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Abstract 

This paper introduces and discusses how the concept of multiplicity 
can be used to aid in the construction or analysis of the graphs of 
rational functions. Many textbooks for college algebra or precalculus 
present a procedure that eventually involves plotting points. The 
insight provided here is based on the concepts ranging from factoring 
to multiplicity of roots of a polynomial. This makes the process of 
analyzing graphs of rational functions cumulative as well as brief. 

1. Introduction 

Rational functions in the real plane can be a source of difficulty for 
students in college algebra and precalculus classes, in part due to continuing 
difficulty with rational expressions. The analysis of these functions in such 
classes can also be computationally exhausting. Here, a presentation of 
results to help ease this computational burden is given. These results build 
upon pre-existing results from polynomials and functions. This lends 
credence to deeper connections between polynomial functions and rational 
functions. These connections can also provide solidity and application of 
students’ understanding of polynomial function ideas. 



Jeremy Lane 160 

The main purpose of this paper is to demonstrate how the multiplicity of 
the roots of polynomials can be used to aid in sketching graphs of rational 
functions. Nonlinear asymptotes and holes are also part of the analysis. 
Several claims on the graphs of rational functions in the real plane are stated 
and proved. This in turn enhances the comprehension of concepts involving 
polynomials. 

Section 2 of this paper introduces the theorems that we will apply to aid 
in the sketching of the graphs. Many popular textbooks such as [1] and [4] 
propose guidelines for graphing these functions that usually involves plotting 
points or using a symmetry argument. With the increased use of graphing 
calculators in algebra and precalculus courses, these guidelines are falling out 
of favor. There is also a tendency of students to view rational functions as a 
completely separate type of function from polynomials. The upcoming 
theorems and application of mutliplicity will demonstrate a strong connection 
between these two types of functions as well as provide the instructor with 
applications of multiplicity. The third section of this paper demonstrates the 
use of these ideas with several examples. The last section of the paper has 
concluding remarks. 

2. Theorems 

A rational function is a function formed by the division of two 
polynomials. The numerator polynomial ( )xn  is assumed to be non-zero and 

the denominator polynomial ( )xd  is also assumed to be at least a first-degree 

polynomial to avoid degeneracies. We will make this assumption here as 
well. With rational functions, as with any other function, a breakdown and 
analysis usually follows the introduction. The domain and range of rational 
functions is usually discussed as well intercepts. Asymptotes are usually 
discussed after these topics. In many textbooks, they omit holes and 
nonlinear oblique asymptotes in the discussion. This paper does not omit 
these topics. 

The Sign Preserving Property of Continuous Functions from calculus is 
very important to our analysis here. It is stated as follows: Let f be a function 
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defined on an interval ( )ba,  and suppose that ( ) 0≠cf  at some ( )bac ,∈  

where f is continuous. Then there is an interval ( ) ( )bacc ,, ∈δ+δ−  about 

c, where f has the same sign as ( )cf  for some 0>δ  [3]. This means that if 

we know a function is continuous and we know the sign of an output value, 
then there is an interval around this input value where all the function values 
share the same sign. This is usually proven in calculus or analysis courses, 
but explains why test points work when determining the sign of continuous 
functions between roots. The following ideas are also noteworthy: 

• If a rational function has a horizontal asymptote, then it cannot have 
an oblique asymptote. Also, if a rational function has an oblique 
asymptote, then it cannot have a horizontal asymptote. This follows 
directly from the Trichotomy Principle of Real Numbers. 

• A rational function has exactly one horizontal or exactly one oblique 
asymptote. This follows from the uniqueness of quotients in the 
Division Algorithm. 

A hole may occur in a graph of a rational function when it is not in 
lowest terms. If the rational function has a common factor in the numerator 
and denominator, then usually it is canceled and the analysis proceeds. When 
graphing such rational functions, though, extra care must be taken to preserve 
the domain of the original rational function. A rigorous definition of a hole, 
specific to rational functions and without the use of limits, can be stated as      
a point ( )ba,  that occurs when ax =  is a root of both the numerator 

polynomial and the denominator polynomial such that the multiplicity of this 
root in the numerator is greater than or equal to the multiplicity of this root in 
the denominator. 

In a rational function, the x-coordinate of the hole is the root and the 
y-coordinate is the result of substituting the root a into the reduced form of 
the rational function. Now, if the multiplicity of a root is greater in the 
denominator than the same root in the numerator, then the root represents the 
location of a vertical asymptote. It is not the x-coordinate of the location of a 
hole in the graph. The use of multiplicity when determining holes or vertical 
asymptotes is done after the rational function is reduced. 
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The last topic to introduce is the notion of critical numbers. Here we 
define a critical number as an input value where a change in sign of the 
output value may occur. It constitutes a root to a function, but whether the 
graph crosses the x-axis or not is not determined. This is a common notion 
from calculus courses when applying the first derivative test. Now, we 
introduce some lemmas that will aid us in establishing the connection 
between multiplicity of roots and the graphs of rational functions. 

First Signs of Rational Functions Lemma. Let ( )
( )

,1
xd

xR =  where 

( )xd  is a non-constant polynomial. Then ( )xd  and ( )xR  have the same sign 

over the same intervals on the real axis. 

Proof. Since ( )xd  is a polynomial, we may conclude that between real 

solutions ( )xd  is of one sign. This statement follows directly from the Sign 

Preserving Property of Continuous Functions. Since taking reciprocals does 
not change the sign nor the multiplicity of roots for ( ),xd  where ( )xd  is 

positive, ( )xd
1  will also be positive and where ( )xd  is negative, ( )xd

1  is 

also negative. If ( )xd  has no real solutions, then ( )xd  is either entirely 

positive or entirely negative and the same result holds. ~ 

Second Signs of Rational Functions Lemma. Let ( ) ( )
( )xd
xnxR =  with 

( ) 0≠xd  and ( )xR  is in lowest terms. It is only necessary to determine the 

multiplicity of the real solutions to ( ),xn  the multiplicity of the real solutions 

to ( )xd  and determine the sign of ( )xR  in one interval between critical 

numbers of either ( )xn  or ( )xd  to determine the sign of ( )xR  in all other 

intervals. 

Proof. Here, we begin with factoring ( )xn  and ( ).xd  By the Factoring 

Polynomials Over Real Numbers Theorem, we may rewrite these 
polynomials factored over the real numbers, so all real solutions are 
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determined along with their multiplicity. Dividing ( )xn  by ( )xd  where 

( )xd  has no common factors with ( )xn  puts ( )xR  in lowest terms. But this 

division does not change the solutions to ( )xn  nor does it change the 

multiplicity of the roots of ( ).xn  As for the sign of ( )xR  in one interval 

between critical numbers, we have the following situations: 

1. The sign of ( )xR  has been determined to be positive in a specified 

interval and the right endpoint of the interval is a root to ( ).xn  

2. The sign of ( )xR  has been determined to be positive in a specified 

interval and the right endpoint of the interval is a root to ( ).xd  

3. The sign of ( )xR  has been determined to be negative in a specified 

interval and the right endpoint of the interval is a root to ( ).xn  

4. The sign of ( )xR  has been determined to be negative in a specified 

interval and the right endpoint of the interval is a root to ( ).xd  

In situation 1, the sign of ( )xd  is the same between its solutions, so if 

the multiplicity of the root of ( )xn  is odd, then there is a sign change in the 

output values of ( )xR  across that root. If the multiplicity of the root of ( )xn  

is even, then there is no sign change in the output values of ( )xR  across the 

interval between critical points. In situation 2, the sign of ( )xn  is the same 

between its solutions, so if the multiplicity of the root of ( )xd  is odd, then 

there is a sign change in the output values of ( )xR  across the root. If the 

multiplicity of the root of ( )xd  is even, then there is no sign change across 

the interval. Similarly, for situations 3 and 4. The same argument holds for 
the left endpoint of the interval for which the sign of ( )xR  is determined. 

This concludes the proof. ~ 

What these two lemmas enable us to do is to avoid using test numbers to 
determine the signs of ( )xR  in each interval between critical numbers for the 
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numerator or denominator and therefore avoids computations. Here is where 
instructors may ask more critical or analytical questions concerning rational 
functions such as the following: 

• Why did (or did not) the rational function’s y-values change sign 
around the vertical asymptote? 

• Why is there a hole in the graph at ( )yx,  or ( )?0,x  

Current technology cannot provide answers to these questions and this 
also reinforces rigorous understanding of multiplicity of roots. 

Signs of Rational Functions Theorem. Let ( ) ( )
( )xd
xnxR =  and ( ) 0≠xd  

but ( )xR  is not necessarily in lowest terms. To determine the signs of ( )xR  

between critical numbers it is necessary only to determine the sign of ( )xR  

in one interval and the multiplicity of the roots of ( )xn  and ( ).xd  

Proof. We will assume that ( )xR  is not in lowest terms to begin. There 

are two cases to consider: 

• Case I. Multiplicity of the root in ( )xd  is greater than in ( ):xn  If the 

root in the denominator has a higher multiplicity than the same root 
in the numerator, then the reduction process would show this is still    
a vertical asymptote. The multiplicity of the root is then examined 
after this reduction process is complete. After the reduction process 
is completed, the Second Signs of Rational Functions Lemma is 
applicable. 

• Case II. Multiplicity of the root in ( )xn  is greater than or equal to 

that in ( ):xd  If this is the case, then the rational function has a hole 

in its graph. The hole is either on the x-axis or not. If it is not on     
the x-axis, then the factor has been divided completely out of the 
numerator and denominator. This means when we reduce the rational 
function, these holes are not critical numbers of the reduced rational 
function and the y-coordinate will be either positive or negative. We 
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may choose an input value in a neighborhood of the root since the 
function is continuous to determine the sign. If the hole occurs on the 
x-axis, then it would be an endpoint of an interval. So, it is treated     
as a critical number since in the reduced format it still appears as a 
factor of ( ).xn  The rest now follows from the Second Signs of 

Rational Functions Lemma. ~ 

Our last theorem answers the question of rational functions which 
intersect horizontal or oblique asymptotes. Since horizontal and oblique 
asymptotes serve as approximations to rational functions when input values 
are far from the origin and are not a local phenomenon, we entertain the 
application of multiplicity of roots to analyze possible intersections of graphs 
with these asymptotes. Now, if the remainder is zero, then ( )xn  is a multiple 

of ( ).xd  The remaining factors in the numerator polynomial constitute the 

asymptote. This implies that the rational function and the quotient are 
identical over the domain of the rational function before the reduction 
process takes place. 

Intersection with Asymptotes Theorem. Let ( )xR  be a rational 

function such that ( )xn  is not a multiple of ( ).xd  The real roots and their 

multiplicity in the remainder polynomial of ( )xR  inform us of the x-

coordinates of intersections between the rational function and the asymptote 
as well as whether the rational function will cross or bounce off the 
asymptote. 

Proof. The Division Algorithm allows us to conclude that a rational 
function ( )xR  can be rewritten as a quotient polynomial and a remainder 

polynomial. The resulting quotient is the asymptote because the remainder 
will eventually become negligible. This occurs because the degree of the 
remainder must be strictly less than the degree of the denominator 
polynomial and by the End Behavior Theorem this term approaches zero. 
The remainder is either a constant or another polynomial of degree at least 
one. If the remainder is constant and nonzero, then the graph of the rational 
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function does not intersect the asymptote since there is an additional nonzero 
term required to have equality. If the remainder is a polynomial of degree at 
least one, there is a root in the remainder. If the remainder equals zero at a 
specified input value from the domain of ( ),xR  then the quotient and the 

rational function are identical. Thus, the asymptote and the rational function 
intersect at the root of the remainder. Since the remainder is a polynomial, 
the graphical interpretation of multiplicity applies. ~ 

3. Examples 

Let us consider some examples for demonstrating the theorems in 
analyzing rational functions. 

Example 1. Answer the following questions concerning the graph of 

( ) :1
123 2

+
−+= x

xxxR  

a. Determine the domain. 

b. Determine the vertical asymptotes or location of holes in the graph. 

Answer. If we begin by finding the domain of the function, then we have 
the domain to be all real numbers except .1−=x  If we put −1 in for x, then 
we end up with 00  which means that −1 may not be a vertical asymptote. 

Since we have a 00  case, we may reduce the original form of ( )xR  and 

obtain the following: 

( ) ( ) ( )
( ) 131

113
1

123 2
−=

+
+−

=
+

−+= xx
xx

x
xxxR  if .1−≠x  

Now, because we were able to reduce ( )xR  down to a simpler form does not 

mean we begin again. We start with our reduced form and continue the 
analysis. The domain of ( )xR  is still all real numbers except .1−=x  We 

now must find the location of the hole. This is accomplished by substituting 
−1 into the reduced form of ( )xR  and evaluating. In this case, the location of 



Applying Multiplicity of Roots to Graphs of Rational Functions 167 

the hole will be ( ).4,1 −−  The graph must have an open circle at this point to 

insure that the reader knows the graph “skips” this point. This is shown 
below: 

 

The next example demonstrates several questions that are typically asked 
when covering the topic of graphing rational functions in college algebra or 
pre-calculus courses. 

Example 2. Answer the following questions concerning the rational 

function ( ) :1
304114196 234

−
++−−= x

xxxxxR  

a. Determine the domain of ( ).xR  

b. Determine the vertical asymptotes or holes of ( ).xR  

c. Determine the intercepts of ( ).xR  

d. Determine the oblique asymptote. 

e. Determine the intervals where ( )xR  is positive and where it is 

negative. 
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Answer. Let us rewrite this rational function in factored form 

( ) ( ) ( ) ( ) ( ) .
1

56321
1

304114196 234

−
+−−+

=
−

++−−
=

x
xxxx

x
xxxxxR  

Now let us examine each individual question: 

a. The domain of this function is { }{ }.1\: R∈xx  

b. We can see in the factorization that 1=x  is not a root of the 
numerator, so 1=x  is a vertical asymptote. The root 1=x  is a root of odd 
multiplicity so there will be a sign change across this vertical asymptote. 

c. The x-intercepts are ( ),0,1−  ( ),0,2  ( )0,3  and ⎟
⎠
⎞⎜

⎝
⎛− 0,6

5  all of 

multiplicity one. The y-intercept is ( ).30,0 −  

d. The degree is greater in the numerator than in the denominator, so 
there is an oblique asymptote. Using synthetic division 

 6 –19 –14 41 30 

1  6 –13 –27 14 

 6 –13 –27 14 44 

we determine the oblique asymptote to be 

.1427136 23 +−−= xxxy  

What this implies is that as ∞→x  the graph of ( )xR  will become 

closer to the graph of .1427136 23 +−− xxx  

e. Now, 0=x  is in the interval ⎟
⎠
⎞⎜

⎝
⎛− 1,6

5  and we know the y-value is 

negative. Using the Signs of Rational Functions Theorem, we may conclude 

( )xR  will be positive over the intervals ( ) ( )∞⎟
⎠
⎞⎜

⎝
⎛ −− ,32,16

5,1 ∪∪  and it 

will be negative over the intervals ( ) ( ).3,21,6
51, ∪∪ ⎟

⎠
⎞⎜

⎝
⎛−−∞−  
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Examining the graph supports our answers to the questions: 

 

One thing to notice here is that all signs were determined without the use 
of test points after the y-intercept was discovered. Another thing to notice     
in this graph, the rational function does not intersect the asymptote. This is 
due to the Intersection with Asymptotes Theorem. Our remainder was the 
constant 44. Since this is never zero, the remainder does not vanish. Thus, the 
rational function does not intersect the asymptote. 

Our next example is one where a root has a higher multiplicity in         
the denominator than in the numerator. It also demonstrates that rational 
functions can intersect horizontal asymptotes. Here, we ask specifically about 
intersections and our Intersection with Asymptotes Theorem can be used to 
answer the question and aid in the graphing of the rational function along 
with the asymptotes. 

Example 3. Sketch the graph of ( )
35

2
23

2

−−−

−−=
xxx

xxxR  by first 

determining the following: 



Jeremy Lane 170 

a. The domain of ( ).xR  

b. The vertical asymptotes and holes of ( ),xR if any. 

c. The intercepts of ( ).xR  

d. The horizontal asymptote of ( ).xR  

e. The intervals where ( )xR  is positive and where ( )xR  is negative. 

f. Does the graph intersect the horizontal asymptote? If so, give the        
x-coordinate of this location. 

Answer. Let us rewrite this rational function in factored form 

( ) ( ) ( )
( ) ( ) ( ) ( ) .31

2
31
21

35
2

223

2

−+
−=

−+

−+=
−−−

−−= xx
x

xx
xx

xxx
xxxR  

a. The domain of the function is { }{ }.3,1\: −∈ Rxx  

b. We see in the factored form that the number 1−  is a root of the 

numerator and the denominator, but it has a higher multiplicity in the 
denominator than in the numerator. So, there are no holes in this graph, but 
the vertical asymptotes are 1−=x  and .3=x  To determine multiplicity, we 
use the reduced form. So, 1−=x  has multiplicity one and 3=x  also has 
multiplicity one. There will be a sign change in the y-values as we move 
across these roots of ( ).xd  

c. The x-intercept is ( );0,2  it has multiplicity one. The graph will cross 

the x-axis at this point. The y-intercept is .3
2,0 ⎟
⎠
⎞⎜

⎝
⎛  

d. The horizontal asymptote is .0=y  

e. Since 0=x  is in the interval ( )2,1−  and the y-value is positive, we 

may conclude ( )xR  will be positive over the intervals ( ) ( )∞− ,32,1 ∪  and it 

will be negative over the intervals ( ) ( ).3,21, ∪−∞−  This follows directly 
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from the multiplicities of these roots previously mentioned and the Signs of 
Rational Functions Theorem. 

f. Yes, it crosses the horizontal asymptote at .2=x  In accordance with 
the Intersection with Asymptotes Theorem, the remainder of this rational 
function is 2−= xy  and this has a root of multiplicity one at .2=x  Thus, 

the graph not only intersects the asymptote, but also the graph will cross this 
asymptote. 

Examining the graph of ( ),xR  we can see that our analysis is supported: 

 

Our next example is rather complicated. This is done to demonstrate the 
power of our results over the traditional use of test numbers. 

Example 4. Determine the following and then sketch the graph of 

( ) :
652

1724
23

245

+−−
−+−+=

xxx
xxxxxR  

a. The domain of ( ).xR  

b. The vertical asymptotes and holes of ( ),xR  if any. 
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c. The oblique asymptote of ( ).xR  

d. The intervals where ( )xR  is positive and negative. 

e. Does ( )xR  intersects the oblique asymptote and if so, give the 

locations. 

Answer. Let us factor this rational function and then we can answer each 
of the questions 

( )
652

120467937
23

2345

+−−

−−+−−=
xxx

xxxxxxR  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) :321

54321
−+−

−−+−+= xxx
xxxxx  

a. We can see from the factored form, the domain is { ∈xx :  

{ }}.3,1,2\ −R  

b. None of the factors of the denominator are repeated in the numerator, 
so each of these values corresponds to a vertical asymptote. Thus, ,2−=x  

1=x  and 3=x  are all vertical asymptotes to this rational function. There 
are no holes. 

c. We shall use generalized synthetic division [2] to obtain the quotient 
and remainder 

 1 –7 –3 79 –46 –120

–6    –6 30 48 

5   5 –25 –40  

2  2 –10 –16   

 1 –5 –8 32 –56 –72 

So, the asymptote is .852 −−= xxy  

d. Below we show a number line of all critical numbers and the 
associated signs of ( ):xR  
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We note the y-intercept of this rational function was ( ),20,0 −  so in the 

interval ( )1,1−  the rational function will be negative. From the Second Signs 

of Rational Functions Lemma, the sign diagram can be filled in without 
additional test numbers. We have the rational function is positive in the 
intervals ( ) ( ) ( ) ( ) ( ).,54,32,11,23, ∞−−−∞− ∪∪∪∪  The rational function 

is negative over the intervals ( ) ( ) ( ).5,41,12,3 ∪∪ −−−  

e. Since the remainder is ( ) ,725632 2 −−= xxxr  it will have two 

distinct real solutions. So, the rational function will intersect the asymptote in 

two distinct locations. These locations are ⎟
⎠

⎞
⎜
⎝

⎛ +
8

1937  and .8
1937 ⎟

⎠

⎞
⎜
⎝

⎛ −  

The Intersection with Asymptotes Theorem also tells us the graph of the 
rational function will cross this asymptote in these two places because both 
the mutliplicity of these roots are odd. 

Now that we have answered these questions, we sketch the graph of 
( )xR  and see the graph and our answers concur: 
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In the next example, we reverse the situation. We provide a graph and 
ask for a possible construction of an algebraic representation for the rational 
function. Here is where our results can prove even more effective. 

Example 5. Suppose you are provided the following graph of a rational 
function: 

 

Construct a rational function with the lowest possible multiplicity of the 
roots in the numerator and denominator. 

Answer. We can see the graph has the following information: 

• There are vertical asymptotes at 3=x  and 2−=x  and there are no 
holes. 

• There is a horizontal asymptote at .2=y  

• The graph does not intersect the horizontal asymptote, so the 
remainder must be a constant. 

• The graph changes sign across the vertical asymptotes so the roots of 
the denominator polynomial must be of odd multiplicity. 

• The point ( )1,0 −  is on the graph. 

Combining these results yields the following function: 

( )
( ) ( )

.
23

2
+−

+=
xx

cxR  
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Using the y-intercept, we may determine the value of the constant c 

( ) ( ) ( )2030210
+−

+=−= cR  

6
3

−
=−

c  

.18 c=  

So, our rational function can have the form: ( ) ( ) ( ) .23
182

+−
+= xxxR  

In our final example, we again reverse the situation, but this time instead 
of providing a graph of the rational function we provide information in a 
textual format. Again, our results can prove effective in constructing an 
appropriate rational function. 

Example 6. Suppose you are provided the following information about a 
rational function: 

a. It has vertical asymptotes at .1=x  

b. The graph has an horizontal asymptote .1=y  

c. The graph will cross the horizontal asymptote at 2−=x  and bounce 
off the horizontal asymptote at .1−=x  

d. The graph changes sign across the vertical asymptote. 

Construct a rational function with the lowest possible multiplicity of the 
roots in the numerator and denominator. 

Answer. Since it has a vertical asymptote at ,1=x  1−x  must be a 
factor of the denominator. Also, because it has a horizontal asymptote at 

1=y  we know the following: 

( ) ( ) .
1

1
−

+=
x

xrxR  

The information the graph intersecting the horizontal asymptote tells us 
about the remainder ( ).xr  Because we are told the graph of the rational 
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function will cross the horizontal asymptote at ,2−=x  we know that 2+x  

is a factor of ( ).xr  We are also told the graph bounces off the horizontal 

asymptote at 1−=x  which implies that ( )21+x  is a factor of ( )xr  (using 

lowest powers for construction). So, now, we have the following: 

( ) ( ) ( ) .
1

211
2

−
++

+=
x

xxxR  

This cannot be correct at this time because the remainder is a polynomial of 
degree 3 while the denominator in the rational function is a degree one. Our 
denominator must be of a higher degree and it must also be odd since we are 
told the graph changes sign across the vertical asymptote. Hence our rational 
function could appear as 

( ) ( ) ( )
( )

.
1

211 5

2

−

+++=
x

xxxR  

A graph of this function is given below: 
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Examining the graph around 1−=x  and ,2−=x  we have the following: 

 

4. Concluding Remarks 

The main objective of this work is to apply the concept of mutliplicity 
with the difficult concept of analyzing rational functions. The goal of such 
application is to minimize the use of test values in each interval between 
roots of the numerator and denominator. Other applications of multiplicity 
also arose in the possibility of intersection points between the rational 
function and a horizontal or oblique asymptote. These concepts can be used 
to aid in sketching the graphs of rational functions or to create algebraic 
expressions for graphs that are provided. While current technology can 
certainly perform the former, it is not capable of providing the latter. It is 
here that the students can be tested as to the understanding of ideas from 
polynomial functions and shown how vital these concepts can be. 
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