH))Y? |
2T'(H —UZ)COS(%(H —1/2))

When f belongs to S(R), it follows from Elliott and Van Der Hoek [18,
Appendix] that
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M (100 = g [ (€01t -x" 32 e |

where

~Th —2n

o _ : (5.7)
H™H-12 2C(H)T'(H +1/2)cos(%(H —1/2))

Remark 5.3. For the understanding of the construction of the stochastic
integrals with respect to fBm and mBm, we refer to the following description
in Lebovits and Lévy-Véhel [27, Proposition 3.3 and Remark 3.5]:

(i) In order to extend the Wiener integral with respect to fBm to an
integral with respect to mBm, we will use the equality:

ER)' M = L3y (R),

(i) Because the space S(R) is dense in L3 (R) for the norm Il itis
also possible to define the operator M on the space S(IR) and extend it, by

isometry, to all elements of L2H (R). This is the approach of Elliott and Van

Der Hoek [18] and Biagini et al. [9] (with a different normalization constant).
This clearly yields the same operator as the one defined by (5.1). However,
this approach does not lend itself to an extension to the case where the
constant H is replaced by a Hurst function h, which is what we need for
mBm. Therefore, it is possible to define the operator My on the space

£(R) and extend it, by isometry, to all elements of L (R). This extension

coincides with (5.1).

By (5.3), we can get the following:

Ry (t, s) = (1[0, t], 1[0, s]),,

itg 1) (e—iS?EJ _ 1) ’

_ 1 (e
_CZ(H)JR |§|2H+l é
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SOt s PR - jt-sP) tseRr

Thus, as in the case of standard Brownian motion, i.e., in the white noise

setting, we have that the process (I§H (t));cr. defined for all (t, ®) € R x Q
by
By (1) (0) = By (t, 0) = (@, M 1[0, t]), (5.8)

is a Gaussian process which admits a continuous version noted By =
(By (t));cg- Indeed, under the probability measure P, the process By is a

fractional Brownian motion since we have the equations:
E[By (t)By (s)] = E[(, My 1[0, t)(, My 1[0, s])]
= (My ([0, t]), My (1[0, s]) 2
= (1[0, t], 10, sy = Ry (t, s), (5.9)

where we used Proposition 5.2.

By (5.9), we observe that the constant % in formula (5.1) is given so

that for all H € (0, 1), the process By defined by (5.8) is a normalized
fBm.

The properties of the operator My are given by Lebovits and Lévy-
Véhel [27, Theorem 3.7] as follows:

Theorem 5.4. (i) For all H € (0, 1), the operator My is bijective from
L2 (R) into L2(R).

(i) Forall H e (0,1) and (f, g) in (L’(R) N L2, (R))?,

(f. My (@) 2R = (Mu(f), 9)12(R)-

Moreover, the equality above remains true when f belongs to L1|_OC (R)N
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LzH (R) and g belongs to S(RR); in this case, the equality reads
(f. My () = (Mu (f), 9)12(),

where (, ) denotes the duality bracket between S'(R) and S(R).

(iii) There exists a constant D such that for every couple (H, k) in

(0, 1) x N*,

(k +1)%3.

Tea]éq M H (ek)(x)| C(H)

In order to define the stochastic integral with respect to mBm, we shall
consider the heuristic derivative of My with respect to H and use the

operator My later on. Following Lebovits and Lévy-Veéhel [27, Section

3.2], define the operator My

, specified in the Fourier domain, by

aMH (U)(Y) = ~(Bu +log] yl)g(q)l y[>Hacy), yer,

where By =C'(H)/C(H) with C(H) as defined in (1.4) and C'(H)

denotes the derivative of the analytic map H +— C(H).

Equation (5.8) suggests that we can replace the constant H by a
continuous deterministic function h, ranging in (0, 1). Here, we recall

Definition 2.2, that is, the definition of the mBm with Hurst function h(t).

Then, by Remark 2.3(iv), the covariance of the mBm reads

Rult, 5) = Wc(h)(s))[ (PR s PRs —[t-sPhs)], 0
where hy ¢ = M and C(-) has been given in (1.4).
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As described in Lebovits and Lévy-Veéhel [27, Sections 4 and 5], the
operator My in (5.1) is defined on a distribution space, and hence we can

not apply the considerations of Elliott and VVan Der Hoek [18] about the links
between the operator My and Riesz potential operator. However, it is

crucial for our purpose that My is bijective from LzH (R) into L%(R)
(Theorem 5.4(i)).

Define the bilinear form (, ), on £(R) x £&(R) by
(1[0, t], 1[0, s]) = Ry(t, s).

Then by Lebovits and Lévy-Véhel [27, Proposition 4.2], {, )h is an inner

product for every function h. Define the linear map My, by
Mt (ER), () = (LA(R), ( 2(R))
100, ] > Mp([0, t]) = Mpyy (1[0, t]) = My (1[0, t]) 4 -
(5.11)

Define the process B (t) = (- Mh(10, t])), t € R. Then, by Kolmogorov’s
criterion, this process admits a continuous version which will be denoted
Bh(t) and called multifractional Brownian motion (mBm). Then, by

Lebovits and Lévy-Véhel [27, Eq. (4.2) and Lemma 4.3], we summarize as
follows:

Lemma 5.5. (i) Almost surely, for every real t,

B (t) = (-, Mp(ty(1[0, t])) = By () [ =n(t)- (5.12)
(ii) The process Bh(t) is a normalized mBm.
(iii) The map My is an isometry from (£(R), (, ),) to (L2(R),

(s >L2(R))-
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Using (5.8) and the equality in Theorem 5.4(ii), we can write as follows:
for every real t and almost surely,

BH (t) = <'a M H (1[0! t]»

< Z n (1[0, t]), ek>|_2(R)ek>

MS

(1[0, t], My (& ) 2y (- &)

X
Il

0

i é(ﬁ MH (ek)(U)dUJ<w &)-

Thus, by Lebovits and Lévy-Veéhél [27, Eqg. (5.10)], we can write (5.12)
under the following chaos decomposition of mBm:

Almost surely, for every real t,

o0 ()= 3 [ oM@ ). ). 519

Moreover, by Lebovits and Lévy-Véhél [27, Eq. (5.11)], we can define
multifractional white noise Wy, = (Wp(t)),_ as the (S)"-derivative of By,
by

0

0= 3 ([ o0 (e, 5.14)

assuming that h is differentiable. Then we summarize the result in Lebovits
and Lévy-Véhel [27, Theorem-Definition 5.1] as follows:

Theorem 5.6. Let h: R — (0,1) be a C! deterministic function such

that its derivative function h' is bounded. Then the process W}, defined by

(5.14) is an (S)" -process which verifies, in (S)”, the following equality:
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Wh(t) = Z M) (e ) () (- )
k=0

HOX ([, F S o) 639

Moreover, the process By, is (S)" -differentiable and verifies

B (1) = wh(v) in (5)'; (5.16)
this process is called multifractional white noise.

When the function h is constant, identically equal to H, we will write
Wy = Wy (t)),.g and call the (S)"-process Wy a fractional white noise.

This process was defined and studied in Elliott and Van Der Hoek [18, Eq.
(4.2) and Proof of Theorem A.6] and Biagini et al. [9, Egs. (3.21) and
(3.22)]. By Lebovits et al. [28, Eq. (4.4)], we can rewrite (5.15), for every t,
under the form:

Wi (1) = Wi () + W) S22 (¢, h(D) in (5)', (5.17)

where B; = (By(t, H))(t’ H)eRx(0,1) is a fractional Gaussian field, defined,

for all (t,H)e Rx(0,1) and all ® € Q, by Bi(t, H)(®) =By (t, ®) =
(@, My (1[0, t])) and where Wy)(t) is nothing but Wy (t) [ —n(t)-

The function g¢, introduced by Lebovits and Lévy-Véhel [27, Lemma

5.5], plays essential roles in the proof of Theorem 5.6 and properties of the
S-transform of mBm (Theorem 6.1 in Section 6); it is instrumental to solve
the SDE encountered later:

Lemmab5.7.For H €(0,1) and f € S(R), define g :Rx(0,1) >R by

9 (t H) = I;MH(f)(x)dx. (5.18)
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Then:

(i) The function g belongsto C*(R x (0, 1), R).

(i) Vx e R, MH(f)(x):aHI;OUH_l/Z(f’(x+u)— f'(x—u))du, where

ay has been defined by (5.7). In particular, the function (x, H)

My (f)(x) is differentiable on R x (0, 1).
(iii) Assume that h : R — (0, 1) is differentiable. Then, for any real tg,

a1 & Oty = M) (1)) + 1) * S ()(5) ) .

6. Stochastic Integral with Respect to mBm

The following theorem due to Lebovits and Lévy-Véhel [27, Theorem
5.12] makes explicit the S-transform of mBm, multifractional white noise
and generalized functionals of mBm.

We denote by y the heat kernel density on R, x R, i.e.,

2
Y(t, X) = %exp(—%}

if t =0 and y(t, x) =0 if t = 0.

Theorem 6.1. Let h: R — (0,1) be a C! function and (Bh(1);cr
(resp. (Wh(t)),.r) be an mBm (resp. multifractional white noise). Then, for

n e S(R) and t € R, the following hold:

() S[BA(D](n) = (n, Mn(1[0, t]) 25, = Gy (t, (1), where g, has been

defined in Lemma 5.7.
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(ii)
SWh (O] (M) = [gn(t h(t))]

= My () + he) [ Ot

(iii) For pe N and F € S_,(R),

SIF(ER )] = (F, o0, My @)au ),

Proof. By (5.13), Lemma 4.10(ii), Theorem 5.4(ii) and (5.18), assertion
(i) is verified as follows:

[o0)

S(Br(®) (M) = D (Mn(t) (0, t), &) 2z)(M: &) 12(r)
k=0

= (Mp)(20, t]), T1>|_2(]R)
100, ], My (m)i2gm) = 9yt D)

Equation (5.17) and Theorem 4.14(iii) imply that
dB, d d
A1) = 5| G (0] () =6 SIBR(DL() = 5 34 ¢, D),

and hence assertion (ii) is verified by Lemma 5.7(iii). Further, assertion (iii)
is verified by Theorem 7.3 in Kuo [26, p. 63] with f = Mp)(1[0, t]) and by

assertion (i) above. Thus, the proof is completed.

Now, we present the multifractional Wick-Ito integral with respect to
mBm, according to Lebovits and Lévy-Véhel [27, Definition 5.1] and Corlay
et al. [15, Definition 5.3].

From here to the last section, we will assume that h is in ¢! function on
R with bounded derivative.

Then, recalling the definition of the (S)” -integrability (Definition 4.7),
we proceed to the following:
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Definition 6.2. Let Y : R — (S)" be a process such that the process
t > Y(t)OW,(t) is (S)"-integrable on R. Then the process Y is said to be

doBh -integrable on R or integrable on R with respect to mBm By,. The

integral of Y with respect to By, is defined by

JRY(s)doBh (s) = IRY(S)OWh (s)ds.
For an interval | of R, define
L Y(s)d®By(s) = le, (5)Y(3)d By ().

When h(t) = H € (0, 1), the multifractional Wick-Ito integral coincides

with the fractional Ito integral as defined in Elliott and VVan Der Hoek [18],
Biagini et al. [9] and Bender [3, 4]. In the particular case when h(t) = 1/2,

the multifractional Wick-1to integral coincides with the classical Ito integral
with respect to standard Brownian motion, if Y is Ito integrable.

As shown in Lebovits and Lévy-Véhel [27, Proposition 5.14] and Corlay
et al. [15, Proposition 5.4], the multifractional Wick-ito integral satisfies the
following properties:

Proposition 6.3. (i) Let (a, b) in B2, a <b. Then [ 1By (t) = By(b)
— Bp(a), almost surely.

(i) Let X : 1 = (S)" bea doBh -integrable process over |, an interval

of R. Assume that L X (s)d By, (s) belongs to (L?). Then

EUI X(s)doBh(S)} - 0.

The assertion (ii) is verified as follows: Let _[I X(s)dOBh(s) be in (L2).

Consider the definition of the S-transform (Definition 3.3 and Definition 4.9),
the definition of Wick product ¢ (Definition 3.11 and Definition 4.11), the
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interchangeability between the S-transform and the integration (Theorem
4.14(ii)), the S-transform of W}, (t) (Theorem 6.1(ii)), and the property of the

function g (Lemma5.7). Then we obtain that

E“I X(s)doBh(s)} - SUI X(s)doBh(s)J(O)

s( j X (5)OWi(s) ds) (0)

[ S(X(s) @3y () (0)ds

= [ SOXED @5 gofs his)

- .'I S(X(s))(0)- 0 = 0

: T .
Example 6.4. Let T > 0 be fixed. Set | = Io Bh(t)dQBh(t), that is,

- J’OTwh(t)o By (t)dt = jOT Brll) o, 1)t

Define
Bn(T)*2 = By (T)0 By (T) = By (1) —T2"(T);
here the last equality follows from Remark 4.13. Then

1 1
= 5By(T)? = 5 (By(T)? ~T2'(T)),

This is verified as follows: The definition of Wick product ¢ (Definition 3.11
and Definition 4.11), the interchangeability between the S-transform and the
integration (Theorem 4.14(ii)), and the S-transforms of By (t) and W (t)

(Theorem 6.1(i)-(ii)) yield the following: for nin S(R),
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SUOT Bh(t)doBh(t)j M)
= | (B ) msWh ) (e
T d
- j 5 In(t, (D) G Lot ()]t
= 2 0%(T, h(T))
= 5 (SET) )Y
_ %S(Bh(T)O B, (T)) (n)

= 5[5 BT -T2 ),

Thus, the assertion results from the injectivity of the S-transform (Remark
3.4 and Theorem 4.14(i)).

Remark 6.5. Let f : R — R be a deterministic function which belongs

to Cl(R; R) with bounded derivative. Then the process defined by

2(t) = j; f(5)d 8B (s)

is Gaussian, and the following integration-by-parts formula holds:

t o (L) t,
J’O f(s)d°Bp(s) = f(t)Bh(t)—IOf () By, (3)ds, (6.1)
which leads to

B[Z(tY] = ()%t 4 j;j; £1(s) £/(U)Rn(s, u)dsdu

-2t ; £(s)Rn(t, 5)ds. 62)
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Equation (6.1) can be derived from the simple Ito formula concerning mBm
Bh(t) (Theorem 8.1 in the further Section 8) which is given by Lebovits and

Lévy-Véhel [27, Theorem 6.9]. In fact, we apply Theorem 8.1 to the function
F(t, x) = f(t)x beforehand. Then, since

oF

oF oF _ o°F
ot

8x_f(t) and —- =0,

= f'(t)x, "

we can verify (6.1) by the following equalities:

dF (t, By(1) = 5 (t, By(®)dt + 5 (t, By(0)d°By(t)

2
+%(%[Rh(t, t)]jo';(t, By, (t))dt

= f'(t)B,(t)dt + f(t)d“By(t).

7. SDE Driven by mBm

Let us consider the following mixed multifractional stochastic
differential equation (mixed multifractional SDE):

dX (t) = [og(t) + 0tp(t) X (D)]dlt + [By(t) + B2 () X (]A°Z (1), t=0, (7.1)
Z(t) = v1By2(t) + v2Bn (1),
X(0) € (S)".

Here y; and y, are positive constants, B]/z is a standard Brownian motion
(sBm), i.e., Bm By (t) with H =12, and By, = (By(t))»g = (Bn(t))=0
is a multifractional Brownian motion (mBm) with Hurst function h(t).

Further, o; and Bj, i =1, 2, are deterministic functions such that

aj, Bj [0, ©) — R, continuously differentiable.
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We call Z(t) mixed multifractional Brownian motion (mixed mBm).
Precisely, equation (7.1) reads as follows:

dX (t) = [0ty (t) + a (1) X ()]t + By (1) [y1d By (1) + 720 “Bp ()]
+ Ba(t) X (1) [y4d By (t) + v2d By ()]
= oy (t) + ap(t) X (t)]dt
+ [yBr®)d By (t) + 2By (t)d *By (1)]
+ [ ()X (©)d Byyp(t) + v2B2 () X () Bp ()], €= 0.
Equation (7.1) can be written by the integral equation:

X(0) = X(0)+ [ aa(5) + aao(6) X(9]ds + [ [Ba(5) + Bo(9)X()]A°Z(5),

where the equality holds in (S)*. Rewriting the equation in terms of

derivatives in (S)*, we get the equation:

P = aa) + 020X O]+ 10 + 0 X 10 5 120 (2

If we notice useful properties of Wick product, which are summarized in
Remark 7.4 at the end of this section, equation (7.2) reads as follows:

PO fas0) + 0z X O]+ [Bl6) + B2 X O]0 (12 (1) + 720 (1)

= [o (1) + oo () X ()] + By (t) O (vaWy2 () + v2Wh (1))
+ B2(8) X (1) O (v Wyy2(t) + v2Wh (1))

= [y (t) + ot () X ()] + v4B1 () OWyya (1) + v2B1(t) OW (1)
+ 71B2(t) X (1) OWy2(t) + v2B2 (1) X () OWh (1)

= [og (1) + ot (1) X ()] + y1Ba(t) - W2 (t) + v2B1 (1) - Wh (1)
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+11B2(1) X (1) OWyy2(t) + v2B2(H) X () OWh (1), t =0,
X(0) e (S)".

Here Wy, = %(t) is the multifractional white noise defined by (5.14)-

(5.17) (Wy, is the standard white noise as derived from Wy, [p()=1/2). In the
last equality of equations above, since Bi(t)yj, i, j =1, 2, are deterministic,

we used the property such that the Wick product ¢ coincides with the
ordinary product (see Remark 7.4(ii) at the end of this section):

TaBr(t) OWi/a(t) + v2By (t) OWn (L) = 1B (t) - Way2 (1) + v2Ba(t) - Wi (1),

Theorem 7.1. The (S)” -process (X (1)) defined by
X(t) = eXDO(A(t))O{ I ; A(s) 0 exp® (~A(s))ds + X(O)} (7.3)
is the unique solution of SDE (7.1) in (S)*. Here
A = [ op(e)ds + [ Ba(5)d°2(5) (1.0
that is,

A = [ 02(8)ds + [ () (120 By (5) + 120 By (5)

= [ oa(e)ds + 1] Pa(s)d°Bya(s) + 12 Ba(s)d“By(s),

Further,
A1) = oy (t) + By(t) (yWyya (1) + 72Wh (1)), (7.5)
that is,
At) = ay(t) + By(t) O (yWyya(t) + Y Wi (1)),

since Bi(t)yj, i, j =1, 2, are deterministic (see Remark 7.4(ii)).
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Proof. We notice that for fixed n € S(R), the S-transform S[®](n) is a

linear functional of ® e (S)":
S[ad + b¥](n) = aS[®](n) + bS[¥](n), a,beR

(Definition 3.3, Definition 4.9).

Our proof is proceeded by using the following properties of the S-transform:
for every n € S(R),

S[® 0 W¥](n) = S[®](n)S[¥](n) (Definition 3.11, Definition 4.11),

S[®](n) = S[¥](n) = ® =¥ (Remark 3.4, Theorem 4.14(i)),

SUR d)(u)du}(n) - j _ S[@())(n)du (Theorem 4.14(ii),

%S[X(t)](n) = S[dﬁ—t(t)] (m) (Theorem 4.14(iii)),

SW,(t)](n) = % 9n(t, N(t)) (Lemma 5.7 and Theorem 6.1(ii)),

S[Wyy2 (1) () = My2(m) () (Theorem 6.1(ii) with h(t) = 1/2).

First of all, applying the S-transform to both sides of equation (7.2) and
denoting by y, the map t > S[X(t)](n) for every n e S(R), we get the

following:

Y (®) = [aa(t) + a(t) yy (1)]

# [B1(0) + B0y O] 1aMy2 ()0 + 72 g 00, b))
d
| 120)+ B0 1aMy2 (O + 12 8 MO )|y (®

| oal®) + 1O (1My2 (0 ) + 72 g lon . b)) |
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Define

P = aa(t) + Bo(0) 11My2 (1)) + 72 g [0t hCV)] ).

d
Q) = o) + B1(6) 1aMy2 (O + 12 [0t NV
Then we have the linear differential equation of the first-order:

Yn() = POy, () + Q(t),  yn(0) = S[X(0)](n), (7.6)

and hence

t S
olt) = 610 P(s)ds{ [ ;Q(s)e_j 0Py yn(O)} (7.7)

We shall find an explicit expression for y, (t) in the following steps:

Step 1. Recalling the linearity of S[®](-) with respect to ®, we rewrite
Q(t) as follows:

Q(t) = oy (1) + By (t) (v1S[Wy2 (1)1 (M) + v2S[Wh (D] (n))
= S[og(t) + By (t) (yWyy2 (1) + v2Wh ()] ()
= S[A®)](n) (7:8)

with ,&(t) as given by (7.5). In equations above, by Remark 3.6 and
Definition 4.9, we used the property such that S[a.j(t)](n) = a(t), i =1, 2;

notice that a;(t) are deterministic and that E[:e'(”) ]=1 for I(n)=

| o T(5)dB(S).

Step 2. Recalling the linearity of S[®](-) with respect to ®, again, we
rewrite P(t) as follows:

P(t) = az(t) + B2(t) (vaS[Wy2(D)](n) + v2S[Wh (H)](n))
= S[op(t) + B2(t) (viWay2 (1) + v2Wh ()] ().
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Therefore, the interchangeability between the S-transform and the integration
(Theorem 4.14(ii)) yields the following:

J(; P(S)dS = j; S[Otz(S) + BZ(S) (YlWI/Z(S) + YZWh (S)] (n)dS
_ S_.'(: {aa(s) + Ba(s) (yiWy/2(s) + v2Wh (S))}ds} )

=S .'(; (xZ(S)dS + J‘; Bz(S) (ylwl/z(s) + oWy (5))d5i| (n)

=S .'(ZOLZ(S)dS + Jot Bz(S)O(’Ylwl/z(S) + voWh (5))d5} (n)

=S .';“Z(S)ds +] ;BZ<S><Y1d°Buz<s) - vzd°Bh<s))} (n)

=5 J;az(s)ds + J.(; Bz(s)dOZ(S):| (m)
= S[A(M](n) (7.9)

with the function A(t) as given by (7.4). In the fourth equality of equations
above, we used the property that if Bi(t)yj, i, j =1, 2, are deterministic,

then the Wick product ¢ coincides with the ordinary product (see Remark
7.4(ii)):

B2(8) O (viWy/2(s) + v2Wh(s)) = B2(s) (vaWy2(s) + v2 Wi (s)).
Step 3. Equation (7.9) implies the following:

t
S0P siawim)

(S[A®] ()

NgE
7\_|H

;\_
Il

0

= > &S0 Im)
k=0
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- s{Z%A(t)ﬂ(n)
k=0

= S[exp®(A(t)](n). (7.10)

Here, for k =1, ®°¢ denotes the kth Wick power of @ e (S)" and
expO(CD) the Wick exponential (Definition 4.12). By the same argument as

taken in (7.9) and (7.10), the linearity of S(®) with respect to @ e (S)"

yields that for n e S(R), —'[:) P(s)ds = S[-A(t)](n) and

e 1079 _ slexpd AWM. (7.11)

Thus, considering (7.8) and (7.11), by the interchangeability between the
S-transform and the integration, we get the following:

PO [ SR slexe” A n)as

[Jaee
- I ;s[ﬂ(s)OexpO(—A(S))](n)dS

_ s[ [ ; ,&(S)Oexpo(—A(s))ds} M. (712)

Therefore, by (7.7), (7.10) and (7.12), we obtain the expression for y,, (t):

yo(0) - ejo P(s)ds{jtQ(S)e—ISP(u)dudS .\ yn(O)}

0
0 By 0
- Slexp (AN ){3| [ Als)0exp” A )+ STx )}

= S{expo(A(t))O{ f ; A(s) 0 exp®(=A(s))ds + X (O)H (M)
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By the injectivity of the S-transform defined by X(t) = y,(t) = S(X(t))(n)

for every n e S(R), we conclude the required expression (7.3) for X(t).

The uniqueness of the solution of (7.1) follows from the uniqueness of the
solution of the linear differential equation (7.6) and the injectivity of the
S-transform. Hence, the proof is completed.

Example 7.2. Consider the equation:

dX (t) = X (t)d®z(t)

= X (1) (110 °By2(t) + 20 By (1)), (7.13)

X(O) =Xp € R.
This is the mixed multifractional SDE (7.1) with coefficients ay(t) =
ao(t) =By(t)=0 and B,(t) =1. Then, by (7.4) and (7.5), we notice that
At) = v1Bya(t) + v2Bp(t) and ,&(t)s 0. Moreover, in order to rewrite

(7.3), we natice the distributive law of the operation ¢ (Remark 7.4(i)) and
consider that X(0) = xg € R, that is, X(0) is deterministic. Then we can

replace the Wick product by the ordinary product, and hence exp®(A(t))©
X(0) = xg expo(A(t)). Thus, by (7.3), we obtain the expression for the

(S)”" -process X as

X(t) =xo expo(leJ/Z(t) +v2Bp(1)). (7.14)

This X(t) is called geometric mixed multifractional Brownian motion
(geometric mixed mBm).

Remark 7.3. Using Janson [23, equality 3.16], we see that X in (7.14) is

an (LZ) -valued process that may be represented as

X(0) = o e 1By (0) + 1By (0 - 5 (R + 3] (as)
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Example 7.2 is the same as Corlay et al. [15, Theorem 5.7]; it is also a
consequence of Holden et al. [20, Theorem 3.1.2].

For simplicity of consideration, we shall verify (7.15) in the particular
case of y; = 0: Taking the S-transforms of both sides of (7.14) with y; = 0,

we have that for n € S(R),

SIXO)(n) = XOS{Z% (r2Bn()° ](n)
Z% [5(72Bn (1) ()]

Z% [120(t, hO)T*

= X0 &XP(¥20y (¢, h(t))). (7.16)

Here we used the property that S[Bp(t)](n) = gy (t, h(t)) (Theorem 6.1(i)).
On the other hand, since By (t) = By (t)|H=n() a:., it is easy to see (in view

of Bender [3, p. 978] and Lebovits and Lévy-Veéhel [27, lines 4-6, p. 34,
Proof of Theorem 6.9]) that By (t) is a Gaussian variable with mean equal

to J;Mh(t)(n)(u)du = gy (t, h(t)) and variance equal to t2M®) ynder the
probability measure Q,; Q, is defined by (3.7) such that §(t) = Bl/z(t)
—f;n(s)ds, n e S(R), is a (two-sided) Brownian motion under the
measure Q. Recall the S-transform as rewritten by (3.8), i.e., (S®)(n) =

En [@], ® < (L?). Notice that the right-hand side of (7.15) with y; = 0 is

the (L2)-valued process. Then, taking the S-transform and considering the

moment generating function for By,(t), we get that for n € S(R),
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o 12800 130

S[X()](m)

1 1
X0 eXp(Yz gn(t h(t)) + Ey%ch(t)j exp(—E y%ch(t)j

= Xo eXp(v29y(t, h(t)). (7.17)

Equation (7.17) coincides with (7.16). Therefore, the injectivity of the
S-transform implies the required expression (7.15) when y; = 0.

Example 7.3. Consider the equation:
dU(t) = a(m - U(t))dt + d°Z(t)
= a(m - U (t))dt + (y2d By (t) + v2d By (1), (7.18)
U@0)=up e R.

Here (Bya(t))cg and (By(t)) g are assumed to be independent. This is
the mixed multifractional SDE (7.1) with coefficients ay4(t) = am,
as(t)=-a, By(t)=1 and B,(t) =0, where o and m are constants, and

a > 0. Then, by Theorem 7.1, we obtain the unique solution U (t) as

U(t) = uge ™ + ml—e™™)
t t
+ Yl.[o e =54 By (s) + yzjo e*(t=3)g B, (s). (7.19)

This U(t) is called mixed multifractional Ornstein-Uhlenbeck process
(mixed mOU process). In fact, by (7.4) and (7.5), we observe that
A(t) = —at and ,&(t) = om +(y1W1/2(t)+y2Wh(t)). Therefore, by (7.3), we
get the following:

0 t 0
U(t) = exp (—at)o{jo (am + yiWi2(s) + 72 Wh(s)) O exp”(as)ds + uo}
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t
= eXp(_at){Jo exp(as) (am + yiWyjo(s) + v Wh(s))ds + uo}
t t t
=g {joeo‘s (am)ds + Vljoeasowl/Z (s)ds+ yzjoeasowh (s)ds+ uo}

t t
= e_at{m(eat -1+ Yljoeasd *Bya(s)+ Yzjoeasd *Bn(s)+ Uo}- (7.20)

Hence, expression (7.19) holds. In the third equality of equations above, we
used the property such that the Wick product coincides with the ordinary
product, since o and v;, j=1 2, are deterministic (see Remark 7.4(ii)

below).
Example 7.3 is the same as Corlay et al. [15, Theorem 5.9].

At the end of this section, according to Holden et al. [20, Section 2.4 and
Chapter 3], we summarize familiar properties of Wick product as the
following remark; these play roles in the proofs of Sections 7 and 8.

Remark 7.4. (i) In Wick product, commutative law, associative law and
distributive law hold:

FOG=GOF,
FO(GOH)=(FOG)OH,
FO(A+B)=FO0A+F0B.

(if) If at least one of F and G is deterministic, e.g., F = ag € R, then the

Wick product coincides with the ordinary product in the deterministic case:

FOG =F -G, inparticular, if F =0, then FO0G = 0.

(iii) When applied to ordinary stochastic differential equations,
derivative product rule holds as in the case of ordinary calculus:

d du dv
GrUOV) = 0V + U0,
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These are verified by taking the S-transforms of both sides of the equality

and considering the injectivity of the S-transform.

8. Ito Formula

By the S-transform approach, Lebovits and Lévy-Véhel [27, Theorem
6.9] showed the simple Ito formula in (L2) for C1'2 functions with sub-
exponential growth as follows:

Theorem 8.1. Let T > 0 and h: R — (0, 1) be a C! function such that
h' is bounded on R. Let fbe a C12([0, T]x R, R) function. Furthermore,

assume that there are constants C > 0 and A < 1/(4 MaX¢e[o, T] t2h(t)) such

that for all (t, x) € [0, T]x R,

of %t
&(t, X) ax_z(t’ X)

of Hx2
té?(%]{' i, x)|,‘§(t, X) }sCe .

Then, for all t [0, T], the following holds in (L?):

(T, By(T) = £(0,0)+ [ Gt Byt + [ Ot B0)a By (1)

2
5 J, (S Re O S L Bnnet 61

Here Ry(t, s) denotes the covariance function of mBm B, that is,
Rh(t, s) = E[By(t)Bn(s)] (see Remark 2.3(iv) and (5.10)); we observe that

L
dt

The simple Ito formula (8.1) can be rewritten by the stochastic differentials:

[Ra(t, 1)] = 222" QYW (t)t logt + h(t)) = %[ch(t)]_

df (t, By(1) = -t Br(O)t + 5 (& By(0)d By (1)

2
- 3G R 1) 5, Byeat
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Proposition 8.2. Let h: R — (0,1) be a C! function such that h’ is

bounded on R. Consider the equation:

dX (t) = pX ()dt + X (t)d By (t), t=>0,

X(0) = xp € R, (8.2)
where p and o > 0 are constants. Recall that (8.2) can be rewritten in terms
of derivatives in (S)":

B0 = 1X (1) + X (O OWH (D) = (1 + W (1) 0 X (1),

X(O) =Xp € R.
Then the unique solution of (8.2) is given by
X (t) = xo exp®(ut + oB,(t)), t=0. (8.3)

This X(t) is called multifractional Wick exponential or geometric

multifractional Brownian motion (geometric mBm). Further, X(t) is an

(L2) -valued process with expression such that
X (t) = X exp(pt + 6By (t) —%cthh(t)), t>0. (8.4)

This is analogous to the formula in Biagini et al. [9, (3.31)] and Elliott and
Van Der Hoek [18, (4.9)] where the case of the constant Hurst parameter
H € (0, 1) is discussed.

Proof. Equation (8.2) is the special case of SDE (7.1) with coefficients
such that

11=0,v2 =1
ap(t) =0, ap(t) =y, By(t) =0, Bo(t) = o.

Equations (7.4) and (7.5) in Theorem 7.1 imply that A(t) = ut + oBy(t) and
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,&(t)so; by (6.1) in Remark 6.5, observe that '[:)cdoBh(t)zcth(t).

Hence, (8.3) follows from (7.3). The uniqueness is guaranteed by Theorem
7.1. The expression (8.4) for the solution X (t) can be verified as follows:

1. Proof by the S-transform. We first notice the Wick exponential
defined by the Wick power (Definition 4.12). Then, by the S-transform, we
get the following: for n € S(R),

S[exp (By (1)) (1) = Z%S[Bha)“ ()

(S[Bx ()] ()

XlH

i (9n (6 () = exp(gy (¢, h(),

Il
M8
X||—\

=
Il

0
since S[Bp(t)](n) = gy (t, h(t)) (Theorem 6.1(i)). Thus, taking the S-transforms
of the both sides of (8.3), we get that for n € S(R),
S[X(t)](n) = xo exp(ut + gy, (t, h(t))).
On the other hand, for n € S(R), let Qn be the probability measure as

defined by (3.8). Recall the S-transform under Q,,, i.e., (S®)(n) = En [@],

D e (LZ). Further, notice that By (t) is a Gaussian variable with mean equal
to gy (t, h(t)) and variance equal to t2"® under Qy- Take the S-transforms
of the both sides of (8.4) under Q, and consider the moment generation

function for By, (t). Then, by the same argument as in the proof of (7.17), we
get the following: for n € S(R),

SIX()n) = o€ ™| exp{t + By (1) - 5022
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= X exp(pt +ogp(t, h(t)) + %GZch(t) _ %GZch(t)j

= X exp(ut + gy (t, h(t))).

Therefore, the injectivity of the S-transform implies that X(t) of the form
(8.3) has the expression (8.4).

2. Proof by the Ito formula. Define the function f(t, x) by
f(t, X) = Xg exp(pt + oX — %cthh(t)j.
Let Ry(t, t) be the covariance function of mBm By (t). Then, since
IRt 0] = 2O @n ) logt + 2h(1t) = 2]

we have

= fto0fu- 502 IRt 01

Further, we have

of o2t
& f(t X)G X f(t X)G

Hence, Theorem 8.1 on Ito formula applied to f(t, By (t)) yields

1 (0, By 1) = (8 By(0) {1~ 5 0 G IR, U}t + £ (4 By (1)od By (1)

T [Rn(t DI, By (t)s?dt

Q.lQ_

1
"2

= uf(t, By(t))dt + of (t, By (t))d By (t).

Thus, f(t, By(t)) satisfies SDE (8.2). By the uniqueness of the solution of
(8.2), we obtain that X(t) = f(t, By(t)), completing the proof.
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The following Ito formula for geometric mBm is a consequence of
Theorem 8.1.

Theorem 8.3. Let T >0 and h: R — (0, 1) be a C! function such that

h' is bounded on R. Consider SDE (8.2). Let F be a C*2([0, T]x R, R)
function with the sub-exponential growth as given in Theorem 8.1. Then, for

all t e [0, T], the following equality holds in (L?):
dF (t, X (1)) = {%(t, X(®)+ & X(t))X(t)p}dt

+g_§(t, X (1)) X (t)od *By (1)

+%(%[Rh(t, t)]j;i—i(t, X)X 2()o2dt.  (85)
If we define
d9X (t) = pX (t)dt + oX (t)d By (t),
then (8.5) can be simplified as

dE(t, X (1)) = %—T(t, X (1)) dt +g—>F((t, X (t))d°X (t)

2
+%(%[Rh(t, t)]jZX—Z(t, X () X 2(t) ot

Proof. For t > 0 and x € R, define

f(t, x) = X exp(m +0X — %GZIZh(t)j.

Set
X = f(t, x), G(t, x)=F(t, f(t, x)) = F(t, X).
Then

oG oF oF of
() ==t X) + =t X) = (t, %),
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oG oF of
&(t, X) = W(t’ X)&(t, X),

2 2
om0
OX oX

of )2 oF o°f
(t, X)(&j (t, X)+a—x(t, X)ax—z(t, X).
Let X(t) be the solution of SDE (8.2). Then, by (8.4) of Proposition 8.2, we

have
X(t) = f(t, Bp(t), G(t, Bp(t)) = F(t, f(t, Bp(t)) = F(t, X(1)).

Further, by applying Theorem 8.1 to G(t, B(t)), we get the following:

dG(t, By (t)) = %(t, By (1)) dt + "g_(;(t, B (t))d °By (t)
+%(%[Rh(t, t)]jZZTC;(t, By (t))dt
_ {%(t, X(®)+ Tt X(t))%(t, Bh(t))}dt
- St XO) 54 By©)d By (D)

1(d o°F oy’
- 5 (SR t)]j{ax—z(t, X[ 5 ¢ Ba(0)

oF 0%t
Substitute the following equations to (8.6):
A l2d
S0 = £t 0w - 50% S Re(t, 1],

2
2_‘:(@, X) = f(t X)o, ZT;(I, X) = f(t, )2
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Then we get the following:

dG(t, By(t))

+2_§(t’ X (1)) f(t, Bp(t))od “Bp(t)

1(d 52F
+§(a[Rh(t, t)]) {ax—z(t, X (1) F2(t, By (t))o?
" %(t’ X)), Bh(t))cz}dt

- {%F(t, X(t))+g—;(t' X () (¢, Bh(t))“}dt
+ S (6 X)) £t By(1))od By (1)
1(d o°F
+§(E[Rh(t, t)]jax_z(t' X (1) f2(t, B (1) dt. (8.7)

Since F(t, X(t))=G(t, By (t)) and X(t)= f(t, By(t)), equation (8.7) is

equivalent to the following:

dE(t, X (1)) = dG(t, By (1)) = {%(t, X))+ &, X(t))X(t)u}dt

+ & (6 XO)X (1008 ()

2
; %(%[Rh , t)]jgx—';(t, X (1) X 2(t) 52t

Therefore, we obtain the formula (8.5), completing the proof.
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9. Multifractional Black-Scholes Equation

In this section, we shall derive the governing partial differential equation
(PDE) for the price of a European call, that is, a multifractional version of the
Black-Scholes equation based on mBm. The derivation results from the
approach used by Black and Scholes [12] under the following assumptions
on the financial market:

(i) Trading takes place continuously in time.
(ii) The riskless interest rate r is known and constant over time.
(iif) The asset pays no dividend.

(iv) There are no transaction costs in buying or selling the asset or the
option, and no taxes.

(v) The assets are perfectly divisible.

(vi) There are no penalties to short selling and the full use of proceeds is
permitted.

(vii) There are no riskless arbitrage opportunities.

The evolution of the asset price X at time t is assumed to follow the
geometric mBm as described by SDE (8.2), i.e.,

dX (t) = pX (t)dt + X (t)d°Bp(t), X(0) = X9 > O,
where p is the expected rate of return, o is the volatility and By (t) is the
mBm with Hurst function h(t). Both p and o are assumed to be constants,

and h(t):R — (0,1) is assumed to be a C! function such that h’ is
bounded.

We shall follow the Delta hedging method as taken in Kwok [25, pp.
101-103].

Consider a portfolio which involves short selling of one unit of a
European call option and long holding of A(t) units of the underlying asset.
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The value of the portfolio TI(t, X(t)) is given by
IT = —F + A(t) X(t),

where F = F(t, X(t)) denotes the call price. Note that A(t) changes with

time t, reflecting the dynamic nature of hedging. Then Kwok [25, Remarks,
p. 103] cited Carr and Bandyopadhyay [14] to describe the notion of
financial gain on the hedged portfolio as follows: The number of units of the
underlying asset in the hedged portfolio is assumed to be constant, that is,
—dF + A(t)dX(t) is seen to be the differential financial gain on the portfolio

over dt as the self-financing portfolio. Thus, we take the setting such that the
differential change of portfolio value IT to be

dIT = —dF + A(t)dX(t).
Since F is a stochastic function of X(t), we can apply Theorem 8.3 on
Ito formula to compute its differential. Hence,

dIT = —dF(t, X (1)) + A(t)dX (t)

_{%T F Xty + < (dt[Rh(t t)]jTXZ(t)cz}dt
gf( SX ()d By (1) + At) {uX ()dt + oX (t)d °Bp (1)}

:{_% ;(d [Rn, t)]j—xz(t) ’ (A(t)—aFj X(t)}dt

(A(t)— )cX(t)d By (1).

The cumulative financial gain on the portfolio at time t, denoted by
G(I1(t, X(t))), is given by

G(I(t, X(1))

t t
_ IO(—dF)+IOA(u)dX(u)
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(Y oF 1(d 2 2 oF
—Io{‘a_u‘i(du [Rn (U, u)]jTX (U)o (A(u)——jpx(u)}du

s o

The stochastic component of the portfolio gain stems from the last term:

j (A(u) - jcx (u)d® B (u). If we choose the dynamic hedging strategy

by choosing A(u) = (u X(u)) at all times u < t, then the financial gain

becomes deterministic at all times. By no riskless arbitrage opportunities, the
financial gain should be the same as the gain from investing on the risk free

asset with dynamic position whose value equals —F + X(u)%(u, X(u)).

The deterministic gain from this dynamical position of the riskless asset is
given by

M(t) = jo ( F e X@) o X(u)))du
By equating these two deterministic gains, G(I1(t, X(t))) and M(t), we get

“F (u X@) -2 (O‘I’ [R (U, u)]j (U, X)X 2()6?

= r(—F(u, X(u))+ X(u)%(u, X(u))), u<t.

Rearranging, we obtain
F 0 x @)+ 30 Rt 1) 2 5w x)xP0)

r%(u, X(U))X(u)—rF(u, X(u))=0, u<t.
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This is satisfied for any asset price X if F(t, X) satisfies the equation

oF 1 o2 52 F oF _

Note that the parameter p, which is the expected rate of return of the asset,
does not appear in the equation above.

In conclusion, we arrive at the following result:
Theorem 9.1. The no-arbitrage price of a European call is given by

F(t, X(t)), where F(t, X) is the solution of the following PDE:

oOF 1 ofd o°F oF ~

where r denotes the riskless interest rate. At expiry, the payoff of the
European call is given by
F(T, X) = max{X - K, 0}, 9.2)

where T is the time of expiration and K is the strike price; this is the terminal
payoff condition.

If h(t) = H (0, 1), then
%(%[Rh(t, t)])|h(t)EH = 5 @O ()t Iogt + h(t)) e)-

2 I [ch(t)]lh(t)sH = Ht?H

and hence (9.1) coincides with the fractional result of Necula [33] where the
case of the Hurst parameter H e (1/2, 1) is investigated.
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