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Abstract 

Using the method of “marginals of geometric inequality”, we obtain 
the extended Prékopa-Leindler inequality for the geometric mean. 

1. Introduction 

The method of “marginals of geometric inequality” is very effective                    
to obtain the functional inequalities from different types of geometric 
inequalities, and has been extensively applied in Functional Analysis and 
Convex Geometry (see [2-8], [10]). 

This method can be simply explained as follows. Given a compact set 
nK R⊂  and a k-dimensional subspace ,nE R⊂  the marginal of K on the 

subspace E is the functional [ )∞→ ,0:, Ef EK  defined as 

( ) ( [ ]),,
⊥

− += ExKVolxf knEK ∩  

where ⊥E  is the orthogonal complement to E in ,nR  and knVol −  is the 
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Lebesgue measure on the affine subspace .⊥+ Ex  A trivial observation is 
that 

( ) ( ) ∫ ∫≥⇒≥
E E EBEAnn dxfdxfBvolAvol .,,  

Thus, geometric inequalities give rise to certain functional inequalities in 
lower dimension. 

Applying the method of marginals, Klartag [11] proved some well-
known functional inequalities, such as the pL  logarithmic Sobolev 

inequality, the Prékopa-Leindler inequality, and the functional version of 
Minkowski inequality and the Alexandrov-Fenchel inequality. Another 
application of the “marginals of geometric inequality” is the functional 
version of Blaschke-Santaló inequality and its inverse. Appropriately taking 
marginals of both sides of Blaschke-Santaló inequality [12], the following 
inequalities are established (see [1, 7, 8, 10]): There exist universal constants 

0, >Cc  such that for any dimension n and for any [ ),,0: ∞→nf R  an 

even log-concave function with ∫ ∞<< n fdx
R

,0  we have 

,
1

Cdxffdxc n
n n ≤⎟

⎠
⎞

⎜
⎝
⎛< ∫ ∫R R

D  

where Df  is the polar of f defined by 

[ ( )].inf , yfef yx

y n
−

∈
=

R

D  

The right equality holds if and only if f is a certain Gaussian function. 

Using the method of “marginals of geometric inequality”, in this paper, 
we will establish the extended Prékopa-Leindler inequality for the geometric 
mean. 

Theorem 1. Let [ ) mif n
i ≤≤∞→+ 0,,0: R  be integrable functions 

and 0>μi  such that ∑ = =μm
i i1 .1  If 
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( )∏ ∏ ∏
= = =
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≤
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i

m

i

m

i
iniinii

iii xxfxxf
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101 ,...,,...,,  

then 

∏ ∫∫
=

μ

++
≤⎟

⎠
⎞

⎜
⎝
⎛

m

i
i n

i

n dxfdxf
1

0 .
RR

 

Next, we have another version of the extended Prékopa-Leindler 
inequality. 

Corollary 1.1. Let [ )∞→+ ,0:~ n
if R  be integrable functions, and 0>μi  

such that ∑ = =μm
i i1 .1  Define [ )∞→+ ,0:~ nh R  by 

( ) ( )∏
=

μ

=∏ μ
=

m

i
ii

xx
xfxh i

i
i 1

~sup~  

for all .nx +∈ R  Then we have 

( ) ( )∫ ∏ ∏ ∫ ∏
+ += =

μ

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
≥n

i

n

n

j

m

i

n

j
jij dxxxfdxxxh

R R
1 1 1

.~~  

2. Proofs of the Main Results 

Let 0,, >smn  be integers, and let [ )∞→ ,0: nf R  be a function. The 

support of f, denoted by Supp(f), is the closure of { ( ) }.0; >∈ xfx nR  We 

say f is s-concave if Supp(f) is compact, convex and sf
1

 is concave on 

Supp(f). Note that an s-concave function is continuous in the interior of its 
support [13]. 

The classical Brunn-Minkowski inequality (see [14]) states that for any 

non-empty compact sets ,, mBA R⊂  
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( ) ( ) ( ) ,
111
mmmmmm BVolAVolBAVol +≥+  (2.1) 

where BA +  is the Minkowski sum defined by { }.,: BbAabaBA ∈∈+=+  

For any function [ ),,0: ∞→nf R  define 

( ) ( ) ( ) ,,:,
11

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

κ≤∈×∈=
−

xfyfSuppxyx sss
sn

f RRK  (2.2) 

where 
⎟
⎠
⎞⎜

⎝
⎛ +Γ

π=κ
12

2

s

s
s  is the volume of the s-dimensional Euclidean unit 

ball. If the function f is measurable, so is the set .fK  In addition, the set fK  

is convex if and only if f is s-concave. From the definition of ,fK  we have 

( ) ( )∫ ∫=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
κκ=
−

+ n n fdxdxxfVol
s

ssssfsn R R
.

11
K  (2.3) 

For functions [ ) ,0,1,,0: >λ≤≤∞→ mif n
i R  we define 

[ ]( ) ,⎟
⎠
⎞⎜

⎝
⎛
λ

λ=×λ xfxf s
s  (2.4) 

( ) [ ] ( )
( )

( )

s
m

i
ii

fSuppx
mss

m

i
is sxfxffxf

ixx
ii ⎟

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=⊕⊕=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⊕ ∑∑

=∈=
∑=

1
1

1

1sup"   (2.5) 

whenever ( )∑∈ .Supp ifx  It is easy to verify that 

{ }fff yys KKK ∈λ=λ=×λ :  (2.6) 

and 

∑
=

⊕
=

∑ =

m

i
ff im

i is
1

.
1

KK  (2.7) 
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Lemma 2.1 (Hölder’s inequality [9]). Let ,1,0 mii ≤≤>μ  and 

∞<< jp1  such that ∑ = =q
j jp1 .11  Then for ,R∈ija  

∑ ∏ ∑∏
= = ==

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
μ≤⎟

⎟

⎠

⎞

⎜
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⎝

⎛
μ

m

i

q

j

pm

i

p
iji

q

j
iji

j
jaa

1 1

1

11
.  

Taking marginals of both sides of the Brunn-Minkowski inequality (2.1), 
we obtain the following lemma. 

Lemma 2.2. For ,1 mi ≤≤  let [ )∞→ ,0:, n
i hf R  be integrable 

functions, and s, 0>μi  be real numbers. Assume that for any ,n
ix R∈  

( ) .
1

1

1

sm

i
sii

m

i
ii xfxh

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
μ≥

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
μ ∑∑

==

 (2.8) 

Then 

∑ ∫∫
=

++
⎟
⎠
⎞

⎜
⎝
⎛μ≥⎟

⎠
⎞

⎜
⎝
⎛

m

i

sn
ii

sn
nn dxfhdx

1

11

.
RR

 (2.9) 

Proof. Assume that s is an integer. By (2.6) and (2.7), the Brunn-
Minkowski inequality (2.1) for ( )sn + -dimensional sets implies that 

[ ] ( )∑
=

++
+

×μ⊕
∗
+ μ≥⎟

⎠
⎞

⎜
⎝
⎛

∑ =

m

i
snfsni

sn
fsn im

i isis
VolVol

1

1
1

,
1

KK  

where ∗
+ snVol  is outer Lebesgue measure. Using (2.3), we obtain that 

[ ] ∑ ∫∫ ∑
=

++∗

=
⎟
⎠
⎞

⎜
⎝
⎛μ≥

⎟
⎟
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⎞
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sn
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i
isis nn dxfdxf

1

11

1
,

RR
 (2.10) 
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where ∫
∗

is the outer integral. Since [ ]∑ = ×μ⊕≥ m
i isis fh 1  pointwise, it 

follows that ∫ ∫
∗

=n n hdxhdx
R R

.  Thus, this proves the inequality (2.9) for 

integer s. 

Next, assume that q
ps =  is a rational number, and 0, >qp  are integers. 

By Lemma 2.1 and (2.8), for any ,1,1, qjmix n
ij ≤≤≤≤∈ R  we have 

( ) ( )∑ ∏ ∏ ∑∑∏
= = = ===

⎟
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⎝
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.  

Since qs is an integer, the above argument implies that 

( )snqq

j
j

m

i
iji

snm

i
ii nqn dxxhdxxh
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This completes the proof. � 

If ∑ =μ ,1i  letting s tend to infinity, then we obtain the extended 

Prékopa-Leindler inequality as follows. 

Lemma 2.3. For ,1 mi ≤≤  let [ )∞→ ,0:, n
i hf R  be integrable 

functions, and 0>μi  such that ∑ = =μm
i i1 .1  If 
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Proof. Let .1>M  The basic observation is that 
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uniformly for each ( ) ....,,1,1 miMxfM ii =<<  Therefore, for any ,0>ε  

there exists an ( ),,0 Ms ε  such that whenever ( )Mss ,0 ε>  and ( )ii xfM <1   

M<  for all i, 
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Then Lemma 2.2 implies that for ( ),,,0 0 Mss ε>>ε  
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Since if  are integrable, the sets nM
fi

K R⊂  are bounded, and so is 

∑μ .M
fi i

K  Letting ε  tend to zero, and then M tends to infinity. Then we 

have 

∫ ∏ ∫
=

μ

⎟
⎠
⎞
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⎝
⎛≥n

i

n

m

i
idxfhdx

R R
1

.  � 

The following theorem can be viewed as extended Prékopa-Leindler 
inequality for the geometric mean. 

Theorem 2.4. Let [ ) mif n
i ≤≤∞→+ 0,,0: R  be integrable functions 

and 0>μi  such that ∑ = =μm
i i1 .1  If 
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Proof. For ( ) ,...,,1
n

inii ttt R∈=  define 

( ) ( ) .0,...,,...,, 111 mieeefttg
n
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∑ =  
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Moreover, 
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Hence, the results follow from Lemma 2.3. � 

For any functions [ ) ,1,,0: mif n
i ≤≤∞→R  we define their Asplund 

product as (see [1]) 
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Then Lemma 2.3 can be read as follows: For ,1 mi ≤≤  let [ )∞→ ,0: n
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For ,nx R∈  let 

( ) ( ) .1,...,,~ 1 mieefxf nxx
i ≤≤= −−  
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Then for every ,nt +∈ R  we have 
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In (2.11), setting jx
j ey −
=  for ,...,,1 nj =  we obtain 

Corollary 2.5. Let [ )∞→+ ,0:~ n
if R  be integrable functions, and 
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