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Abstract

It is a well-known result in probability that if X is a random variable
with a continuous distribution F, then F(X) is uniformly distributed

over the interval ]0, 1[. This idea helps us to build new score functions
to choose the regularization parameter of kernel distribution estimator.
Two classes of selectors are considered: the indirect L? class and the

L} class. Although all the methods work well, those in the L} class
seem more appealing because they appear to be more robust in the
simulations. A small scale comparison study (by simulations) between
the popular method of Bowman et al. [3] and the indirect L? methods

is carried out in the paper. An optimality result of the indirect L?
methods is given in the article.

1. Introduction

Since the earlier 1960s, people have been interested in smooth estimators
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of a distribution function. The estimator mostly considered is the kernel
estimator. Let X be a random variable with a density function f and a
distribution function F. Let Xy, ..., X, be identically and independently

distributed from the distribution function F. The kernel estimator of F was
introduced by Nadaraya [10] and is defined by

Fo(X) = %i H(X ‘hxij,
i=1

where H is the distribution function of a nonnegative kernel function K, i.e.,

H(x) = I_Xw K(t)dt,

and h = h, > 0, is the smoothing parameter. Convergence properties of the
estimator F, can be found in Nadaraya [10], Reiss [11] and Lejeune and

Sarda [6]. It appears from these theoretical results that the most influential
parameter is the bandwidth. In the literature, there are two cross-validation
methods in Sarda [12] and Bowman et al. [3], and the plug-in method
proposed by Altman and Léger [1] for choosing the bandwidth h.

The methods introduced in this paper are based on the fact that
F(X1), ..., F(X},) is an i.i.d. sample of the uniform distribution over ]0, 1.

The fundamental ideas and results of our methods are presented in Section 2.
In Section 3, the ingredients used to build the bandwidths are displayed. The
general methods are presented in Section 4. The particular approaches based

on the indirect L? distance are outlined in Section 5. The approaches derived

from the L distance are studied by simulations in Section 6. The remainder
of the paper consists of proofs.

2. Basic Idea and Fundamental Result of Our Methods

In what follows the conditions on the kernel function, the distribution
function and the bandwidth are:

(A.1) K is nonnegative and [ K(u)du =1;
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(A.2) K is compactly supported on [-1, 1];
(A3) K is symmetric and 0 < [u®K(u)du < +oo;
(A.4) F is twice continuously differentiable, and F' = f, F" = f’ are
bounded:;
(A5) lim,_, ., hy = 0.

The main idea behind our methods is to choose h = h,, such that

Fr(X1), - Fn(Xn)

behaves like an i.i.d. sample from the uniform distribution function defined
by
V(%) = X110, 17(X) + Lfg, 4ao[ (X), 6y

where 1, is the indicator function of the set A. “Theoretical justification” of
the approaches might be based on the fact that

a.e.
sup | Fp(Xj) - F(Xj)| > 0

1<i<n
which in turn is based on the uniform convergence of F, namely:

Proposition 1 (Yamato [14] and Chacon and Rodriguez-Casal [4]).
Under the assumptions (A.1), (A.4) and (A.5), we have:

a.s.
sup | Fp(x) = F(x)| — O.
xeR

As in the cross-validation approach, it is helpful to introduce the
following leave-one-out estimators

R =27 H(X‘hxi],

j#i

i 1 X — X
ERCREEIE

j=i
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with X(l), X(n) being the order statistics associated with X, ..., X,,. For

computational purposes, it is important to note that
Fo (X)) o B ™M (X )
are the order statistics of
B 2(Xy), o P (X0),
which means that
Fr (X)) < FP(X(2) < -+ < B (Xny)-

The validity of this remark is based on the following argument; for k e
{1, ..., n—1}, we have

- X
Fo(x) = ZH( ® J
and since F, is nondecreasing, it is true that

Fn(X)) < Fn(X(k+1))

1x o X = X)) L 1 Xk — X))
‘DHEH(T <TLHTTR

i=1

i=1
i#k+1

Zn: [X(k) (')J+ H(0) < Zn: H(—X("“) (i)j+H(O)
=1
|¢k

Fo (X)) = By P (X gean):

Let

1 n
Vnlx) = FZ;l{F.;‘(xosx} @
i=
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be the “noisy” empirical distribution based on
Fn (Xq), o B (X0).

The cornerstone of this paper is that V}, is a consistent estimator of V

(see equation (1)), this fact is stated in the following theorem whose proof is
the Appendix.

Theorem 1. Under the assumptions (A.1), (A.4) and (A.5), we have:

a.s.
sup |Vh(x) =V (x)| = 0.
xeR

3. The Ingredients Used in Our Selection Criteria

3.1. The uniform samples and their role

The uniform samples are the most important tools of our approaches.
Their role stems from the arguments contain in the remainder of this
paragraph. Let

~ 1 n
Va(x) = HZI{F(Xi)Sx} ®)
i—1

be the empirical distribution based on F(Xj), ..., F(X,). Let d be any

reasonable distance between distribution functions. In a practical situation
(finite distance), it would be desirable to use the value of h minimizing

d(Vh,\7n) as bandwidth for the estimator F,. Unhappily, the sample
F(Xq), ..., F(Xy) is not available. At the same time, it is well-known that
the distribution of F(X) is uniform over ]0, 1[. Let S = {Uy, ..., Uy} with

Uy, ..., U, ani.i.d. sample from the uniform distribution. Set
S 1%
Vi (x) = ﬁz]l{uigx}a 4)
i=1

since \7n(x) and VnS(x) have the same theoretical properties, the basic idea
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of the methods developed in this paper consists (loosely speaking) in using

the minimizer of d(V,, Vns) (with respect to h for a uniform sample S) as an

approximation to the minimizer of d(V}, \7n). The difficulty of this approach

will be how to choose the sample S. We are not going to build S element by
element, we will go the other way around. Roughly speaking, we will

— start with N independent samples Sy, ..., Sy, of size n of i.i.d. uniform
observations;
— use the lower and upper bounds on the bandwidth (presented in the

next section) to select the ones, which will help to build the final bandwidth
for each method.

3.2. Lower and upper bounds on the smoothing parameter

Let d be a distance between distribution functions, S be an i.i.d. sample
of size n drawn from the uniform distribution and VnS the empirical
distribution built with the aid of S. As mentioned earlier, the core of our
methodology consists in using the minimizer of d(Vj, Vns) as bandwidth.

Experimentally, we have found that the bandwidths obtained from many
uniform samples are very small, and a few uniform samples lead to very large
bandwidths. The aim of this section is to design a lower and an upper bound
for the smoothing parameter of the estimator F,. These bounds will help us
to select the uniform samples in the process of building the bandwidth of F,.
In this process, we will retain only the samples whose bandwidth are within

these bounds.

It is a well-known fact in nonparametric estimation that small
bandwidths lead to highly variable estimates, this is not desirable, because
our goal is to obtain smooth estimates. In fact, it is known (see, for instance,
Bowman et al. [3]) that

dim Fn(x) = Fy(x)
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with

1 n
Fn(X) = ﬁzl{xiﬁx}l
i=1

i.e., the empirical distribution of F, which of course is discontinuous. To
push this argument further if we set

Oj_1 = min(X(i+1) = Xy X(i) — X(i—l))' i=2.,n-1

then (because K is compactly supported on [-1, 1]) we have the implication:

h<sig = F DX = :1;—11 =2 ..n-1 ©)
Let
dg = min §;.
07 1qi<n—2 !

It can be shown that (using the implication (5))

h<so= R OXa) ==, i=1..n

Hence, when h <3y, F, is not very different from the empirical

distribution. The lower bound for the bandwidth of our estimator (F,) is

built with the aid of the sequence (;, i =1, ..., n — 2), and is given by
8" = min(mean{8;, i =1, .., n -2}, median{s;,i=1, .., n-2}). (6)

The lower bound 8" will allow us to avoid the empirical distribution (under

smooth estimates). A few remarks in regard of the quantity 8" are in order
here. First, observe that

5* < min{xm ~X@) X@-y - X(l)},

n-2 ' n-2

so, for example, in the case where X is bounded, 8" is at most of order 1/n.
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In fact, this quantity appears to be very small in the simulations. Let us set
P P e A
Ah = {l . Fh (X(I)) = m},
it can easily be shown that
* n
h<d = #A, 2 [ﬂ
where for any set A, #A denotes its cardinality and [x] is the integer part of

X. This means that, when h < 8", the behavior of Fy, is not very far from
that of F,. Another argument in favor of this “censoring” process can be

obtained by looking at the kernel density estimator fy, of f. More specifically,

let fh_i be the leave-one-out estimator of f given by

i 1 N X — X
i (x):h(n_l)jz_lK( : Jj
j#i

and set
By ={i: fr'(Xj) =0}
it can be shown that

h <8 = #By z[g}

It follows that the estimator f,, will behave very wildly when h < §*. Since
it is our belief that a good estimator F, would lead to a “reasonable”

estimator fy,, we are not inclined to use such values of h to estimate F.

The intuition behind the upper bound lies in the statistic (empirical
measure of the interval [1/4, 3/4))

S|

Un =

Zn:]l[l _}(F(Xi)) 7
i1

3
4'4
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and the following equality:

lim Fy(x) = % ®)

h—+o0

Let us define the “noisy” empirical measure of the interval [1 3} by

17
n
1 i
Mh = HZR[E,E}(H‘ '(X))). ©
i=1 [4°4
Because of (8), we have
lim p, =1. (10)
h— -+

By the central limit theorem in setting
Vp = Zﬁ(un —%)
we have

Vi g) A0, 1).

Because of Theorem 1, the “noisy” counterpart of v, defined by

Vh = Zx/ﬁ(uh —%)

for “good” values of h will behave like a standard normal random variable.
Let t, be the quantile of order o of the standard normal distribution and set

A" =inf{h >0, vy > t,}, (1)

in this paper, the upper bound for the smoothing parameter is A" (with
o = 0.95). This bound requires vy, to fail the normal test at level a. The

existence of A" is ensured by (10).
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4, The Three Main Methods

The three methods introduced are relative to the distance used, in order

words, each distance d between V;, and VnS gives birth to three different

methods. So, the first thing consists in choosing a reasonable distance d
between distribution functions.

Let Sy be a sample of n i.i.d. uniform observations. In order to simplify
writings, let Vrﬁk) (instead of Vnsk) denote the empirical distribution function
built with S, and h, be the minimizer of d(Vh,Vn(k)). We will retain the

sample Sy in the process of building a bandwidth for F, if 8" < h < A"

(see equations (6) and (11) for the definitions of these quantities). The next
step of our algorithm to build a bandwidth is as follows: let

Sy, ... SN

be N samples of size n of i.i.d. uniform observations, the procedure presented
immediately above permits us to obtain N; samples

Sy, ... Sng (NLS N,

therefore the bandwidth h; obtained with the sample S’jk satisfies 8* < h j

< A*. The other steps of the algorithm will consist in using Sy, ..., SNy to
construct the final bandwidth. In the sequel, we will say that a sample is
“censored” if the bandwidth derived from it is not in the interval ]5*, A"
We are now ready to describe the three methods.
The average or median bandwidth method. Let h, be the minimizer of
d(Vp, V) with V() being the empirical uniform distribution built with the

sample Sy (1 < k < N1). This method consists of using

h = mean{h;, i =1, ..., N1} or h = median{h;, i =1, ..., N1}
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as our smoothing parameter. The main idea behind this method is that each
hy is a reasonable bandwidth, thus the sequence can be summarized by its

mean or median.

The one step pilot bandwidth method. In this approach, we assume that
we possess a “trusted” bandwidth hy suitable for our estimator F,. This

trusted bandwidth can be obtained by any existing selection method
(Bowman et al. [3], Altman and Léger [1] or Sarda [12]) in the literature.

Indeed, if hy is a “good” smoothing parameter, then Fri)l(xl)' Fh_O”(Xn)
would be closed to F(Xy), ..., F(Xy) in the sense that d(Vy,, V) is small.

This method consist in using hy to choose a “proper” sample from
S, ... Syp (NL<N)

and use it to build the bandwidth. More precisely, let v,$‘> be the empirical

distribution function built with the sample S;". Let iy be such that

d(Vhy, Vi) = min d(Veg, Vi),

Let us denote
Vrg*l) - Vrgil)

S5 = S7,

and

ﬁl = argmind(Vy,, vn<*1>),
h

the final bandwidth for this approach is ﬁl
The fixed point pilot bandwidth approach. This approach is an extension
of the previous one. We start with a trusted bandwidth hy and then build ﬁl

using the above method. Now we can use ﬁl as pilot to build ﬁz and so on.
Let i, be such that
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~ vy Z mi NRVIU)
d(Vhl,Vn ) 1gr?g"|111d(vfh’vn ),
we can then set
) :
5= s5, Vi -y

and

hy = argmind(Vy, V,{*?)).
h

It is important to note that

d(v . v{*2) = ilp]f d(Vy, V{*2)
< d(V, VAS)

— mi Ly
1sni1s|r1111d(vhl' Vo)

<d(vg,, vy,
therefore we have
d(Vg, VA™) < (v, V).
Using the same procedure, we then build a sequence (ﬁi) such that
dvg o V) < d v, v,
It follows from this last inequality that the sequence (u;) defined by
i = d(vg, Vi)

*

is convergent, but since there is a finite number of samples Sy, ..., Sn1

(N1 < N), there exists a smallest natural number jy such that
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d(vi v {Fo+)y - d(vp. v {Fioy,
Jo+1 Jo
The smoothing parameter selected by this approach is h o

5. The Indirect L? Approaches

The distance considered here is the Mallows metric. Let G;, G, be two

distribution functions. The left continuous inverse of G, is defined by
GrH(u) = inf{x : Gy(x) > ul.

The Mallows distance (dy; ) between G; and G, is defined by
2 Laa 10 2
din (G, G2) = _[0 | G1(u) - Gz (u) [“du.

The interesting properties of this distance can be found in Levina and Bickel
[7] or Munk and Czado [9]. Let us define \7h by

~ 1 n
Vh(x) = ﬁzl{Fh(X(i))SX}
i=1

(note the difference with V},, equation (2)); we have that

n

0 Vo, Vi) = = 3 (Ful(X i) — F (X))
i=1

this equality is due to the fact that the order statistics of F,(Xy), ..., Fn(X})
are Fp(X(2)), - Fn(X(n)) and those of F(Xy), .., F(Xp) are F(X()), ...,
F(X(n)). To state and proof the optimality result, we will use a modified
version of the distance dy;. Let W be a nonnegative and bounded weight

function, using the weight function the new measure of accuracy JM is
defined by
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0 Vo Vi) = = 3 (Fol(X i) = F X)W (X i),
i=1

In setting as usual

n

ASE() = 1 (F(Xi) = FOX)PWXy),
i=1

it is obvious that
d@ (Viy, V) = ASE(h). (12)

By the equivalence of measures of accuracy Sarda [12] or Marron and
Hérdle [8], under the assumptions (A.1)-(A.5), if in addition W the weight
function is compactly supported, we have:

ASE(h) = % ~C, % +Cgh* + o(% + h4) as. (13)

with C;, C, and C3 being positive constants. To continue, let us introduce
the following quantities:

0% Vh Vi) = = 3 (Fr (X)) = F X)W (X)),
i=1
ASE(h) = = (R (X))~ FOG)PW(Xq),
i=1
As above, we have:
d@ (V, V) = ASE(h). (14)

Since it is true that

ELRy ' (Xi) = FOSG)PW (Xi)| Xg, woos Xigy Xisds s Xp]

= [(Rr 00— FOOPW () F(x)dx,
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we can deduce that

E[ASE(n)] = + " E[(Ry (i) - FOX 2w (X))
i=1

= E[ (R "(x) ~ FO)PW () f (x) e

It follows from the MISE representation given in Reiss [11] and Sarda [12]
that

E[ASE()] = 2~ C, |

~Cy o+ ch* + o(% + h“j (15)

under the conditions (A.1)-(A.5), the constants C;-C3 being the same as in
equation (13).

Let S ={Uq, .., U,} be a fixed set composed of an i.i.d. sample of
uniform observations, for sake of simplicity, from here on we set

Va(¥) =D Ly, <x, (16)
i—1

note that to stress the dependence on the set S, this quantity was written as

VnS in equation (4).

To continue, let us observe that
> 1N () 2
—(1
dM(VhrVn)zﬁ;(Fh (X)) =Y,
1=

where U(y), ..., U are the order statistics of Uy, ..., U,. So, correspondingly,

the distance dg (Vy,, V) is given by

dii (Vn, Vo) = %Z(Fh_(i)(x(i)) —U(i)PW (X iy)- (17)
=
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Note that, unlike in equation (12), it is not true, in general, that

n
T2 1 —i 2
dM(Vh:Vn):ﬁzll(Fh (X)) = U)W (X)),
1=
the role of the order statistics appears in equation (17), is crucial in the
formula of J,\ZA (Vj), V,,) and the methods developed in this paper. In the
theorem below, the bandwidth will be chosen in the set

H, =[An 3,Bn 3], 0<A<B<om,

It is clear from the right hand side of equation (15) that the asymptotic
1

minimizer of Edd (Vi,, Viy) = E[ASE(h)] is of the form Cn 3, this form in

turn justifies the form of H,. We have the following optimality result for the
indirect L methods. It shows that minimizing d@ (Vy, V) over H, is

equivalent of minimizing dg (Vi,, Vy,)-

Theorem 2. Let h € H,, assume that the weight function W is bounded,
nonnegative, compactly supported with support [ag, by] such that F(ag) >0
and 1- F(by) > 0. Then under the conditions (A.1)-(A.4), there exists a
random variable T independent of h such that

E(dia (v, Vn) = i (Vn, Vo) = T) |

oM 0.
E(dw (Vh, Vi)

The proof of this result is the Appendix.

We will end this section by a simulation study. The kernel used in this
section and Section 6 is the Epanechnikov kernel defined by

K(X) = 21 (0 @) (18)
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Samples sizes, n = 200, n =300 and n =500 are considered throughout

the paper. The distribution functions studied in this section are the standard
normal and the Pareto distribution functions. We have found that the indirect

L? methods work well with or without the weight function being compactly
supported. In other words, it appears that the compact support assumption is
a technical condition needed in the proof of Theorem 2. Therefore, our
simulations are done with W =1. Let us specify the notations used in the
simulation below (see the tables):

hmo is the minimizer of d (Vi,, V) = ASE(h)(W = 1);

hyt is the bandwidth obtained by the average bandwidth method with
d= dM ;

hyo is the bandwidth obtained by one step pilot bandwidth method with
d = dy, and the pilot bandwidth being hy,;;

hynz is the bandwidth obtained by fixed point pilot bandwidth method
with d = dy, and the pilot bandwidth being hy,;.

The reader is referred to Section 3 for the definition of each method.

Case of the standard normal distribution .4(0, 1): The one step pilot
bandwidth method is illustrated in Figure 1. Specifically, Figure 1 plots the

“selection criterion” d,%A Vi, vn(*l)) for the one step pilot bandwidth method

with the true error dg (V, V). Both curves have the same intervals of

variations (the intervals of increase and decrease are roughly the same): this
is a validation of Theorem 2.



58 E. Youndjé

x 10"

0.9
o8l £ 2
0.7
0.6 / i)
7 ’
rs

0.5 I,/ s

- -
0.4 > P
0.3 "

5

-
0.2¢ = e
0.1} - .
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Figure 1. dg (Vi,, V;) solid curve and dﬁ,l(vh,v,ﬁ*l)) dashed curve as

functions of h for one sample, n = 300.

In this section, the “CV method” is short for the cross-validation method
developed in Bowman et al. [3] and hy is the bandwidth built by that
method. We have chosen to compare the methods of this section to the CV

method because they (the methods) are all related to the L? distance, and
also because as shown in the simulations done in Bowman et al. [3], in
general, better results are obtained with the CV method compared to the
others usually considered methods. In Table 1, a simulation study regarding
the fixed point pilot bandwidth and the CV method is summarized. Note that
similar computations were done for the mean and one step pilot bandwidth
methods, and the fixed point pilot bandwidth method appeared to be only
marginally superior to mean and one step pilot bandwidth methods. To save
space the results in Table 1 are written in the format d * E, where d is a

number and E a constant equal to 1078, Table 1 shows that for the standard
normal distribution, the CV method is only slightly superior to the fixed
point pilot bandwidth method in terms of mean and standard deviation when
n = 200 or n = 300.
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Table 1. Average square error for hys, hy and hpg; mean and (std)
standard deviation over 100 replications

Fixed point and CV methods

ASE (hy,3) ASE(hy) ASE(ho)

mean  std mean  std mean  std

n=200 664E 599E  647E 585E 565E 582E

n=300 437E 399E  426E 386E 358E 370E

n=500 317E 308E  321E 311E 266E 286E

Case of a Pareto distribution: Here we consider the Pareto distribution
function with parameter 3 defined by

F(x) = JL[LM](x)@— Xiﬁj

The Pareto distribution is chosen to make fail the CV method, however,
we would like to remind the reader that, the CV method works well for most
of the usually considered distribution functions as evidenced by the results of
Table 1 or the simulations done in Bowman et al. [3]. The reason for

the failure is that, if I| u|K(u)du <+oo (which is implied by (A.3)) and F is
a Pareto distribution whose parameter satisfies 0 < f§ < % the quantity
ISE(h) as defined on page 803 of Bowman et al. [3] is infinite, i.e.,

ISE(h) = -+o0.

When the kernel function is compactly supported, the proof of this result
is obvious since for x sufficiently large, we have

Fa(X) = F(x) = xiﬁ
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Table 2. Average square error for hy,, hy and hyg; mean and (std) standard

deviation over 100 replications, E = 1078

Mean and CV methods

ASE (N ) ASE(hy) ASE(hmo)

mean std mean std MNoM mean std

n=200 793E 585E 781E 589E 10.60 736E 576E

Table 2 contains some statistics on ASE(hy,;), ASE(hy) and ASE(hnyo).
over 100 replications of size n = 200 of samples drawn from the Pareto
distribution with parameter = 0.2. It can be seen from this table that the
mean of ASE(hy) is good bet of that of ASE(hy), it appears to be a bit
better approximation than the mean of ASE(hy). So, what is going on here?
Things seem to go against our assumption. Now, look at the (odd) column
headed MNoM! The number under that column represents the Mean Number
of Mimina of the function h — CV(h) (see the CV function in Bowman et
al. [3]). Let us recall that h, the bandwidth of the CV method is the argument
of the minimum of the h +— CV(h). A natural question raises by our
situation is how to compute hy, in case of multiple minima? To compute the
results of Table 2, we have:

— selected grid of points referred to as G1 contained in the interval
[10°8, 5];

— chosen hy to be the point of the grid (G1) closest to the mean of the

arguments of the minima.

It appears that in case of multiple minima, the mean of the minimizers
tends to fall around the middle of the interval containing G1, and this point is
actually a good bandwidth for the example under consideration. It becomes
suspicious that the interval containing G1 plays a role in the good result
obtained by the CV method in Table 2. So, what happen if we extend the
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interval? Unfortunately, it is nearly an “impossibility” to do the computations
for all the 100 samples for larger grid of bandwidths. The domain of
integration (where the quantities to be integrated are different from 0) of the
integrals involved in the CV criterion depends on the range of the random
sample, and this range can be extremely large for a sample drawn from a
Pareto distribution with parameter p = 0.2. This makes the computations of

the CV criterion for this example very difficult and time consuming. To be
concrete, it took us 4 days and a 1/2 to compute the results (regarding the CV

method) contained in Table 2 where the grid G1 is contained in [10_6, 5].

We will study the effect of extending the grid of bandwidth on samples
already having multiple minima on G1. Out of the 100 samples considered in
Table 2, 11 present the maximum number of minima which is 31. The grid of

bandwidths G1 is extended to G2 contained in [1078, 8.5]. The results of
computations on this new grid are presented in Table 3. The notations are:

ID is the identifier of the sample under study;

YCV = {CV(h), h e G2};

mean represents the mean of YCV;
std is the standard deviation of YCV ;

NoM represents the Number of Minima of YCV,
Q=10 «=10%

Table 3 reveals what was expected when this example was introduced:

— The number of minimum initially 31 for each sample has risen to 32
for one sample and, 49 for the others.

— Even for a sample size of n = 200, there are samples for which the CV
method cannot produce a bandwidth, the function h > CV(h) is a constant

for those samples. Seeing the size (hugeness) of the means, we believe that
the small variations symbolized by non-zero standard deviation are only due
to round-off errors in the computations of the CV criterion. In fact, we have



62 E. Youndjé

plotted the graphs of h — CV (h) for all the 11 samples and, they are totally
flat.

Table 3. Some statistics on YCV for 11 samples of size n = 200

YCV YCV
ID mean std NoM | ID mean Std NoM
a 0.013Q2 0.069 32 || g 0.029Q 0.189 49
b 27520 2424 49 || h  0130Q 0.758 49
c  1076Q 8082 49 || i 01920 1263 49
d 117.6Q 0 49 | i 6.665Q2 40.41 49
e 0.187Q2 0.252 49 || k 0.045Q2 0.505 49

f 94147Q) 2.65«x 49 ||

Table 4. Average square error for hy3 and hyo; mean, median and standard
deviation over 100 replications

Fixed point pilot bandwidth method

ASE(hy3) ASE(hyo)

mean median  standard mean median  standard
deviation deviation

n =200 0.00077 0.00063 0.00059 0.00073 0.00060 0.00058

n=300 0.00052 0.00040 0.00039 0.00051 0.00039 0.00038

n =500 0.00034 0.00024 0.00033 0.00033 0.00024 0.00032

In Table 4, the results of computations for the fixed point pilot
bandwidth method on the Pareto distribution with parameter § = 0.2 are

displayed. We have done similar computations for the mean and one step
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pilot methods. The order of performance is fixed point pilot (best), one step
pilot and the mean bandwidth method, but the difference between the

methods is slim. Table 4 shows that the indirect L2 methods do a pretty good
job on this example.

6. The L Approaches

The distance considered in this section is the Wasserstein metric. Let Gy,
G, be two distribution functions. The Wasserstein distance (dy, ) between
G; and G, is defined by

du (61, G2) = [ ] 61w) - 62w [au.

An interesting property of this distance is the following equality (see, for
instance, Shorack and Wellner [13])

dy (Gy, G2) = J| G1(x) = Ga(x) [dx,

this is why we consider the methods based on this metric to be both indirect

and direct Lt approaches. We have that
~ ~ 1 n
dy (Vh, Vi) = HZ;" Fn(X(i)) = F(X@) |,
1=

this equality is due to the fact that the order statistics of F,(Xy), ..., Fn(Xy,)
are F(X)) - Fn(X(n)) and those of F(Xy), ..., F(Xy) are F(X(g)), ..
F(X(n))- As in Section 4, we introduce a modified version of the distance

dy . Using the weight function W, this new measure of accuracy dy, is
given by

n

dw (Vi) = = D1 Fa(X(ip) = FOXGip) WX,
i=1
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In setting as usual

n

ARE() = 3| Fa(Xi) = FOX0) WOXy),
i=1
it is obvious that
dy (Vi Vi) = AAE(h). (19)

To continue, let us introduce the following quantities

(Vs Vi) = = 1 R DX ) = F X)W (X)),
i=1

ARE(N) =+ " Fir (i) = FOG) W (X))
i=1

as above, we have:
dy Vi, Viy) = AAE(h). (20)

To continue, let us observe that (see the definition of V,, in equation

(16))
13 i
du (Vi Vi) == | B V(X)) =Ygy |
i=1
where U(l), U(n) are the order statistics of U4, ..., U,. So, the associated

distance dy, (Vy,, V,,) is given by
dy (Vh, Vi) = ﬁZ' Fh_(l)(x(i)) = Uiy W(X))-
i=1

We will assess the methods based on the L distance by simulations. The
example considered is the standard normal distribution .47(0, 1). The kernel

used is the Epanechnikov given in equation (18). As in Section 5, the !
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methods work well whether the weight function is compactly supported or
not; in the simulation below W =1. Let us specify the notations used to
present our results:

hyo is the minimizer of dy (V, V) = AAE(h)(with W = 1);

hyg is the bandwidth obtained by the median bandwidth method with
d= dw,

hy2 is the bandwidth obtained by one step pilot bandwidth method with
d = dy and the pilot bandwidth being hy,;

hys is the bandwidth obtained by fixed point pilot bandwidth method
with d = dy, and the pilot bandwidth being hy,.

Figure 2 plots the “selection criterion” dyy (V},, Vn(*l)) for the one step

pilot bandwidth method with the true error dy, (V,, Vy))-

In Table 5 below, the results of the simulation study for the median
bandwidth approach are summarized. It is clear from this table that the
bandwidth obtained by this method is a good guess of hyg (the minimizer of

AAE(h)), because the values of AAE(h,,q) and AAE(h,,) are of comparable

magnitude in terms of mean, median and standard deviation. Similar

computations were done for the other two (Ll) methods. Surprisingly, the

best method in terms of mean was the median bandwidth method followed by
the one step bandwidth method, but there is no significant difference between
the results obtained by the three methods. So, the performances over

replications of the (Ll) methods on the example are equivalent. However, the
1t approaches are more robust because the standard deviations are small

compared to the means. This is not true for L2 approaches.
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Figure 2. dy (Vi,, V) solid curve and dy (Vi, V™) dashed curve as
functions of h for one sample, n = 300.

Table 5. Average absolute error for h,; and h,o; mean, median and
standard deviation over 100 replications

Median bandwidth method

AAE(h,;) AAE(hy0)

mean median  standard mean median  standard
deviation deviation

n=200 0.01967 0.01832 0.00953 0.01805 0.01670 0.01008

n=300 0.01620 0.01466 0.00741 0.01470 0.01365 0.00754

n=500 0.01346 0.01226 0.00677 0.01230 0.01142 0.00697

A. Proofs

A.l. Proof of Theorem 1

Let us recall that the definition of \7h is

~ 1 n
V() = 5 2 L et
i=1



Uniformity Inspired Bandwidth Selectors ... 67

First, we will establish the following result:

sup | V() ~V(x) | > 0 (21)
xeR

because it will be used in the proof of the theorem. We have

sup | VR (X)=V(X)| = sup |Vp(x)-x]|.
xeR xe€[0,1]

We know that (Kolmogorov-Smirnov statistic) that

) . -
XZI[JO‘.)lllvh(X)_X = max{ii?axnﬂ Fh(x(i))_Ln‘}' i:r?axn{‘ F“(X(‘))_IT‘}}'

..........

So to prove (21), it is enough to show that

i a.s.
Eo( X)) — — 22
o o5 =0 @)
and
i—-1 a.s.
max ﬂ Fh(X(i))——‘} — 0. (23)
i=1,...,n n

On the other hand, we have

‘F“(X(‘))‘% <[ F(X@) = F(Xp) [+ F(X(i))_ln"

It follows that

_max ﬂ Fh(x(i))—%‘} < sup | Fp(x) = F(X)[ + sup | Fy(x) — F(x)[.
i=1,..,n xeR xeR

The proof of (22) is completed using Proposition 1 and Glivenko-
Cantelli theorem.

Using the same arguments as immediately above, we have

max {1 (X)) - =2 = sup |- FO9]+ sup [ Fy(0 - FOo
i=1..,n xeR xeR

this inequality allows us to obtain (23).
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To continue, let us set
|: (')(X) _ ZH( X(J)J
j=i

we have

Frx) - Fr(x) = (ﬁ _ljzn: (X _t:((j)j
J
i

#i

(79 1))2 )

It follows that
(i) () _ g—(0) 1
| F V(%) - RV (x) | < -

We also have

R - Fy D) = 1 i [ X(»J Z”: (X—XmJ
- -
_ (X%
Sk

LAOESUGIEES

therefore we get

We then obtain

R0~ Fr D) || R0 = B0 [+ F D0 - Ry Do < 2.
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To prove our Theorem 1, observe that

sup [Vh(X) =V(X)[ = sup [Vh(x)-x|.

xeR xe€[0,1]

We have (Kolmogorov-Smirnov statistic)

Vi (x) - x| = FO(xg —l‘},
sup [ Vi(x) - x| max{i_T?fnﬂ h (X))~

x€[0,1]
max ﬂ F_(i)(x(i))—i;l }}
Loonll N n

It is also obvious that

‘Fh_(i)(x(i))_Ln <| Ry DXy - Fa(Xiy) | + Fh(X(i))—H
2
<ot Fh(x(i))_lﬁ‘
and
iy i—1|_2 i—1
O e e L R

Putting everything together and using Kolmogorov-Smirnov statistic, we get

2 ~
sUp [Vp(x) =V (x)| < =+ sup [ Vh(x) =V (x) |
xeR xeR

and the proof of Theorem 1 is completed using (21).
A.2. Proof of Theorem 2
We have:

(Fy VX - U = (R V(X)) ~ F(X)?
+ 2R WX )) = FOXi)) (F(Xiy) = Uiy)

+ (F(X@y) - Ugp))?
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= (R, D(Xy) = F(Xiy)?

+ 2R W(xy) - LR DX Xy
(F(X)) =Ypy)
+ 2E[R V(X)) X iy ] = FOX ) (F(Xiy) = Ugiy)
+ (F(X()) - Ua).

It follows that

A& Vi, Vi) = dg Vi, Vi) + 2CTH(h) + 2CT?(h) + Ty

with

cTi() = 3 (R D0y - ER D) X DEF (X)) - U WXy,
i=1

CT2(h) = = 3" (ElR; V(X)) X0y = FOXG) (F(Xy) = Uy W (X i),
i=1

T = %Z;‘(F(X(i)) ~U i)W (Xiy).

Since T; is independent of h, Theorem 2 is a straightforward

consequence of the following lemmas:

Lemma 1. Under the conditions of Theorem 2, we have:
E(CTY(h)) = 0.

Lemma 2. Under the conditions of Theorem 2, there exists a random
variable T, independent of h such that

E(CT?(h)-T,)

= = — 0.
E(di (Vh, Vi)
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A.2.1. Proof of Lemma 1
It is enough to prove that E[T;] = 0, where
I = (R D(XGy) = ELR D)X D (F Xy ) = Uy W (X ).

We have:

with
I = (R VX)) - ER VX)X DF (X WXy ),
I = (R V) = ER D) X DUGIW (X))
We have
E[I [ Xyl = 0,

and using independence between (U;),_,

EIN 1= ENR V(X)) - ELRy (X)) X6 DW (X ) EWU)) = 0.
It follows that
E[l;] = E[I'] - E[I ] = 0.
This ends the proof of Lemma 1.

A.2.2. Proof of Lemma 2

Let us set
vi = EIR O X)) X = F(Xy),
Ai = F(X(i)) = Uiy
First, we are going to split y; into “simpler” components. Let fjk(u, V)

be the joint density of (X(j), X)) (j <k), we have (see, for instance,
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Arnold et al. [2])

i1 K—j-1 n—k
it vy = IR PO el 1wy 10w

for —oo <u <v < +o0. The density f; of X(j) is given by

0 = B

Therefore, for jy <k, the conditional density D jok of X(k) knowing X(io)
is given by
Pjok (Y1 X(jo))

~ FigkX(ig)s V)

= Xiiy <
B K=Y

CE XD TF(Y) = F(X (o) )I0 L - F(y)"
- (Jo — D'k = Jo - DI(n — K)!

L (o ~DMn - jo)!
ntFIO X o) = F(X ()"0 £ (X))

f(X(jo)) F(¥)

-jo)  [FO) = FX()F - Fy)

~ (= K)H(k - jo ~D)! [L- F(X(jo)I" 10 o

For k < jp, the conditional density Pkjo of X(k) given X(jo) is given

by
Pkio (Y1 X(jo))

Figo (Y5 X(jp))
Fio (X(jo))

(¥ < X(jp))

R ) [F(X () = FOIR T L= F(X (IR0
- (k=10 k-~ Jo)!

FOy) £(X(jp))
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L (o —=Dn - jo)*
ntFIOHX o) = F(X ()"0 £ (X))

(o FRRYIF(X () - F(ye Tkt
~ (Jo —k =Dk -1)! F jo_l(X(jO))

In the sequel, we will need the values of the quantities

n
v (Y1 X(jy)) = Z Pk (VI X(j))s
k=j0+1

jo-1

(Y X(jp)) = Z Pkio (Y1 X (jo))-
k=1

f(y).

73

To compute these quantities, we are going to use the following obvious

binomial identity. Let p, g € R. Then we have:

np(p +q)"* = ka p“q" %,
k=1

We have:

n

. L f(y) (n— jo)!
v (Y X(jg)) = - F(X(jo))]n_jo k%ﬂ (n—k)!(k — jo —1)!

x [F(y) = F(X(jo I 0 L= F(y)I"*

_ f(y)
[L- F(X(jo)I" P [F(y) = F(X(jp))]

y (k= Jo)(n = jo)!
Z (n—jo — (k= jo)'(k = jo)!

x [F(Y) = F(X(jo) I oL = Ry Jomtklo)

(24)



74 E. Youndjé

_ f(y) P o)
L= F(X(ig I RIF () - F(X(jo)] 15 ("= Jo = O1E2

x [F(y) = F(X(jo)I'L - F(y)I"Jo~

i f(y) ZJO g(n - J'oj
- F(X (i) IF(y) - F(X (o)l 5\

x[F(y) = F(X(jo)I L= F(y)]" o~

_ fW0-Jo)
[L-F(X(jp))l'

The binomial identity (equation (24)) is used to obtain the last equality
above. In the same spirit, we have:

_ L f(y) L (Jo - 1!
v (Y1 X(jg)) = Fjo—l(x(jo)) Zi(jo -k 0—1)!(k -1)!
x X (y) [F(X(j)) — Fy)llot¥

oty & k(-
Flo=(x ;) F(y) &5 (o 1= K)tk!

x FX(y)[F(X(jo)) - F(y)) o1k

__ fy) jo_lk(jo—lj
Flot (X)) Fy) i | k

x FX(y)[F(X(jy)) - F(y)lo~t7*

_ o -1
F(X(jo))
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Observe that
~(jo)(y . I
B[RO (X (i) X (jo)] = 1o + 1,

where

ol X(iy— X
- 1 k
Mo =m-1 E{H(—(“’)h ()jlx(m}

Xiiy— X
(jo) ~— (k)
k=jo+1

=
st
I

S

| |
-
M=
m

We have that

n

+ _ 1 e X(jo) ~ Y

Hjo "1 Z X/ H( h @jok (Y | X(jo))dy
k=jo+1 (o)

X
(o) —
= 1".X(lo) ( . jz @ jok (Y1 X(jiy))dy

k=jg+1

N S X(i) =Y, + .
= ”—1JX(jO)H( h v (Y[ X(jg))dy

— (n — JO) (jo) —
~(-Di- F(x(,-o))]fx(,o [ jf(y)dy-

We can then split “}o as follows:

+ n_jO_n_jO (JO)_y f d
Mo [n—l n }[1 F(x(JO))]I (o) ( h J(y)y

J’_

n—Jo (jo) =Y
no[L- F(X(Jo))]jx(lo ( h Jf(y)dy
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n— Jjo (jo) —
SGES T == )] 8 ( ° J””dy

n_jO 1 +eo H X(JO)_y]f d
T [1_F(X(io))]JX(jo) ( h )

This quantity can further be split as

n_JO 1 e X(JO)_y f d
< T e R

. {1—\7n(F(x(,-0))) _1Jj +oo H(WJ f(y)dy

[L- I:(X(Jo))] X(jo)

+00 X(in) —
(Jo) y]
+ Hl —=—=[f(y)dy.
jx(io)( h

We get the following decomposition of “}o:

+ + +
Hio T %o +BJ'o +9j0

with

L X(ip) =Y
S T =y | G (—h J“”dy'

o FX() ~Va(FX(G)) p+ [ X(jp) =Y
Bjo [i F(X(Jo))] : J.X(JO)H( Oh jf(y)dy’

+00
o =
Jo X

X(iny =Y
H(—“Oﬁ J f(y)dy.
(io)

In the same spirit, we have:

jo—1 . .
- 1 X(io) oy Xi) =Y
S — Zj_w H( T [@kip (Y1 X (jg) )y

k=1
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ig-1
1 (X0 Xg) — Y R
=n_1 —1.[_00 H( h Z(ijo(YI X(jo))dy
k=1
1 (XG0, XGo)—Y) -

_ jO -1 X(jO) H X(JO) B yj f d
@ -1)F(x(jo))j_w ( “h | fdy.

We can also split pj, as follows:

~ =1 Jo X(lo) X(ip) ~ Y
Hio _[n—l }F(X(JO))J‘ ( h jf(y)dy
X(Jo) X(jo) ~ j
—_ —="_" | f(y)d
nF(X(Jo))J ( (r)ay

—(n-Jjo) X(io) (jo) ~ Y
e 1)nF(>2(JO))I & [ — Jf(y)dy

X(Jo) X(jo) ~ ]
f(y)dy.
”F(X(m)I ( )y

This quantity can be rewritten as
_ —(n=jo) X(io) [ X(ig) =Y
- H —=—=[f(y)d
Hjo (n_l)nF(X(jo))j—oo h (y)dy

Va(F(X(js)) = F(X(i0) ¢ X(io) [X(Jo) - y]
Hl —=——|f(y)d
+ o | f(y)dy

X(j X(in) =Y
+I (JO)H(—(JOQ ]f(y)dy.

—00

From this last equality, we see that Hio has the following decomposition:

Hjp = %jo T Bjg + 04y + T

77
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where

- =(n=1Jp) X(io) [ (o) =Y
jo = (n —1)nF(X(j0)).[_w H h f(y)dy’

Vi (F(X(iy)) = F(X(i i) (X(i)—
B - (F( EZJ(();)?J-O))( (Jo)){J_ﬁlo)H(%yJf(y)dy_F(x(jO))}

X X Y
910=I “O)H( ('Oﬁ Jf(y)dy,

—00

tiy = Va(F(X(jp) = F(X(jo))-

Note that T is independent of h. To sum up, at this stage, we have:

—(Jo) . . — 7t + + n - " .
B[R, (X (i) 1 X (jg)] = &5 + B, + O, + %50 *+Bio + 0Tp + T

and since
o (o) (y . ) .
Yip = B[R (X (i) X gyl = F(X(jg))s
we see that
+ - + -
Vip = %jg T %jo * Bjo +PBjp + 05y T Tio
with

_ X(jo) =¥
01y =8, 0 = FO8 ) = [ 2B 10y - FOx )
Because
2 1v
cT (h)ZHZ;YiAiW(X(i)),
1=
we have

5
CT?(h) = Y CT?X 4T,
k=1
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with
1 n
CT2Hh) = =D af AW (X)),
i=1
1 n
CT22(h) = = ai AW (X(p)),
i=1
1 n
CT?3(h) = HZB?LAiW(X(i))1
i=1

CT24(h) =13 B AW (X)),
i=1

1 n
CT25(h) = ﬁZeiAiW(x(i)),
i=1

79

T, = %;w}(F(x( i)~ F(X(jo) DAW (X))

and note that as stated in Lemma 2, T, is independent of h. So, to prove

Lemma 2, it is enough to prove the following Lemma 3.

Lemma 3. Under the conditions of Theorem 2, we have

E(CT%X(h))
E(di (Vh, Vi)

A.2.3. Proof of Lemma 3

—->0fork=1..,5.

(i) Case k =1: We have:

—i W (X(i))Aj J‘ (
1)” 1 F(X(l))] X(|)

| o AW (X(iy) | =

] f(y)dy ‘



80 E. Youndjé
< F(X)) =Yy |
n(1- F(byp))
C
< I F(X@) =Yy |

where from hereafter C denotes a generic constant. Therefore, we have:

n

cx L
[CT2Hh) | < =D T F(XGy) =g |
=

It follows that
| cT2H(h) [* < %Zn:%l F(X) =Yg [
i=1
hence
E|CT2Y(h) [? < r?—zzn:% El F(X()) =Yy §
i=1

and using Jensen’s inequality, we get

214012 _ C Zn 1 2 2
i=1

The proof of this case is completed using the following Lemma 4, whose
proof is given below.
Lemma 4. We have:
n
1 2 2
Zl:ﬁ E| F(X(i)) -Ug) [ = D)
1=
(ii) Case k = 2: We have:

n—i W(X@)Ai ¢ Xi) , ( Xi) - Y
(h-Dn F(X(p) I_w H( h Jf(y)dy‘

| o AW (X (i) | =
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C
= Wao)l F(X()) =Y |

and the proof is completed using exactly the same steps as in the case k = 1.

(iif) Case k = 3: To prove this case, we will need Proposition 2 which is
a consequence of Dvoretzky et al. [5] theorem.

Proposition 2. There exists a constant kg such that

E( sup |Viy(x)=V(x)])? <22,
xe[0,1] n

Observe that

o -2 e
H f(y)dy =|H F
jx(i) ( H (y)dy H (¥) ‘o

too 1 (X)) Y
+Ix(i)FK[ . jF(y)dy

This quantity can be rewritten as

I;; H(wj f(y)dy = I;; %K(X(i)h_ yj[F(y) ~ F(Xgiy)ldy

= [ K@IF(XG) - o)~ (X

0
= hI —uK(u) f (X — vuh)du.
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And, since f is assumed bounded, we have

+00 Xy —
(i) yj
H| —— |f(y)dy| < Ch.
Jx(i) [ h
We have:
(F(X(i)) = VaF (X))
A )] = . .
| BrAW (X (i) | = L= F X)) AW (X i)
+00 Xy —
(Ol
XIX(UH£ H jf(y)dy
Ch| F(X(i)) = Va(F(Xi)))
= l [(1|)_ F(So)] 0 ||Ai |W(X(i))
< Chl F(X(iy) = VaF (X)) || Ai W (Xi))-
Therefore,
1 n
|CT23(h) | < ChDy = |
i=1
with
Dp= sup |Va(x)-V(¥)|
x€[0,1]
hence

11
E[CT#3(h) | < Ch(ED§)2\/ﬁZ E(F(X() - Yi)”
i=1

It then follows from Proposition 2 and Lemma 4 that

gl cT2%() |- o 1]

and this equation completes the proof of this case.
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(iv) Case k = 4: Recall that

bi = " (F(xél&)(.))F(X(l))U_Xs) H(X(i)h—_ yj f(y)dy - F(X(i))}.

Also, we have:

[ [X(I) Jf(y)dy{ ( (i) - jF(y)}_:
+I_Xo:)ﬁ'<( 0 ij(y)dy

,[Xo:)ﬁ [ (i)h—yJF(y)dww.

It follows that

£ X(0) H(WJ f(y)dy - F(Xi))

o —00

= :_Z”%K(WJ[FW) — F(Xi))ldy

=1, ) K(u)[F(Xiy —uh) - F(X(y)ldu

h[ UK () £ (X - vuh)du
_ Ly .

0 ()

We thus have:

X(i Xy —
“_oi) H(%y} f(y)dy - F(X()| < Ch.
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From this inequality, we get:

F(X(i)) = Va(F(X(i)))

| BrAW (X)) | =|cCh FXe) AW (X i)
Ch| F(X(jy) = Vo (F(Xi
< [ F( ()I)=(ao)( ( ()))||Ai W (Xiy)

< Ch| F(Xi)) = VaF (X)) || A W (Xi))-

So, the remainder of the proof for this case follows exactly the same
steps as that of the case k = 3.

(v) Case k =5: Let

oty = sup | JH(*5Y ey - Fox

to prove this case, we will need the following Proposition 3 which is a
consequence of Taylor expansion of order 2 and the fact that f' is assumed
bounded.

Proposition 3. Under the conditions of Theorem 2, there exists a
constant ; such that

o(h) < k;h?.
Since
| 6W (X)) | < Ca(h),
we have:
| CT?5(h) | < c:ho»(mii A |
< n L i |-
It follows that

E| CT25(h)| < Cm(h)\/%z E(F(X@)) - Uiy
i=1
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Co(h)
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2
_ol”
Jn
using Lemma 4 and Proposition 3. This last equation completes the proof of
this case.

A.2.4. Proof of Lemma 4

Because of independence and equidistribution, we have:

E(F(X()) - Ug))? = EF(X())? = 2EF(X(5))EUj) + EU(Zi)
= 2(EU§, - (EUm)?)
= 2Var(U(i)).

It is known that Ugj) is a B(i, n —i +1) (Beta distribution with parameters i

and n —i +1, see, for instance, Arnold et al. [2]) random variable. Therefore,

in—i+1)

Var(U(i)) = m

It follows that

EVar(U(i)) = ﬁ

and Lemma 4 is a consequence of this equality.
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