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Abstract

Using the method of “marginals of geometric inequality”, we obtain
the extended Prékopa-Leindler inequality for the geometric mean.

1. Introduction

The method of “marginals of geometric inequality” is very effective
to obtain the functional inequalities from different types of geometric
inequalities, and has been extensively applied in Functional Analysis and
Convex Geometry (see [2-8], [10]).

This method can be simply explained as follows. Given a compact set

K « R" and a k-dimensional subspace E — R", the marginal of K on the
subspace E is the functional fx g : E — [0, ) defined as

fi g (X) = Vol (K N[x + ET]),

where E1 is the orthogonal complement to E in R", and Vol,_, is the
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Lebesgue measure on the affine subspace x + EL. A trivial observation is
that

vol,(A) = vol, (B) = JE fa gdx > J'E f £dx.

Thus, geometric inequalities give rise to certain functional inequalities in
lower dimension.

Applying the method of marginals, Klartag [11] proved some well-
known functional inequalities, such as the L, logarithmic Sobolev

inequality, the Prékopa-Leindler inequality, and the functional version of
Minkowski inequality and the Alexandrov-Fenchel inequality. Another
application of the “marginals of geometric inequality” is the functional
version of Blaschke-Santal6 inequality and its inverse. Appropriately taking
marginals of both sides of Blaschke-Santalé inequality [12], the following
inequalities are established (see [1, 7, 8, 10]): There exist universal constants

¢, C > 0 such that for any dimension n and for any f : R" — [0, «), an

even log-concave function with 0 < IR” fdx < oo, we have

1
c < UR“ fox f°o|xjﬁ <C,

where f° is the polar of f defined by

£° = inf [/ f(y)]
yeRn

The right equality holds if and only if f is a certain Gaussian function.

Using the method of “marginals of geometric inequality”, in this paper,
we will establish the extended Prékopa-Leindler inequality for the geometric
mean.

Theorem 1. Let f; : RT — [0, ), 0 <i <m be integrable functions

and pj >0 suchthat " pj = 1. If
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m m m
H fi (X1, ey Xip)H < fO(H Xt Hx#{},
i=1 i=1 i=1
then

[ fidx)ui < IRQ fodx.

il
i=1 *

Next, we have another version of the extended Prékopa-Leindler
inequality.

Corollary 1.1. Let F, :R? — [0, «0) be integrable functions, and p; > 0

such that Z:il u; = 1. Define h: R" — [0, «) by

h(x)= sup H i ()

x=[ " i=1

forall x € R". Then we have

n m n Hi
. F\(x) X;dx > . ﬂ(x) xidx | .
ot oo 1 1o

2. Proofs of the Main Results

Let n, m, s > 0 be integers, and let f : R" — [0, ) be a function. The

support of f, denoted by Supp(f), is the closure of {x € R"; f(x) > 0}. We

1
say f is s-concave if Supp(f) is compact, convex and fS$ is concave on

Supp(f). Note that an s-concave function is continuous in the interior of its
support [13].

The classical Brunn-Minkowski inequality (see [14]) states that for any

non-empty compact sets A, B < R™,
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1 1 1
Vol (A + B)m = Vol (A)m + Vol (B)m, (2.1)
where A + B is the Minkowski sum defined by A+B={a+b:ae A beB}.
For any function f : R" — [0, ), define

11
Ki = {(x, y) e R" xR® : x e Supp(f), | y| < K;ng(X)}, (2.2)

s/2

T
S

ball. If the function f is measurable, so is the set /C¢. In addition, the set K¢

where kg = is the volume of the s-dimensional Euclidean unit

is convex if and only if f is s-concave. From the definition of ¢, we have

11

Vol, (K¢ ) = j . KS{K;ng(X)J dx = J' o i (2.3)

For functions f; : R" — [0, ), 1< i< m, A > 0, we define

[A x5 ](x) = %Sf(%), (2.4)
S
m m 1
{Z@s fi}(x) = [ @ fn]()=| sup D fitk)g| (25
i=1 xj eSupp(fi) =1
x=2xi
whenever x € > Supp(f;). Itis easy to verify that
Kixgt =Mt ={Ay 1y e K¢} (2.6)

and

m
K =) K. 2.7
ST o0t 21 f 27)
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Lemma 2.1 (Holder’s inequality [9]). Let p; >0,1<i<m, and

1< pj < o such that Z?:lpij = 1. Then for ajj € R,

1

i{“‘ Jq1| %j l} = ﬁ(i“il aj ij}p_j-

i=1 j=1\i=1

Taking marginals of both sides of the Brunn-Minkowski inequality (2.1),
we obtain the following lemma.

Lemma 2.2. For 1<i<m, let fj, h: R" - [0, ©) be integrable
functions, and s, p; > 0 be real numbers. Assume that for any x; € R",
S

(2.8)

Then

TR 1
n+sS n+s
( j i, hdxj > ;“i(jk” fidxj . (2.9)
Proof. Assume that s is an integer. By (2.6) and (2.7), the Brunn-

Minkowski inequality (2.1) for (n + s)-dimensional sets implies that

1

n 1
Vol® . | K s > Vol . (K¢ )nss,
n+s( Z{il@s[uixs fi]) é“l n+s( fj )n+s

where Vol ¢ is outer Lebesgue measure. Using (2.3), we obtain that

1 1

[J‘];n g@s (i xs fi]dXJrHS z g“i(IRn fidXJn_H’ (2.10)
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where I* is the outer integral. Since h > Y @ [u; x, fi] pointwise, it

follows that JR” hdx = J.];” hdx. Thus, this proves the inequality (2.9) for
integer s.

Next, assume that s =Ep is a rational number, and p, g > 0 are integers.

By Lemma 2.1 and (2.8), for any Xjj € R" 1<i<m 1< j<aq, wehave

1 1
1Yo 4 (o s
Z u.Hf(X”)qs <H ZH.f(Xu)qs Sjl_[h Zuixij :
=1\ J=q j=1\i=1 j=1 \i=1
Since gs is an integer, the above argument implies that
1 1
n+s q m q(n+s)
U B (Z “'X']dXJ - “ anH'{Z HiXu‘JdXiJ
j=1 \i=1
1
m q(n+s)
> Z( I - H f; (x,J)dx,JJ
=1
= Z“iUR” fi(X; )dxi) :
i=1
This completes the proof. O

If zui =1, letting s tend to infinity, then we obtain the extended

Prékopa-Leindler inequality as follows.

Lemma 2.3. For 1<i<m, let fj, h: R" > [0, ©) be integrable

functions, and p; > 0 such that Z:il“i =1 If
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h[i Hixij > lm[ fi(x )M,
i1 i1

then

j hdx > HU fdxj

Proof. Let M > 1. The basic observation is that
m 1 s s—>o0 M )
D owifioq)s | > [T oo
i=1 i=1

uniformly for each i < fij(x) < M, i =1, .., m Therefore, forany ¢ > 0,

there exists an sy(e, M), such that whenever s > so(g, M) and — < fij(x)

<M foralli,

m m 1\®
h[z Hixi} +te2 [Z Hi fi(xi)E] :
i=1 i=1
Denote
fi M

KM Z{Xi ERnZ 1 < fi(Xi)<M}.

Then Lemma 2.2 implies that for ¢ > 0, s > sp(g, M),

1 n+s

JZ v (h(x) +g)dx > Z ui[IKM fidXJn+s

K i=1
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Since f; are integrable, the sets K'VI < R" are bounded, and so is

ZuiKM Letting ¢ tend to zero, and then M tends to infinity. Then we
I

have

j hdx>HU fdxj. ]

The following theorem can be viewed as extended Prékopa-Leindler
inequality for the geometric mean.

Theorem 2.4. Let f; : RT — [0, ), 0 <i < m be integrable functions

and p; > 0 such that Zimﬂ“i =1 If

m m m
H fi (X1 ooy Xip)H < fO(H Xip' . x“'}
i=1 i=1 i=1
then
m .
fdx < fodx.
[1(Jyg e < g

i=1 +

Proof. For t; = (ti1, ..., tiy) € R", define

f tin 02 1 li -
gi(tig, - tin) = fi(€™, ..., eM)e=I="  0<i<m

Therefore, we get
JR“ 9i (tig, v tin)dtj = IRH fie', ... t”‘)e = it

= J.Rn fi(xill veny Xin)dxi'

+

Moreover,
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m m 'Zn o
H 9i(tig, .-, tin)H = H fi(elit, ..., elin )i M4 =t
i=1 i1

IA

m n
fo(ezimluitil e ZigMitin jeZiﬂZj:l“itij

= fo[ez:nluitil, ez:nluitinjezjl[ziluitij J

go{iu 2 ﬁmtm}

i=1 i=1
Hence, the results follow from Lemma 2.3. []

For any functions f; : R" - [0, ©), 1 <i < m, we define their Asplund
product as (see [1])

[H*fi}(x) = (e +fm) () = sup [ fiC%):

i1 X=2_Xj =1

Define

_ A X
A F(0) = f (x)
Then Lemma 2.3 can be read as follows: For 1 <i <m, let f; R" > [0, )

be integrable functions, and p; > 0 such that zim:l“i =1. Then

IR” hi*(ui }(X)dXZﬁU fdxj : (2.12)

For x e R", let

fi(x)=f(e™, ., e ) 1<i<m
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Then for every t € R", we have

m

[T+wi-f)|®=su [T @)

i=1 t=[ Tt i=1
In (2.11), setting y; = e "I for j =1, ..., n, we obtain

Corollary 2.5. Let ﬂ :R" — [0, ©) be integrable functions, and

i > 0 such that Ztl uj = 1. Define h: R! — [0, ) by

h(x)= sup H i ()

x=[ T i=1
forall x € R. Then we have

- n m - n H
IR” h(x) ijdx > H IR” fi(x) ijdx :
* j=1 i=1 * j=1
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