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Abstract 

It is a well-known result in probability that if X is a random variable 
with a continuous distribution F, then ( )XF  is uniformly distributed 

over the interval ] [.1,0  This idea helps us to build new score functions 

to choose the regularization parameter of kernel distribution estimator. 

Two classes of selectors are considered: the indirect 2L  class and the 
1L  class. Although all the methods work well, those in the 1L  class 

seem more appealing because they appear to be more robust in the 
simulations. A small scale comparison study (by simulations) between 

the popular method of Bowman et al. [3] and the indirect 2L  methods 

is carried out in the paper. An optimality result of the indirect 2L  
methods is given in the article. 

1. Introduction 

Since the earlier 1960s, people have been interested in smooth estimators 
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of a distribution function. The estimator mostly considered is the kernel 
estimator. Let X be a random variable with a density function f and a 
distribution function F. Let nXX ...,,1  be identically and independently 

distributed from the distribution function F. The kernel estimator of F was 
introduced by Nadaraya [10] and is defined by 
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,1  

where H is the distribution function of a nonnegative kernel function K, i.e., 

( ) ( )∫ ∞−
=

x
dttKxH ,  

and ,0>= nhh  is the smoothing parameter. Convergence properties of the 

estimator hF  can be found in Nadaraya [10], Reiss [11] and Lejeune and 

Sarda [6]. It appears from these theoretical results that the most influential 
parameter is the bandwidth. In the literature, there are two cross-validation 
methods in Sarda [12] and Bowman et al. [3], and the plug-in method 
proposed by Altman and Léger [1] for choosing the bandwidth h. 

The methods introduced in this paper are based on the fact that 
( ) ( )nXFXF ...,,1  is an i.i.d. sample of the uniform distribution over ] [.1,0  

The fundamental ideas and results of our methods are presented in Section 2. 
In Section 3, the ingredients used to build the bandwidths are displayed. The 
general methods are presented in Section 4. The particular approaches based 

on the indirect 2L  distance are outlined in Section 5. The approaches derived 

from the 1L  distance are studied by simulations in Section 6. The remainder 
of the paper consists of proofs. 

2. Basic Idea and Fundamental Result of Our Methods 

In what follows the conditions on the kernel function, the distribution 
function and the bandwidth are: 

(A.1) K is nonnegative and ( )∫ = ;1duuK  
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(A.2) K is compactly supported on [ ];1,1−  

(A.3) K is symmetric and ( )∫ +∞<< ;0 2 duuKu  

(A.4) F is twice continuously differentiable, and ,fF =′  fF ′=′′  are 

bounded; 

(A.5) .0lim =+∞→ nn h  

The main idea behind our methods is to choose nhh =  such that 

( ) ( )nhh XFXF ...,,1  

behaves like an i.i.d. sample from the uniform distribution function defined 
by 
 ( ) ] [( ) [ [( ),,11,0 xxxxV ∞++= 11  (1) 

where A1  is the indicator function of the set A. “Theoretical justification” of 

the approaches might be based on the fact that 

( ) ( ) 0sup
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1
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XFXF →−
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which in turn is based on the uniform convergence of hF  namely: 

Proposition 1 (Yamato [14] and Chacón and Rodríguez-Casal [4]). 
Under the assumptions (A.1), (A.4) and (A.5), we have: 

( ) ( ) .0sup
..sa

h
x

xFxF →−
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As in the cross-validation approach, it is helpful to introduce the 
following leave-one-out estimators 
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with ( ) ( )nXX ...,,1  being the order statistics associated with ....,,1 nXX  For 

computational purposes, it is important to note that 

( )( ( ) )
( )( ( ) )n
n

hh XFXF −− ...,,1
1  

are the order statistics of 

( ) ( ),...,,1
1

n
n

hh XFXF −−  

which means that 

( )( ( ) )
( )( ( ) )

( )( ( ) ).2
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The validity of this remark is based on the following argument; for ∈k  
{ },1...,,1 −n  we have 
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and since hF  is nondecreasing, it is true that 
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be the “noisy” empirical distribution based on 

( ) ( )....,,1
1

n
n

hh XFXF −−  

The cornerstone of this paper is that hV  is a consistent estimator of V 

(see equation (1)), this fact is stated in the following theorem whose proof is 
the Appendix. 

Theorem 1. Under the assumptions (A.1), (A.4) and (A.5), we have: 

( ) ( ) .0sup
..sa

h
x

xVxV →−
∈R

 

3. The Ingredients Used in Our Selection Criteria 

3.1. The uniform samples and their role 

The uniform samples are the most important tools of our approaches. 
Their role stems from the arguments contain in the remainder of this 
paragraph. Let 

 ( ) ( ){ }∑
=

≤=
n

i
xXFn inxV

1

1ˆ 1  (3) 

be the empirical distribution based on ( ) ( )....,,1 nXFXF  Let d be any 

reasonable distance between distribution functions. In a practical situation 
(finite distance), it would be desirable to use the value of h minimizing 

( )nh VVd ˆ,  as bandwidth for the estimator .hF  Unhappily, the sample 

( ) ( )nXFXF ...,,1  is not available. At the same time, it is well-known that 

the distribution of ( )XF  is uniform over ] [.1,0  Let { }nUUS ...,,1=  with 

nUU ...,,1  an i.i.d. sample from the uniform distribution. Set 

 ( ) { }∑
=

≤=
n

i
xU

S
n inxV

1
,1

1  (4) 

since ( )xVn̂  and ( )xV S
n  have the same theoretical properties, the basic idea 
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of the methods developed in this paper consists (loosely speaking) in using 

the minimizer of ( )S
nh VVd ,  (with respect to h for a uniform sample S) as an 

approximation to the minimizer of ( ).ˆ, nh VVd  The difficulty of this approach 

will be how to choose the sample S. We are not going to build S element by 
element, we will go the other way around. Roughly speaking, we will 

– start with N independent samples ,...,,1 NSS  of size n of i.i.d. uniform 

observations; 

– use the lower and upper bounds on the bandwidth (presented in the 
next section) to select the ones, which will help to build the final bandwidth 
for each method. 

3.2. Lower and upper bounds on the smoothing parameter 

Let d be a distance between distribution functions, S be an i.i.d. sample 

of size n drawn from the uniform distribution and S
nV  the empirical 

distribution built with the aid of S. As mentioned earlier, the core of our 

methodology consists in using the minimizer of ( )S
nh VVd ,  as bandwidth. 

Experimentally, we have found that the bandwidths obtained from many 
uniform samples are very small, and a few uniform samples lead to very large 
bandwidths. The aim of this section is to design a lower and an upper bound 
for the smoothing parameter of the estimator .hF  These bounds will help us 

to select the uniform samples in the process of building the bandwidth of .hF  

In this process, we will retain only the samples whose bandwidth are within 
these bounds. 

It is a well-known fact in nonparametric estimation that small 
bandwidths lead to highly variable estimates, this is not desirable, because 
our goal is to obtain smooth estimates. In fact, it is known (see, for instance, 
Bowman et al. [3]) that 

( ) ( )xFxF nh
h

=
→0

lim  
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with 

( ) { },
1

1
∑
=

≤=
n

i
xXn inxF 1  

i.e., the empirical distribution of F, which of course is discontinuous. To 
push this argument further if we set 

( ( ) ( ) ( ) ( ) ) ,1...,,2,,min 111 −=−−=δ −+− niXXXX iiiii  

then (because  K is compactly supported on [ ])1,1−  we have the implication: 
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It can be shown that (using the implication (5)) 

( )( ( ) ) ....,,1,1
1

0 nin
iXFh i
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h =
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−=⇒δ< −  

Hence, when ,0δ<h  hF  is not very different from the empirical 

distribution. The lower bound for the bandwidth of our estimator ( )hF  is 

built with the aid of the sequence ( ),2...,,1, −=δ nii  and is given by 

 { } { }( ).2...,,1,median,2...,,1,meanmin −=δ−=δ=δ∗ nini ii  (6) 

The lower bound ∗δ  will allow us to avoid the empirical distribution (under 

smooth estimates). A few remarks in regard of the quantity ∗δ  are in order 
here. First, observe that 

( ) ( ) ( ) ( ) ,2,2min 112
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≤δ −∗
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XX
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so, for example, in the case where X is bounded, ∗δ  is at most of order .1 n  
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In fact, this quantity appears to be very small in the simulations. Let us set 

( )( ( ) ) ;1
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iXFiA i
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it can easily be shown that 
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⎤
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⎡≥⇒δ< ∗ nAh h  

where for any set A, A#  denotes its cardinality and [ ]x  is the integer part of 

x. This means that, when ,∗δ<h  the behavior of hF  is not very far from 

that of .nF  Another argument in favor of this “censoring” process can be 

obtained by looking at the kernel density estimator hf  of f. More specifically, 

let i
hf
−  be the leave-one-out estimator of f given by 
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and set 

{ ( ) };0: == −
i

i
hh XfiB  

it can be shown that 

.2# ⎥⎦
⎤

⎢⎣
⎡≥⇒δ< ∗ nBh h  

It follows that the estimator hf  will behave very wildly when .∗δ<h  Since 

it is our belief that a good estimator hF  would lead to a “reasonable” 

estimator ,hf  we are not inclined to use such values of h to estimate F. 

The intuition behind the upper bound lies in the statistic (empirical  

measure of the interval [ ])43,41  

 ( )( )∑
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i
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1 4
3,4

1
1
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and the following equality: 

 ( ) .2
1lim =

+∞→
xFh

h
 (8) 

Let us define the “noisy” empirical measure of the interval ⎥⎦
⎤

⎢⎣
⎡

4
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1  by 
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Because of (8), we have 

 .1lim =μ
+∞→

h
h

 (10) 

By the central limit theorem in setting 

,2
12 ⎟
⎠
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⎝
⎛ −μ=ν nn n  

we have 

( ).1,0N
L
→νn  

Because of Theorem 1, the “noisy” counterpart of nν  defined by 

⎟
⎠
⎞⎜

⎝
⎛ −μ=ν 2

12 hh n  

for “good” values of h will behave like a standard normal random variable. 
Let αt  be the quantile of order α  of the standard normal distribution and set 

 { },,0inf α
∗ ≥ν>=Δ th h  (11) 

in this paper, the upper bound for the smoothing parameter is ∗Δ  (with 
).95.0=α  This bound requires hν  to fail the normal test at level α. The 

existence of ∗Δ  is ensured by (10). 
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4. The Three Main Methods 

The three methods introduced are relative to the distance used, in order 

words, each distance d between hV  and S
nV  gives birth to three different 

methods. So, the first thing consists in choosing a reasonable distance d 
between distribution functions. 

Let kS  be a sample of n i.i.d. uniform observations. In order to simplify 

writings, let ( )k
nV  (instead of )kS

nV  denote the empirical distribution function 

built with kS  and kh  be the minimizer of ( ( ) )., k
nh VVd  We will retain the 

sample kS  in the process of building a bandwidth for hF  if ∗∗ Δ<<δ kh  

(see equations (6) and (11) for the definitions of these quantities). The next 
step of our algorithm to build a bandwidth is as follows: let 

NSS ...,,1  

be N samples of size n of i.i.d. uniform observations, the procedure presented 
immediately above permits us to obtain 1N  samples 

( ),1...,, 11 NNSS N ≤∗∗  

therefore the bandwidth jh  obtained with the sample ∗
jS  satisfies jh<δ∗  

.∗Δ<  The other steps of the algorithm will consist in using ∗∗
11 ...,, NSS  to 

construct the final bandwidth. In the sequel, we will say that a sample is 

“censored” if the bandwidth derived from it is not in the interval ] [., ∗∗ Δδ  

We are now ready to describe the three methods. 

The average or median bandwidth method. Let kh  be the minimizer of 

( ( ) )k
nh VVd ,  with ( )k

nV  being the empirical uniform distribution built with the 

sample ( ).11 NkSk ≤≤∗  This method consists of using 

{ }1...,,1,meanˆ Nihh i ==    or   { }1...,,1,medianˆ Nihh i ==  
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as our smoothing parameter. The main idea behind this method is that each 

kh  is a reasonable bandwidth, thus the sequence can be summarized by its 

mean or median. 

The one step pilot bandwidth method. In this approach, we assume that 
we possess a “trusted” bandwidth 0h  suitable for our estimator .hF  This 

trusted bandwidth can be obtained by any existing selection method 
(Bowman et al. [3], Altman and Léger [1] or Sarda [12]) in the literature. 

Indeed, if 0h  is a “good” smoothing parameter, then ( ) ( )n
n

hh XFXF −−
00

...,,1
1  

would be closed to ( ) ( )nXFXF ...,,1  in the sense that ( )nh VVd ˆ,0  is small. 

This method consist in using 0h  to choose a “proper” sample from 

( )NNSS N ≤∗∗ 1...,, 11  

and use it to build the bandwidth. More precisely, let ( )i
nV  be the empirical 

distribution function built with the sample .∗iS  Let 1i  be such that 

( ( ) ) ( ( ) ).,min, 0
1

0 11
i

nh
Ni

i
nh VVdVVd

≤≤
=  

Let us denote 

( ) ( )1
1

1
1 , i

nni VVSS == ∗∗∗∗  

and 

( ( ) ),,minargˆ 1
1

∗= nh
h

VVdh  

the final bandwidth for this approach is .1̂h  

The fixed point pilot bandwidth approach. This approach is an extension 

of the previous one. We start with a trusted bandwidth 0h  and then build 1̂h  

using the above method. Now we can use 1̂h  as pilot to build 2ĥ  and so on. 

Let 2i  be such that 
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( ( ) ) ( ( ) ),,min,
1

2
1 ˆ
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ˆ

i
nhNi

i
nh VVdVVd
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=  

we can then set 

( ) ( )2
2

2
2 , i

nni VVSS == ∗∗∗∗  
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( ( ) ).,minargˆ 2
2

∗= nh
h

VVdh  

It is important to note that 

( ( ) ) ( ( ) )22
ˆ ,inf,
2

∗∗ = nh
h

nh VVdVVd  

( ( ) )2
ˆ ,
1

∗≤ nh VVd  

( ( ) )i
nhNi

VVd ,min
1̂11 ≤≤

=  

( ( ) ),, 1
1̂

∗≤ nh VVd  

therefore we have 

( ( ) ) ( ( ) ).,, 1
ˆ

2
ˆ 12

∗∗ ≤ nhnh VVdVVd  

Using the same procedure, we then build a sequence ( )iĥ  such that 

( ( )( ) ) ( ( ) ).,, ˆ
1

ˆ 1
i

nh
i

nh VVdVVd
ii

∗+∗ ≤
+

 

It follows from this last inequality that the sequence ( )iu  defined by 

( ( ) )i
nhi VVdu

i
∗= ,ˆ  

is convergent, but since there is a finite number of samples ∗∗
11 ...,, NSS  

( ),1 NN ≤  there exists a smallest natural number 0j  such that 
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( ( )( ) ) ( ( ) ).,, 0
0

0
10

ˆ
1

ˆ
j

nh
j

nh VVdVVd
jj

∗+∗ =
+

 

The smoothing parameter selected by this approach is .ˆ
0jh  

5. The Indirect 2L  Approaches 

The distance considered here is the Mallows metric. Let ,1G  2G  be two 

distribution functions. The left continuous inverse of 1G  is defined by 

( ) ( ){ }.:inf 1
1

1 uxGxuG ≥=−  

The Mallows distance ( )Md  between 1G  and 2G  is defined by 

( ) ( ) ( )∫ −− −=
1

0
21

2
1

121
2 ., duuGuGGGdM  

The interesting properties of this distance can be found in Levina and Bickel 

[7] or Munk and Czado [9]. Let us define hV̂  by 

( ) { ( ( ) ) }∑
=

≤=
n

i
xXFh ihnxV

1

1ˆ 1  

(note the difference with ,hV  equation (2)); we have that 

( ) ( ( ( ) ) ( ( ) ))∑
=

−=
n

i
iihnhM XFXFnVVd

1

22 1ˆ,ˆ  

this equality is due to the fact that the order statistics of ( ) ( )nhh XFXF ...,,1  

are ( ( ) ) ( ( ) )nhh XFXF ...,,1  and those of ( ) ( )nXFXF ...,,1  are ( ( ) ) ...,,1XF  

( ( ) ).nXF  To state and proof the optimality result, we will use a modified 

version of the distance .Md  Let W be a nonnegative and bounded weight 

function, using the weight function the new measure of accuracy Md  is 

defined by 



É. Youndjé 54 

( ) ( ( ( ) ) ( ( ) )) ( ( ) )∑
=

−=
n

i
iiihnhM XWXFXFnVVd

1

22 .1ˆ,ˆ  

In setting as usual 

( ) ( ) ( )( ) ( ),1

1

2∑
=

−=
n

i
iiih XWXFXFnhASE  

it is obvious that 

 ( ) ( ).ˆ,ˆ2 hASEVVd nhM =  (12) 

By the equivalence of measures of accuracy Sarda [12] or Marron and 
Härdle [8], under the assumptions (A.1)-(A.5), if in addition W the weight 
function is compactly supported, we have: 

 ( ) ⎟
⎠
⎞⎜

⎝
⎛ +++−= 44

32
1 hn

hohCn
hCn

ChASE  a.s. (13) 

with ,1C  2C  and 3C  being positive constants. To continue, let us introduce 

the following quantities: 

( ) ( ( )( ( ) ) ( ( ) )) ( ( ) ),
1ˆ,

1

22 ∑
=

− −=
n

i
iii

i
hnhM XWXFXFnVVd  

( ) ( ( ) ( )) ( )∑
=

− −=
n

i
iii

i
h XWXFXFnhASE

1

2 .1  

As above, we have: 

 ( ) ( ).ˆ,2 hASEVVd nhM =  (14) 

Since it is true that 

[( ( ) ( )) ( ) ]niiiii
i

h XXXXXWXFXFE ...,,,...,, 111
2

+−
− |−  

( ( ) ( )) ( ) ( )∫ −= − ,2 dxxfxWxFxF i
h  
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we can deduce that 

[ ( )] [( ( ) ( )) ( )]∑
=

− −=
n

i
iii

i
h XWXFXFEhhASEE

1

21  

( ( ) ( )) ( ) ( )∫ −= − .2 dxxfxWxFxFE n
h  

It follows from the MISE representation given in Reiss [11] and Sarda [12] 
that 

 [ ( )] ⎟
⎠
⎞⎜

⎝
⎛ +++−= 44

32
1 hn

hohCn
hCn

ChASEE  (15) 

under the conditions (A.1)-(A.5), the constants 31-CC  being the same as in 

equation (13). 

Let { }nUUS ...,,1=  be a fixed set composed of an i.i.d. sample of 

uniform observations, for sake of simplicity, from here on we set 

 ( ) { },
1
∑
=

≤=
n

i
xUn ixV 1  (16) 

note that to stress the dependence on the set S, this quantity was written as 
S

nV  in equation (4). 

To continue, let us observe that 

( ) ( ( )( ( ) ) ( ) )∑
=

− −=
n

i
ii

i
hnhM UXFnVVd

1

22 ,1,  

where ( ) ( )nUU ...,,1  are the order statistics of ....,,1 nUU  So, correspondingly, 

the distance ( )nhM VVd ,2  is given by 

 ( ) ( ( )( ( ) ) ( ) ) ( ( ) )∑
=

− −=
n

i
iii

i
hnhM XWUXFnVVd

1

22 .1,  (17) 
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Note that, unlike in equation (12), it is not true, in general, that 

( ) ( ( ) ) ( )∑
=

− −=
n

i
iii

i
hnhM XWUXFnVVd

1

22 ,1,  

the role of the order statistics appears in equation (17), is crucial in the 

formula of ( )nhM VVd ,2  and the methods developed in this paper. In the 

theorem below, the bandwidth will be chosen in the set 

[ ] .0,, 3
1

3
1

∞<<<=
−−

BABnAnHn  

It is clear from the right hand side of equation (15) that the asymptotic 

minimizer of ( ) [ ( )]hASEEVVdE nhM =ˆ,2  is of the form ,3
1−

Cn  this form in 

turn justifies the form of .nH  We have the following optimality result for the 

indirect 2L  methods. It shows that minimizing ( )nhM VVd ˆ,2  over nH  is 

equivalent of minimizing ( ).,2
nhM VVd  

Theorem 2. Let ,nHh ∈  assume that the weight function W is bounded, 

nonnegative, compactly supported with support [ ]00, ba  such that ( ) 00 >aF  

and ( ) .01 0 >− bF  Then under the conditions (A.1)-(A.4), there exists a 

random variable T independent of h such that 

( ( ) ( ) )
( ( ))

.0
ˆ,

ˆ,,
2

22
→

−−

nhM

nhMnhM
VVdE

TVVdVVdE  

The proof of this result is the Appendix. 

We will end this section by a simulation study. The kernel used in this 
section and Section 6 is the Epanechnikov kernel defined by 

 ( ) [ ]( ) ( ).14
3 2

1,1 xxxK −= −1  (18) 
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Samples sizes, ,200=n  300=n  and 500=n  are considered throughout 

the paper. The distribution functions studied in this section are the standard 
normal and the Pareto distribution functions. We have found that the indirect 

2L  methods work well with or without the weight function being compactly 
supported. In other words, it appears that the compact support assumption is 
a technical condition needed in the proof of Theorem 2. Therefore, our 
simulations are done with .1=W  Let us specify the notations used in the 
simulation below (see the tables): 

0mh  is the minimizer of ( ) ( ) ( );1ˆ,ˆ2 == WhASEVVd nhM  

1mh  is the bandwidth obtained by the average bandwidth method with 

;Mdd =  

2mh  is the bandwidth obtained by one step pilot bandwidth method with 

Mdd =  and the pilot bandwidth being ;1mh  

3mh  is the bandwidth obtained by fixed point pilot bandwidth method 

with Mdd =  and the pilot bandwidth being .1mh  

The reader is referred to Section 3 for the definition of each method. 

Case of the standard normal distribution ( ):1,0N  The one step pilot 

bandwidth method is illustrated in Figure 1. Specifically, Figure 1 plots the 

“selection criterion” ( ( ) )12 , ∗
nhM VVd  for the one step pilot bandwidth method 

with the true error ( ).ˆ,ˆ2
nhM VVd  Both curves have the same intervals of 

variations (the intervals of increase and decrease are roughly the same): this 
is a validation of Theorem 2. 
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Figure 1. ( )nhM VVd ˆ,ˆ2  solid curve and ( ( ) )12 , ∗
nhM VVd  dashed curve as 

functions of h for one sample, .300=n  

In this section, the “CV method” is short for the cross-validation method 
developed in Bowman et al. [3] and bh  is the bandwidth built by that 

method. We have chosen to compare the methods of this section to the CV 

method because they (the methods) are all related to the 2L  distance, and 
also because as shown in the simulations done in Bowman et al. [3], in 
general, better results are obtained with the CV method compared to the 
others usually considered methods. In Table 1, a simulation study regarding 
the fixed point pilot bandwidth and the CV method is summarized. Note that 
similar computations were done for the mean and one step pilot bandwidth 
methods, and the fixed point pilot bandwidth method appeared to be only 
marginally superior to mean and one step pilot bandwidth methods. To save 
space the results in Table 1 are written in the format ,Ed ∗  where d is a 

number and E a constant equal to .10 6−  Table 1 shows that for the standard 
normal distribution, the CV method is only slightly superior to the fixed 
point pilot bandwidth method in terms of mean and standard deviation when 

200=n  or .300=n  
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Table 1. Average square error for ,3mh  bh  and ;0mh  mean and (std) 

standard deviation over 100 replications 

Fixed point and CV methods 

 ( )3mhASE  ( )bhASE  ( )0mhASE  

 mean std mean std mean std 

200=n  664E 599E 647E 585E 565E 582E

300=n  437E 399E 426E 386E 358E 370E

500=n  317E 308E 321E 311E 266E 286E

Case of a Pareto distribution: Here we consider the Pareto distribution 
function with parameter β  defined by 

( ) [ ]( ) .11,1 ⎟
⎠
⎞

⎜
⎝
⎛ −= β∞+

x
xxF 1  

The Pareto distribution is chosen to make fail the CV method, however, 
we would like to remind the reader that, the CV method works well for most 
of the usually considered distribution functions as evidenced by the results of 
Table 1 or the simulations done in Bowman et al. [3]. The reason for          

the failure is that, if ( )∫ +∞<duuKu  (which is implied by (A.3)) and F is 

a Pareto distribution whose parameter satisfies ,2
10 ≤β<  the quantity 

( )hISE  as defined on page 803 of Bowman et al. [3] is infinite, i.e., 

( ) .+∞=hISE  

When the kernel function is compactly supported, the proof of this result 
is obvious since for x sufficiently large, we have 

( ) ( ) .1
β=−

x
xFxFh  
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Table 2. Average square error for bm hh ,1  and ;0mh  mean and (std) standard 

deviation over 100 replications, 610−=E  

Mean and CV methods 

 ( )1mhASE  ( )bhASE   ( )0mhASE  

 mean std mean std MNoM mean std 

200=n  793E 585E 781E 589E 10.60 736E 576E 

Table 2 contains some statistics on ( ),1mhASE  ( )bhASE  and ( ),0mhASE  

over 100 replications of size 200=n  of samples drawn from the Pareto 
distribution with parameter .2.0=β  It can be seen from this table that the 

mean of ( )bhASE  is good bet of that of ( ),0mhASE  it appears to be a bit 

better approximation than the mean of ( ).1mhASE  So, what is going on here? 

Things seem to go against our assumption. Now, look at the (odd) column 
headed MNoM! The number under that column represents the Mean Number 
of Mimina of the function ( )hCVh  (see the CV function in Bowman et 

al. [3]). Let us recall that bh  the bandwidth of the CV method is the argument 

of the minimum of the ( ).hCVh  A natural question raises by our 

situation is how to compute bh  in case of multiple minima? To compute the 

results of Table 2, we have: 

– selected grid of points referred to as G1 contained in the interval 

[ ];5,10 6−  

– chosen bh  to be the point of the grid (G1) closest to the mean of the 

arguments of the minima. 

It appears that in case of multiple minima, the mean of the minimizers 
tends to fall around the middle of the interval containing G1, and this point is 
actually a good bandwidth for the example under consideration. It becomes 
suspicious that the interval containing G1 plays a role in the good result 
obtained by the CV method in Table 2. So, what happen if we extend the 
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interval? Unfortunately, it is nearly an “impossibility” to do the computations 
for all the 100 samples for larger grid of bandwidths. The domain of 
integration (where the quantities to be integrated are different from 0) of the 
integrals involved in the CV criterion depends on the range of the random 
sample, and this range can be extremely large for a sample drawn from a 
Pareto distribution with parameter .2.0=β  This makes the computations of 

the CV criterion for this example very difficult and time consuming. To be 
concrete, it took us 4 days and a 21  to compute the results (regarding the CV 

method) contained in Table 2 where the grid G1 is contained in [ ].5,10 6−  

We will study the effect of extending the grid of bandwidth on samples 
already having multiple minima on G1. Out of the 100 samples considered in 
Table 2, 11 present the maximum number of minima which is 31. The grid of 

bandwidths G1 is extended to G2 contained in [ ].5.8,10 6−  The results of 

computations on this new grid are presented in Table 3. The notations are: 

ID is the identifier of the sample under study; 

( ){ };2, GhhCVYCV ∈=  

mean represents the mean of YCV; 

std is the standard deviation of YCV ; 

NoM represents the Number of Minima of YCV; 

.10,10 516 =κ=Ω  

Table 3 reveals what was expected when this example was introduced: 

– The number of minimum initially 31 for each sample has risen to 32 
for one sample and, 49 for the others. 

– Even for a sample size of ,200=n  there are samples for which the CV 

method cannot produce a bandwidth, the function ( )hCVh  is a constant 

for those samples. Seeing the size (hugeness) of the means, we believe that 
the small variations symbolized by non-zero standard deviation are only due 
to round-off errors in the computations of the CV criterion. In fact, we have 
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plotted the graphs of ( )hCVh  for all the 11 samples and, they are totally 

flat. 

Table 3. Some statistics on YCV for 11 samples of size 200=n  

YCV YCV 

ID mean std NoM || ID mean Std NoM 

a 0.013Ω 0.069 32 || g 0.029Ω 0.189 49 

b 2.752Ω 24.24 49 || h 0.130Ω 0.758 49 

c 1.076Ω 8.082 49 || i 0.192Ω 1.263 49 

d 117.6Ω 0 49 || j 6.665Ω 40.41 49 

e 0.187Ω 0.252 49 || k 0.045Ω 0.505 49 

f 94147Ω 2.65κ 49 ||     

Table 4. Average square error for 3mh  and ;0mh  mean, median and standard 

deviation over 100 replications 

Fixed point pilot bandwidth method 

 ( )3mhASE  ( )0mhASE  

 mean median standard
deviation

mean median standard 
deviation 

200=n  0.00077 0.00063 0.00059 0.00073 0.00060 0.00058 

300=n  0.00052 0.00040 0.00039 0.00051 0.00039 0.00038 

500=n  0.00034 0.00024 0.00033 0.00033 0.00024 0.00032 

In Table 4, the results of computations for the fixed point pilot 
bandwidth method on the Pareto distribution with parameter 2.0=β  are 

displayed. We have done similar computations for the mean and one step 



Uniformity Inspired Bandwidth Selectors … 63 

pilot methods. The order of performance is fixed point pilot (best), one step 
pilot and the mean bandwidth method, but the difference between the 

methods is slim. Table 4 shows that the indirect 2L  methods do a pretty good 
job on this example. 

6. The 1L  Approaches 

The distance considered in this section is the Wasserstein metric. Let ,1G  

2G  be two distribution functions. The Wasserstein distance ( )Wd  between 

1G  and 2G  is defined by 

( ) ( ) ( )∫ −− −=
1

0
1

2
1

121 ., duuGuGGGdW  

An interesting property of this distance is the following equality (see, for 
instance, Shorack and Wellner [13]) 

( ) ( ) ( )∫ −= ,, 2121 dxxGxGGGdW  

this is why we consider the methods based on this metric to be both indirect 

and direct 1L  approaches. We have that 

( ) ( ( ) ) ( ( ) ) ,1ˆ,ˆ
1
∑
=

−=
n

i
iihnhW XFXFnVVd  

this equality is due to the fact that the order statistics of ( ) ( )nhh XFXF ...,,1  

are ( ( ) ) ( ( ) )nhh XFXF ...,,1  and those of ( ) ( )nXFXF ...,,1  are ( ( ) ) ...,,1XF  

( ( ) ).nXF  As in Section 4, we introduce a modified version of the distance 

.Wd  Using the weight function W, this new measure of accuracy Wd  is 

given by 

( ) ( ( ) ) ( ( ) ) ( ( ) )∑
=

−=
n

i
iiihnhW XWXFXFnVVd

1
.1ˆ,ˆ  
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In setting as usual 

( ) ( ) ( ) ( ),1

1
∑
=

−=
n

i
iiih XWXFXFnhAAE  

it is obvious that 

 ( ) ( ).ˆ,ˆ hAAEVVd nhW =  (19) 

To continue, let us introduce the following quantities 

( ) ( )( ( ) ) ( ( ) ) ( ( ) ),
1ˆ,

1
∑
=

− −=
n

i
iii

i
hnhW XWXFXFnVVd  

( ) ( ) ( ) ( )∑
=

− −=
n

i
iii

i
h XWXFXFnhAAE

1

1  

as above, we have: 

 ( ) ( ).ˆ, hAAEVVd nhW =  (20) 

To continue, let us observe that (see the definition of nV  in equation 

(16)) 

( ) ( )( ( ) ) ( ) ,1,
1
∑
=

− −=
n

i
ii

i
hnhW UXFnVVd  

where ( ) ( )nUU ...,,1  are the order statistics of ....,,1 nUU  So, the associated 

distance ( )nhW VVd ,  is given by 

( ) ( )( ( ) ) ( ) ( ( ) )∑
=

− −=
n

i
iii

i
hnhW XWUXFnVVd

1
.1,  

We will assess the methods based on the 1L  distance by simulations. The 
example considered is the standard normal distribution ( ).1,0N  The kernel 

used is the Epanechnikov given in equation (18). As in Section 5, the 1L  
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methods work well whether the weight function is compactly supported or 
not; in the simulation below .1=W  Let us specify the notations used to 
present our results: 

0wh  is the minimizer of ( ) ( ) ( );1withˆ,ˆ == WhAAEVVd nhW  

1wh  is the bandwidth obtained by the median bandwidth method with 

;Wdd =  

2wh  is the bandwidth obtained by one step pilot bandwidth method with 

Wdd =  and the pilot bandwidth being ;1wh  

3wh  is the bandwidth obtained by fixed point pilot bandwidth method 

with Wdd =  and the pilot bandwidth being .1wh  

Figure 2 plots the “selection criterion” ( ( ) )1, ∗
nhW VVd  for the one step 

pilot bandwidth method with the true error ( ).ˆ,ˆ nhW VVd  

In Table 5 below, the results of the simulation study for the median 
bandwidth approach are summarized. It is clear from this table that the 
bandwidth obtained by this method is a good guess of 0wh (the  minimizer of 

( )),hAAE  because the values of ( )0whAAE  and ( )1whAAE  are of comparable 

magnitude in terms of mean, median and standard deviation. Similar 

computations were done for the other two ( )1L  methods. Surprisingly, the 

best method in terms of mean was the median bandwidth method followed by 
the one step bandwidth method, but there is no significant difference between 
the results obtained by the three methods. So, the performances over 

replications of the ( )1L  methods on the example are equivalent. However, the 

1L  approaches are more robust because the standard deviations are small 

compared to the means. This is not true for 2L  approaches. 
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Figure 2. ( )nhW VVd ˆ,ˆ  solid curve and ( ( ) )1, ∗
nhW VVd  dashed curve as 

functions of h for one sample, .300=n  

Table 5. Average absolute error for 1wh  and ;0wh  mean, median and 

standard deviation over 100 replications 

Median bandwidth method 

 ( )1whAAE  ( )0whAAE  

 mean median standard
deviation

mean median standard 
deviation 

200=n  0.01967 0.01832 0.00953 0.01805 0.01670 0.01008 

300=n  0.01620 0.01466 0.00741 0.01470 0.01365 0.00754 

500=n  0.01346 0.01226 0.00677 0.01230 0.01142 0.00697 

A. Proofs 

A.1. Proof of Theorem 1 

Let us recall that the definition of hV̂  is 

( ) { ( ( ) ) }.
1ˆ

1
∑
=

≤=
n

i
xXFh ihnxV 1  
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First, we will establish the following result: 

 ( ) ( ) 0ˆsup
..sa

h
x

xVxV →−
∈R

 (21) 

because it will be used in the proof of the theorem. We have 

( ) ( )
[ ]

( ) .ˆsupˆsup
1,0

xxVxVxV h
x

h
x

−=−
∈∈R

 

We know that (Kolmogorov-Smirnov statistic) that 

[ ]
( ) ( ( ) ) ( ( ) ) .1max,maxmaxˆsup

...,,1...,,11,0 ⎭
⎬
⎫

⎩
⎨
⎧

⎭⎬
⎫

⎩⎨
⎧ −−

⎭⎬
⎫

⎩⎨
⎧ −=−

==∈ n
iXFn

iXFxxV ih
ni

ih
ni

h
x

 

So to prove (21), it is enough to show that 

 ( ( ) ) 0max
..

...,,1

sa
ih

ni n
iXF →
⎭⎬
⎫

⎩⎨
⎧ −

=
 (22) 

and 

 ( ( ) ) .01max
..

...,,1

sa
ih

ni n
iXF →

⎭⎬
⎫

⎩⎨
⎧ −−

=
 (23) 

On the other hand, we have 

( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ) .n
iXFXFXFn

iXF iiihih −+−≤−  

It follows that 

( ( ) ) ( ) ( ) ( ) ( ) .supsupmax
...,,1

xFxFxFxFn
iXF n

x
h

x
ih

ni
−+−≤

⎭⎬
⎫

⎩⎨
⎧ −

∈∈= RR
 

The proof of (22) is completed using Proposition 1 and Glivenko-
Cantelli theorem. 

Using the same arguments as immediately above, we have 

( ( ) ) ( ) ( ) ( ) ( ) ;supsup1max
...,,1

xFxFxFxFn
iXF n

x
h

x
ih

ni
−+−≤

⎭⎬
⎫

⎩⎨
⎧ −−

∈∈= RR
 

this inequality allows us to obtain (23). 
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To continue, let us set 

( )( ) ( )∑
≠

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

ij

ji
h h

Xx
HnxF ;1ˆ  

we have 

( )( ) ( )( ) ( )∑
≠
=

−−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟
⎠
⎞⎜

⎝
⎛ −

−
=−

n

j

ji
h

i
h

ij

h
Xx

HnnxFxF
1

1
1

1ˆ  

( )
( )∑

≠
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟
⎠
⎞⎜

⎝
⎛

−
=

n

j

j

ij

h
Xx

Hnn
1

.1
1  

It follows that 

( )( ) ( )( ) .1ˆ
nxFxF i

h
i

h ≤− −−  

We also have 

( ) ( )( ) ( ) ( )

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=− ∑ ∑

= =

−

≠

n

j

n

j

jji
hh

ij

h
Xx

Hh
Xx

HnxFxF
1 1

1ˆ  

( ) ,1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= h

Xx
Hn

i  

therefore we get 

( ) ( )( ) .1ˆ
nxFxF i

hh ≤− −  

We then obtain 

( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) .2ˆˆ
nxFxFxFxFxFxF i

h
i

h
i

hh
i

hh ≤−+−≤− −−−−  
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To prove our Theorem 1, observe that 

( ) ( )
[ ]

( ) .supsup
1,0

xxVxVxV h
x

h
x

−=−
∈∈R

 

We have (Kolmogorov-Smirnov statistic) 

[ ]
( ) ( )( ( ) )

⎩
⎨
⎧

⎭⎬
⎫

⎩⎨
⎧ −=− −

=∈
,maxmaxsup

...,,11,0 n
iXFxxV i

i
hni

h
x

 

( )( ( ) ) .1max
...,,1 ⎭

⎬
⎫
⎭⎬
⎫

⎩⎨
⎧ −−−

= n
iXF i

i
hni

 

It is also obvious that 

( )( ( ) )
( )( ( ) ) ( ( ) ) ( ( ) ) n

iXFXFXFn
iXF ihihi

i
hi

i
h −+−≤− −−  

( ( ) ) n
iXFn ih −+≤ 2  

and 

( )( ( ) ) ( ( ) ) .121
n

iXFnn
iXF ihi

i
h

−−+≤−−−  

Putting everything together and using Kolmogorov-Smirnov statistic, we get 

( ) ( ) ( ) ( )xVxVnxVxV h
x

h
x

−+≤−
∈∈

ˆsup2sup
RR

 

and the proof of Theorem 1 is completed using (21). 

A.2. Proof of Theorem 2 

We have: 

( ( )( ( ) ) ( ) ) ( ( )( ( ) ) ( ( ) ))
22

ii
i

hii
i

h XFXFUXF −=− −−  

( ( )( ( ) ) ( ( ) )) ( ( ( ) ) ( ) )iiii
i

h UXFXFXF −−+ −2  

( ( ( ) ) ( ) )
2

ii UXF −+  
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( ( )( ( ) ) ( ( ) ))
2

ii
i

h XFXF −= −  

( ( )( ( ) ) [ ( )( ( ) ) ( )])ii
i

hi
i

h XXFEXF |−+ −−2  

( ( ( ) ) ( ) )ii UXF −⋅  

( [ ( )( ( ) ) ( )] ( ( ) )) ( ( ( ) ) ( ) )iiiii
i

h UXFXFXXFE −−|+ −2  

( ( ( ) ) ( ) ) .2
ii UXF −+  

It follows that 

( ) ( ) ( ) ( ) 1
2122 22ˆ,, ThCThCTVVdVVd nhMnhM +++=  

with 

( ) ( ( )( ( ) ) [ ( )( ( ) ) ( )]) ( ( ( ) ) ( ) ) ( ( ) ),
1

1

1 ∑
=

−− −|−=
n

i
iiiii

i
hi

i
h XWUXFXXFEXFnhCT  

( ) ( [ ( )( ( ) ) ( )] ( ( ) )) ( ( ( ) ) ( ) ) ( ( ) ),
1

1

2 ∑
=

− −−|=
n

i
iiiiii

i
h XWUXFXFXXFEnhCT  

( ( ( ) ) ( ) ) ( ( ) )∑
=

−=
n

i
iii XWUXFnT

1

2
1 .1  

Since 1T  is independent of h, Theorem 2 is a straightforward 

consequence of the following lemmas: 

Lemma 1. Under the conditions of Theorem 2, we have: 

( ( )) .01 =hCTE  

Lemma 2. Under the conditions of Theorem 2, there exists a random 
variable 2T  independent of h such that 

( ( ) )
( ( ))

.0
ˆ,2

2
2

→
−

nhM VVdE
ThCTE  
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A.2.1. Proof of Lemma 1 

It is enough to prove that [ ] ,0=ΓiE  where 

( ( )( ( ) ) [ ( )( ( ) ) ( )]) ( ( ( ) ) ( ) ) ( ( ) ).iiiii
i

hi
i

hi XWUXFXXFEXF −|−=Γ −−  

We have: 

−+ Γ−Γ=Γ iii  

with 

( ( )( ( ) ) [ ( )( ( ) ) ( )]) ( ( ) ) ( ( ) ),iiii
i

hi
i

hi XWXFXXFEXF |−=Γ −−+  

( ( )( ( ) ) [ ( )( ( ) ) ( )]) ( ) ( ( ) ).iiii
i

hi
i

hi XWUXXFEXF |−=Γ −−−  

We have 

[ ( )] ,0=|Γ+ ii XE  

and using independence between ( ) niiU ...,,1=  and ( ) ,...,,1 niiX =  we get 

[ ] [( ( )( ( ) ) [ ( )( ( ) ) ( )]) ( ( ) )] ( ( ) ) .0=|−=Γ −−−
iiii

i
hi

i
hi UEXWXXFEXFEE  

It follows that 

[ ] [ ] [ ] .0=Γ−Γ=Γ −+
iii EEE  

This ends the proof of Lemma 1. 

A.2.2. Proof of Lemma 2 

Let us set 

[ ( )( ( ) ) ( )] ( ( ) ),iii
i

hi XFXXFE −|=γ −  

( ( ) ) ( ).iii UXF −=Δ  

First, we are going to split iγ  into “simpler” components. Let ( )vuf jk ,      

be the joint density of ( ( ) ( ) )kj XX ,  ( ),kj <  we have (see, for instance, 
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Arnold et al. [2]) 

( ) ( ) ( ) ( )[ ] ( )[ ]
( ) ( ) ( ) ( ) ( )vfufknjkj

vFuFvFuFnvuf
knjkj

jk !!1!1
1!,

11

−−−−
−−=

−−−−
 

for .+∞<≤<∞− vu  The density jf  of ( )jX  is given by 

( ) ( ) ( )[ ]
( ) ( ) ( ).!!1

1! 1
xfjnj

xFxFnxf
jnj

j −−
−=

−−
 

Therefore, for ,0 kj <  the conditional density kj0ϕ  of ( )kX  knowing ( )0jX  

is given by 

( ( ) )00 jkj Xy |ϕ  

( ( ) )
( ( ) )

( ( ) )yXXf
yXf

j
jj

jkj ≤= 0
00

00 ,
 

( ( ) ) [ ( ) ( ( ) )] ( )[ ]
( ) ( ) ( ) ( ( ) ) ( )yfXfknjkj

yFXFyFXFn
j

knjk
jj

j

0

0
00

0

!!1!1
1!

00

11

−−−−
−−

=
−−−−

 

( ) ( )
( ( ) ) [ ( ( ) )] ( ( ) )0

0
00

0 1!
!!1

1
00

j
jn

jj
j XfXFXFn

jnj
−− −

−−
×  

( )
( ) ( )

[ ( ) ( ( ) )] ( )[ ]
[ ( ( ) )]

( ).
1

1
!1!

!
0

0

0
0

1

0
0 yf

XF

yFXFyF
jkkn

jn
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j

knjk
j

−

−−−

−

−−
−−−

−
=  

For ,0jk <  the conditional density 0kjϕ  of ( )kX  given ( )0jX  is given 

by 

( ( ) )00 jkj Xy |ϕ  

( ( ) )
( ( ) )

( ( ) )0
00

00 ,
j

jj

jkj XyXf
Xyf

≤=  

( ) [ ( ( ) ) ( )] [ ( ( ) )]
( ) ( ) ( ) ( ) ( ( ) )0

0
0

0
0

!!1!1
1!

00

11

j
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j
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In the sequel, we will need the values of the quantities 
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10
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n

jk
jkjj XyXy  

( ( ) ) ( ( ) )∑
−
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000 .
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k
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To compute these quantities, we are going to use the following obvious 
binomial identity. Let ., R∈qp  Then we have: 
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We have: 
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The binomial identity (equation (24)) is used to obtain the last equality 
above. In the same spirit, we have: 
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Observe that 
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0000
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where 
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We have that 
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We can then split +μ
0j

 as follows: 
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This quantity can further be split as 
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We get the following decomposition of :
0
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In the same spirit, we have: 
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We can also split −μ 0j  as follows: 
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This quantity can be rewritten as 
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From this last equality, we see that −μ 0j  has the following decomposition: 
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where 

( )
( ) ( ( ) )

( ) ( )( ) ,1
0 0

0
0

0 ∫ ∞−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

−−
=α

jX j

j
j dyyfh

yX
HXnFn

jn  

( ( ( ) )) ( ( ) )
( ( ) )

( ) ( ) ( ( ) )
( ) ,

ˆ
0

0
0

0

00
0 ⎥

⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −−
=β ∫ ∞−

− jX
j

j

j

jjn
j XFdyyfh

yX
HXF

XFXFV
 

( ) ( )( ) ,0 0
0 ∫ ∞−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=θ

jX j
j dyyfh

yX
H  

( ( ( ) )) ( ( ) ).ˆ
000 jjnj XFXFV −=τ  

Note that 0jτ  is independent of h. To sum up, at this stage, we have: 
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with 
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and note that as stated in Lemma 2, 2T  is independent of h. So, to prove 

Lemma 2, it is enough to prove the following Lemma 3. 

Lemma 3. Under the conditions of Theorem 2, we have 
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A.2.3. Proof of Lemma 3 

(i) Case :1=k  We have: 
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where from hereafter C denotes a generic constant. Therefore, we have: 
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and using Jensen’s inequality, we get 
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The proof of this case is completed using the following Lemma 4, whose 
proof is given below. 

Lemma 4. We have: 
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( ) ( ( ) ) ( )ii UXFanF
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and the proof is completed using exactly the same steps as in the case .1=k  

(iii) Case :3=k  To prove this case, we will need Proposition 2 which is 

a consequence of Dvoretzky et al. [5] theorem. 

Proposition 2. There exists a constant 0κ  such that 

(
[ ]

( ) ( ) ) .ˆsup 02

1,0 nxVxVE n
x

κ
≤−

∈
 

Observe that 

( ) ( ) ( ) ( )
( )( )∫

∞+ +∞

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −

i i
X X

ii yFh
yX

Hdyyfh
yX

H  

( ) ( )
( )∫
∞+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

iX
i dyyFh

yX
Kh

1  

( ) ( )
( ( ) )

( )∫
∞+

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

iX
ii XF

dyyFh
yX

Kh .2
1  

This quantity can be rewritten as 
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And, since f is assumed bounded, we have 
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It then follows from Proposition 2 and Lemma 4 that 
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and this equation completes the proof of this case. 
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(iv) Case :4=k  Recall that 
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It follows that 

( ) ( ) ( ( ) )
( )

∫ ∞−
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −iX
i

i XFdyyfh
yX

H  

( ) [ ( ) ( ( ) )]
( )

∫ ∞−
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=

iX
i

i dyXFyFh
yX

Kh
1  

( )[ ( ( ) ) ( ( ) )]∫
∞−

−−=
0

duXFuhXFuK ii  

( ) ( ( ) )∫
∞−

ν−−=
0

.duuhXfuuKh i  

We thus have: 

( ) ( ) ( ( ) )
( ) .ChXFdyyfh

yX
HiX

i
i ≤−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
∫ ∞−
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From this inequality, we get: 

( ( ) )
( ( ) ) ( ( ( ) ))

( ( ) )
( ( ) )ii

i

ini
iii XWXF

XFVXF
ChXW Δ

−
=Δβ−

ˆ
 

( ( ) ) ( ( ( ) ))
( ) ( ( ) )ii

ini XWaF
XFVXFCh

Δ
−

≤
0

ˆ
 

( ( ) ) ( ( ) ) ( ( ) ).ˆ iiini XWXFVXFCh Δ−≤  

So, the remainder of the proof for this case follows exactly the same 
steps as that of the case .3=k  

(v) Case :5=k  Let 

( )
[ ]

( ) ( ) ,sup
00,
∫ −⎟

⎠
⎞⎜

⎝
⎛ −=ω

∈
xFdyyfh

yxHh
bax

 

to prove this case, we will need the following Proposition 3 which is a 
consequence of Taylor expansion of order 2 and the fact that f ′  is assumed 

bounded. 

Proposition 3. Under the conditions of Theorem 2, there exists a 
constant 1κ  such that 

( ) .2
1hh κ≤ω  

Since 

( ( ) ) ( ),hCXW ii ω≤θ  

we have: 

( ) ( ) ∑
=

Δω≤
n

i
inhChhCT

1

5,2 .1  

It follows that 

( ) ( ) ( ( ( ) ) ( ) )∑
=

−ω≤
n

i
ii UXFEnhChCTE

1

25,2 1  
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( )
( )16 +
ω=
n

hC  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

n
hO

2
 

using Lemma 4 and Proposition 3. This last equation completes the proof of 
this case. 

A.2.4. Proof of Lemma 4 

Because of independence and equidistribution, we have: 

( ( ( ) ) ( ) ) ( ( ) ) ( ( ) ) ( ) ( )
222 2 iiiiii EUEUXEFXEFUXFE +−=−  

( ( ) ( ( ) ) )222 ii EUEU −=  

( ( ) ).Var2 iU=  

It is known that ( )iU  is a ( )1, +− iniB  (Beta distribution with parameters i 

and ,1+− in  see, for instance, Arnold et al. [2]) random variable. Therefore, 

( ( ) )
( )

( ) ( )
.

21
1Var 2 ++

+−=
nn

iniU i  

It follows that 

( ( ) ) ( )∑
=

+
=

n

i
i n

nU
1

16Var  

and Lemma 4 is a consequence of this equality. 
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