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Abstract 

We use techniques of the theory of algorithms of differentiation of 
posets and P-partitions to describe identities of some one-dimensional 
compositions involving polygonal and cubic numbers. We also 
describe with these techniques numbers which can be written as a sum 
of three square of numbers of a given shape or sequences of numbers 
which can be written as sums of three, four or five cubic numbers. 

1. Introduction 

The theory of algorithms of differentiation of posets was introduced by 
Nazarova and Roiter in 1972. Actually, they introduced the theory of 
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representations of posets and used it to give a proof of the second conjecture 
of Brauer-Thrall. Researches in this theory are oriented to give a complete 
description of the indecomposable objects of the additive category rep P of 
k-linear representations of a given poset P [2, 7-9] and [20]. 

Algorithms of differentiation of posets are the main tool in the theory of 
representations of posets, such algorithms are functors PP ′→ reprep:D  

from a category of representations of a poset P to the category of 
representations of a poset ,P′  in this case D reduces the dimension of the 
category rep P and induces a categorical equivalence between some quotient 
categories. For example, the following is the definition of the algorithm of 
differentiation with respect to a maximal point given by Nazarova and 
Roiter: 

Let ( )≤,P  be an ordinary poset. Then a maximal point Pmax∈x  is 

suitable for this differentiation if the subset P⊂N  of all points P∈n  
incomparable with x has width ( ) .2≤Nw  

The algorithm of differentiation with respect to a suitable point ∈b  
Pmax  is defined in such a way that if ,\ Δ= bN P  then 

( ) Nbb ˆ\ ∪PP =′  

with a partial order induced by b\P  and { ,,,ˆ yxNyxyxNN ∈|+= ∪  

}.xy  Figure 1 below shows the Hasse diagram of this differentiation. 

 

 { }bN <<+= 76P  { }76ˆ <+=′ NbP  

Figure 1 
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Gabriel proved that ,1ˆIndInd ++′= NbPP  where PInd  denotes 

the number of classes of indecomposable objects in rep P and N̂  is the 

size of N̂  [13, 17, 20]. 

A representation ( )bx xUUU P′∈|′′=′ ;0  of bP′  is defined by the 

following formulae from a representation ( )P∈|= xUUU x;0  of P, where 

0U  is a finite-dimensional k-vector space and 0UU x ⊆  is a subspace of 0U  

for each .P∈x  

,0 bUU =′  

xbx UU =′  for ,\bx P∈  

( )byxyx UU ++ =′  for each dyad { } ,, Nyx ⊂  

bU|ϕ=ϕ′  for any linear map-morphism .rep: 00 P∈→ϕ VU  (1) 

Gabriel also proved that there exists a categorical equivalence 
,rep~Indrep bN PP ′→  where NInd  denotes the ideal of all morphisms 

passing through sums of indecomposable objects defined by the subset N, in 
this case NIndrepP  is a quotient category. In this paper, we use these 

ideas in order to describe advances to the following open problems 
mentioned by Guy in [14-16] and Cañadas and Irlande in [4]: 

(1) What theorems are there, stating that all numbers of a suitable shape 
are expressible as the sum of three (say) squares of numbers of a 
given shape? For instance, can all sufficiently large numbers be 
expressed as the sum of three pentagonal (hexagonal, heptagonal) 
numbers of nonnegative rank? Equivalently, is every sufficiently 
large number of shape 324 +n  ( )2740,38 ++ nn  expressible as 

the sum of three squares of numbers of shape 
( )( )?310,1416 ±−− rrr  

(2) There are theorems giving the number of representations of a number 
n, as the sum of triangular or square numbers. Can we find 
corresponding results for any of the other polygonal numbers? 



Agustín Moreno Cañadas et al. 102 

(3) Is every number of the form 49 ±n  the sum of four cubes? 
Deshouillers et al. believe that 7373170279850 is the largest integer 
which cannot be expressed as the sum of four nonnegative integral 
cubes [12]. Actually more demanding is to ask if every number is the 
sum of four cubes with two of them equal. 

Regarding partitions and compositions, we recall that a partition of a 
positive integer n is a finite nonincreasing sequence of positive integers 

rλλλ ...,,, 21  such that ∑ = =λr
i i n1 .  The iλ  are called the parts of the 

partition [1]. A composition is a partition in which the order of the summands 
is considered. 

Partitions of positive numbers may be treated as a linear array whose 
sum is prescribed 

∑
=

+≥=+++=
s

i
iiis nnnnnnn

1
121 ,,  

higher-dimensional partitions are arrays whose sum is n. In this case; 

 ∑
≥

=
0...,,1

21
,

r
r

ii
iiinn …  where rr jjjiii nn …… 2121 ≥  (2) 

whenever rr jijiji ≤≤≤ ...,,, 2211  (all riiin …21  are nonnegative integers) 

[1]. In particular, the plane partitions of n are two-dimensional arrays of 
nonnegative integers in the first quadrant subject to a nonincreasing 
condition along rows and columns. For example there are six plane partitions 
of 3: 

,
011
001
000

111
000
000

002
001
000

012
000
000

003
000
000

 and .
001
001
001

 

According to Andrews [1], there is much of interest when the dimension 
is 1 or 2, and very little when the dimension exceeds 2. In this paper, we use 
ideas from the theory of algorithms of differentiation to obtain identities for 
some one-dimensional compositions involving polygonal and cubic numbers. 
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Concerning higher-dimensional partitions, we recall that, Stanley has shown 
that numerous partition and permutation problems can be treated through the 
use of P-partitions, i.e., order-preserving maps from a partially ordered set P 

to a chain with special rules specifying where equal values may occur [1, 21, 
22]. For instance, if P is a p-element chain, then a P-partition of a positive 
integer n is equivalent to an ordinary partition of n into at most p parts. Some 
relationships between P-partitions and the counting of chains in the set of 
order ideals of P ordered by inclusion are well described by Stanley in [21] 
and [22]. Furthermore, Stanley’s work on P-partitions allows him to deduce 
results (regarding r-dimensional partitions), easily from a general reciprocity 
theorem [1, 21]. We also recall that the first author et al. in [6] describe some 
compositions of dimension three by using P-partitions. 

This paper is organized as follows: Some of the basic definitions and 
notations concerning posets and P-partitions are included in Section 2. In 
Section 3, we describe numbers which can be written as a sum of three 
square of numbers of a given shape, in Section 4, we solve Diophantine 
equations involving cubic numbers, in particular, we describe some 
sequences whose terms can be written as a sum of four cubes with two of 
them equal. Finally, in Section 5, we give examples of compositions defined 
in Section 3 with the help of some algorithms of differentiation and                    
P-partitions. 

Remark 1. We will use the customary symbols ,N  Z  and R  for the set 
of natural numbers, integers and real numbers, respectively. 

2. Preliminaries 

This section introduces some other basic definitions, and notations to be 
used throughout the paper [5, 6, 10, 11, 19, 21, 22]. 

2.1. Posets 

An ordered set (or partially ordered set or poset) is an ordered pair of the 
form ( )≤,P  of a set P and a binary relation ≤ contained in ,PP ×  called the 

order (or the partial order) on P such that ≤ is reflexive, antisymmetric and 
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transitive [11]. The elements of P are called the points of the ordered set. We 
will write yx <  for yx ≤  and ,yx ≠  in this case we will say x is strictly 

less than y. An ordered set will be called finite (infinite) if and only if the 
underlying set is finite (infinite). Usually we shall be a little slovenly and say 
simply P is an ordered set where it is necessary to specify the order relation 
overtly we write ( )., ≤P  

Let P be an ordered set and let P∈yx,  we say x is covered by y if 

yx <  and yzx <≤  implies .xz =  

An ordered set C is called a chain (or a totally ordered set or a linearly 
ordered set) if and only if for all Cqp ∈,  we have qp ≤  or pq ≤  (i.e., p 

and q are comparable). On the other hand, an ordered set P is called an 
antichain if yx ≤  in P only if yx =  [11]. 

Let P be an ordered set. A chain C in P will be called a maximal chain if 
and only if for all chains P⊆K  with KC ⊆  we have .KC =  

If n is a positive integer we let n denote the n-element poset with the 
special property that any two elements are comparable [22]. We also define a 
subposet Q of a poset P to be convex if Qy ∈  whenever zyx <<  in P and 

., Qzx ∈  

Let P be a finite ordered set. We can represent P by a configuration of 
circles (representing the elements of P) and interconnecting lines (indicating 
the covering relation). The construction goes as follows. 

(1) To each point ,P∈x  associate a point ( )xp  of the Euclidean plane 

,2R  depicted by a small circle with center at ( ).xp  

(2) For each covering pair yx <  in P, take a line segment ( )yxl ,  

joining the circle at ( )xp  to the circle at ( ).yp  

(3) Carry out (1) and (2) in such a way that 

(a) if ,yx <  then ( )xp  is lower than ( ),yp  
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(b) the circle at ( )zp  does not intersect the line segment ( )yxl ,  if 

xz ≠  and .yz ≠  

A configuration satisfying (1)-(3) is called a Hasse diagram or diagram 
of P. In the other direction, a diagram may be used to define a finite ordered 
set; an example is given below, for a poset ( ) ( ){ ,30,,3 ≤≤|= ijiM  

} 230 N⊂≤≤ j  whose points satisfy the following condition: 

( ) ( )jiji ′′,,  if and only if ii ′≤  and ,jj ′≤  for all ( ) ( ) .,,, 3M∈′′ jiji   (3) 

In this case, N  has been equipped with its natural ordering. 

 
Figure 2 

Let ( ),P  and ( ),Q  be ordered sets and let QP →:f  be a map. 

Then f is called an order-preserving function if and only if for all P∈yx,  

we have: 

( ) ( ).yfxfyx ⇒  
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We shall say that two posets P and Q are isomorphic if there exists an 
order-preserving bijection ,: QPf →  whose inverse is order-preserving. In 

such a case, we shall write .QP ≅  

Let ( ),P  and ( ),Q  be ordered sets. Then QP →:f  is called an 

(order) embedding if and only if f is injective, and for all ,, P∈yx  we have: 

( ) ( ).yfxfyx ⇔  

If ( )≤,P  and ( ),Q  are posets, then the direct (or cartesian) product of 

P and Q is the poset ( ),QP ×  on the set ( ){ }QyPxyx ∈∈ and:,  such 

that ( ) ( )yxyx ′′,,  in QP ×  if xx ′≤  in P and yy ′  in Q. To draw the 

Hasse diagram of QP ×  (when P and Q are finite), draw the Hasse diagram 

of P, replace each element x of P by a copy xQ  of Q and connect 

corresponding elements of xQ  and yQ  (with respect to some isomorphism 

)yx QQ ≅  if x and y are connected in the Hasse diagram of P. 

A further operation that we wish to consider is the dual of a poset P. This 

is the poset ∗P  on the same set as P, but such that yx ≤  in ∗P  if and only 

if xy ≤  in P. If P and ∗P  are isomorphic, then P is called self-dual. 

An order ideal of a poset ( )≤,P  is a subset I of P such that if Ix ∈  and 

,xy ≤  then .Iy ∈  We let ( )PJ  denote the set of all order ideals of P, 

ordered by inclusion. In particular, we define the order ideal or down-set of 

P∈a  to be { }.: aqqa ≤∈=Δ P  Dually, { }qaqa ≤∈=∇ :P  is the filter 

or up-set of a [19]. 

Note that, k-element antichains in P correspond to elements of ( )PJ  that 

cover exactly k-elements. 

If x, y belong to a poset P, then an upper bound of x and y is an element 
,P∈z  satisfying zx ≤  and .zy ≤  A least upper bound of x and y is an 

upper bound z of x and y such that every upper bound w of x and y satisfies 
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.wz ≤  If a least upper bound of x and y exists, then it is clearly unique and is 
denoted .yx ∨  Dually one can define the greatest lower bound ,yx ∧  when 

it exists. A lattice is a poset L for which every pair of elements has a least 

upper bound and greatest lower bound. We say that a poset P has a 0̂  if 

there exists an element P∈0̂  such that x≤0̂  for all .P∈x  Similarly, P 

has a 1̂ if there exists P∈1̂  such that 1̂≤x  for all .P∈x  Clearly all finite 

lattices have 0̂  and .1̂  Since the union and intersection of order ideals is 
again an order ideal, it follows from the well-known distributivity of set 
union and intersection over one another that ( )PJ  is indeed a distributive 

lattice [22]. 

A finite nonnegative lattice path in the plane (with unit steps to the right 

and down) is a sequence ( ),...,,, 21 kvvvL =  where 2N∈iv  and ii vv −+1  

( )0,1=  or ( )1,0 −  [22]. 

As an example, let S  be the set of all sequences of nonnegative integers 

{ } ,1
∞
=iif  where only a finite number of terms are not null. To each sequence 

{ } S∈if  there is associated a partition ( ),321 321 …fff=λ  where if  denotes 

the number of times that the part i occurs in λ. ( ),S  is a poset if  is 

defined in such a way that 

{ } { },ii gf  if ,ii gf ≤  for all i. 

In fact S is a lattice with operations ∧ and ∨ given by 

{ } { } ( ){ } { } { } ( ){ }.,max,,min iiiiiiii gfgfgfgf =∨=∧  

A subset S⊂C  such that { } Cfi ∈  and { } { }ii fg  imply { } Cgi ∈  is called 

an ideal partition. Moreover, two ideal partitions 1C  and 2C  are equivalent 

if ( ) ( )nCPnCP ,, 21 =  for all integer n, in such a case we write, .~ 21 CC  

We recall here that the fundamental problem for ideal partitions consists of 
giving a complete characterization of its equivalence classes [1]. 
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Given a finite poset P with n=P  in [22] it is defined an extension of 

P to a total order or linear extension of P as an order-preserving bijection 
.: n→σ P  The number of extensions of P to a total order is denoted ( ).Pe  

Actually, ( )Pe  is also equal to the number of maximal chains of ( ).PJ  

We may identify a maximal chain of ( )PJ  with a certain type of lattice 

path in Euclidean space as follows [22]. Let kCC ...,,1  be a partition of P 

into chains. Define a map ( ) kJ N→δ P:  by: 

( ) ( )....,,, 21 kCICICII ∩∩∩=δ  

If we give kN  the obvious product order, then δ is an injective lattice 
homomorphism that is cover-preserving (and therefore rank-preserving). 

Thus in particular ( )PJ  is isomorphic to a sublattice of .kN  Given ( )PJ:δ  

,kN→  as above, define ( )( )∪T Tcx ,δ=Γδ  where cx denotes convex hull 

in ,kR  T ranges over all intervals of ( )PJ  that are isomorphic to Boolean 

algebras. Thus δΓ  is a compact polyhedral subset of .kR  It is then clear that 

the number of maximal chains in ( )PJ  is equal to the number of lattice paths 

from the origin ( ) ( )0̂0...,,0,0 δ=  to ( ),1̂δ  with unit steps in the direction of 

the coordinate axes. In other words, ( )Pe  is equal to the number of ways of 

writing 

 ( ) ,1̂ 21 nvvv +++=δ  (4) 

where each iv  is a unit coordinate vector in kR  and where +++ 21 vv  

,δΓ∈iv  for all i. 

For example, let ,n2 ×=M  and take ( ){ },,21 n∈|= jjC  =2C  

( ){ }.,1 n∈| jj  Then ( )( ) {( ) }.0, 2 njijiJ ≤≤≤|∈=δ NM  For example 

when 3=n  we obtain Figure 2. Hence ( )Me  is equal to the number of 

lattice paths from ( )0,0  to ( )nn,  with steps ( )0,1  and ( ),1,0  which never 
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rise above the main diagonal yx =  of the plane ( )yx, -plane. It can be 

shown that ( ) .
2

1
1

nC
n
n

ne =⎟
⎠
⎞

⎜
⎝
⎛

+
=× n2  These numbers are called Catalan 

numbers [22]. 

We let nM  denote the poset ( )( )( ),,n2 ×δ J  where  is the relation 

defined in (3). 

2.2. P-partitions 

The theory of P-partitions which is a common generalization of the 
theory of partitions and the theory of compositions was introduced by 
Stanley in 1972 [1, 6, 21]. In order to give a definition of P-partition we must 
define labeled ordered sets. In this case if ( )≤,N  is the set of natural 

numbers equipped with its natural ordering and ( ),P  is a poset with 

,p=P  then a labeling w of P is a bijection { } ....,,2,1: N⊂→ pw P  A 

labeling w is called a natural labeling if it satisfies 

yx  implies ( ) ( ).ywxw ≤  

w is called a strict labeling if 

yx  implies ( ) ( ).ywxw ≥  

An ordered set together with a labeling w is called a labeled ordered set. 

If w is a labeling of ( ),,P  then a ( )w,P -partition of n or poset 

partition is a map N→σ P:  satisfying the conditions: 

1. yx  in P implies ( ) ( ),yx σ≥σ  i.e., σ is order-reversing, 

2. yx  in P and ( ) ( )ywxw >  implies ( ) ( ),yx σ>σ  

3. ( )∑
∈

=σ
Px

nx .  

If w is a natural labeling, then σ is called a P-partition. If w is a strict 
labeling, then σ is called a strict P-partition. If σ is a ( )w,P -partition, then 

the values ( ) ,, P∈σ xx  are called the parts of σ. 
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Figure 3 

Figure 3 above, shows a ( )w,3M -partition of ,22 4321 CCCC +++=  

where iC  denotes the ith Catalan number. In this case, we have labeled 3M  

with a map P→3: Mw  such that { },10...,,1=P  ( ) ,43, iiw −=  if ≤0  

,3≤i  ( ) ,72, jjw −=  if ,20 ≤≤ j  ( ) ,91, kkw −=  if ,10 ≤≤ k  and 

( ) .100,0 =w  

Some relationships between P-partitions and the counting of chains in 
the set of order ideals of P ordered by inclusion are well described by 
Stanley in [21] and [22]. Actually, he describes in [21] the following relation 
between the number of some P-partitions of a positive integer n, denoted 

,na  and the number ( )Pe  of extensions of P to a total order. In this case, we 

have considered that p=P  [2, 7, 10]: 

( )

( )!1!

111

pp
none

a

p

n −

⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛+

=

−P

 as .∞→n  
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We let ( )w,PA  denote the class of all ( )w,P  partitions. Define two 

labelings w, w′  to be equivalent (denoted )~ ww ′  if ( ) ( ).,, ww ′= PAPA  

In [21, 22], Stanley mentioned a number of interesting combinatorial 
problems concerning labeling of ordered sets, for example: Given a labeled 
ordered set ( ),, wP  how many labelings are equivalent to w? 

Most of the preceding concepts can be extended to infinite posets. For 
example the notion of a P-partition can be extended in such a way that the 
following finiteness conditions hold: 

1. For every element P∈x  there is some P-partition σ such that 
( ) .0>σ x  

2. There exist only finitely many P-partitions of any given integer n. 

Therefore, if P is a poset, then an order-reversing map w from P to the set of 
nonnegative integers is a labeling of P if additionally only finitely many x 
have ( ) .0>xw  In this case a labeling w of P is a P-partition of n if 

( )∑
∈

=
Px

nxw  [1]. 

Remark 2. We have considered only the cases for which a P-partition is 
an order-reversing map. The order-preserving case can be obtained simply by 
dualizing the poset P [21]. 

3. The Main Results 

In this section, we follow ideas of the first author who uses in [3] theory 
of algorithms of differentiation in order to give advances to the solution of 
the problems (1)-(3) mentioned in pages 101 and 102. To do that, it is 
associated to a given P-partition a suitable set of partitions. 

3.1. Representation of posets over a set of positive integers 

Let ( )≤∗,N  be the set of positive integers endowed with the usual order 

and ( )≤′,P  an ordinary poset .∅≠P  A representation of the poset P over 
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∗N  is a system of positive integers with the form: 

 ( )( ),,;0 P∈|λΛ=Λ xn xx  (5) 

where ( ) xλ∅≠Λ⊂Λ ∗
00 ,N  is a partition of the positive number xn  with 

parts in 0Λ  and xλ  is the size or cardinal of .xλ  Moreover, 

 yxyx nnyx λ≤λ≤⇒≤′ ,  and { } { }.maxmax yx λ≤λ  (6) 

Two representations ( ),over ∗N  ( ( ) )P∈|λΛ=Λ xn xx
111

0
1 ,;  and =Λ2  

( ( ) )P∈|λΛ xn xx
222

0 ,;  of a given poset P are equivalent if and only if 
2
0

1
0 Λ=Λ  and 21

xx nn =  for each .P∈x  In this case the fundamental 

problem consists of characterizing the corresponding equivalence classes by 
calculating ( )xnP ,0Λ  for each .P∈x  Note that, this problem is similar to 

the problem of classification of ideal partitions. 

If ( )mi fff mi ……11=λ  is a partition with parts in a set 0H  the uth 

substitution derivative of λ with respect to the part i is a partition with parts 
in 0H  obtained from λ by substituting one or several occurrences of λ∈i  

by the number .0Hu ∈  We let ( ) ( )uiui ∂
λ∂=λ  denote this substitution and 

write: 

( ) ( ) ( ),1 11 mi fff
i muiuiu …… −=

∂
λ∂

=λ  

( ) ( ( ) ( ) ( ) ( ) ),111 111 miii ffnfff
n

n
miuiiu

i
…… +− +−=

∂

λ∂ −  if .ifn ≤  

Furthermore, different substitutions can be applied to the same partition λ. 
We let 

( ) ( ) ktmiuuuuiii
mti ff

tt
f

k
k

k
≤≤=

∂∂∂
λ∂ − 1,1...,,, 1121

21
………  

denote such substitutions. 
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If ( )≤′,P  is a poset, then we say that a pair ( ) P∈ba,  is L-suitable or 

suitable for differentiation L if a and b are incomparable and there exists a 
chain { }ncccC <′<′= 21  such that 11, cbca <′<′  and 

.Cba ++= ΔP  

The differentiation of a poset P with a pair ( ),, ba  L-suitable is a poset ( )ba,P′  

such that 

( ) ( ) ,,
+−∇− +++=′ CCaaba PP  

where { },1
−−− <<= nccC  { }+++ <<= nccC 1  are chains with −− < 1ca  

a=  and for each i, −−+− <≤≤ iii caccni ,,,1  and +
ic  inherit all relations 

that points a and ic  had with the other points in P. In ∇aP  points and 

relations have not changes. In fact, these new relations and the original ones 

defined in ∇aP  induce all relations in ( )., baP′  Figure 4 shows the Hasse 

diagram of this reduction. 

 
Figure 4 

Henceforth, we shall assume that if Λ is a representation of a poset P 
with a pair of points ( ),, ba  L-suitable with t fixed, N∈xk  for each ,P∈x  

then 

(( ) ),t
xx k=λ  for all ,Bbx +∈ ∇  

( ) ( ) ( )( ),xxa
x

x JI
k a

a
=λ

∂

λ∂
λ

λ
 if ,Cx ∈  
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,axI λ=  

,1ca λ<λ  

,0 111 accac nkJnn <−−<  

{ }.max
111 accac kJnn λ≤−−=α  (7) 

Representation Λ′  of the derived poset ( )ba,P′  is given by the following 

formulae if ;2 ij ≤≤  

,00 Λ=Λ′  

(( ) ),, 1α=λ′α=′ −− aa
n  

,,
11

acac
nn λ=λ′=′ −−  

(( ) ),, ic
iiiii

I
ccccc kkIn =λ′=′ −−  

(( ) ( ( )) ),,
11

1 ic
i

i
jjjiii

J
cccccccc kkkInn δ

−−++ −λ′α=λ′=′  

( ) ( ( )),,, 1
xxxx hhn =λ′′  for all ,Δ∈ bx  if { } ,∅≠−∇ aB ∩  

{ }{ },min,min Bxnnh xax ∈|−α=  

( ) ( ),,, xxxx nn λ=λ′′  for all ,Δ∈ bx  if { } ,∅=−∇ aB ∩  

⎩
⎨
⎧ ≥

=δ
.otherwise,0

,2,1 i
i  (8) 

Remark 3. If 1=i  in formulas (8), then we assume that the formula for 

+λ′
1c

 is obtained by applying the same formula given for +λ′
ic

 and deleting the 

term ( ).
11 −

−
jj ccc kkI  Furthermore, .11

cc
n=λ′ +  

3.2. Compositions of polygonal numbers 

In order to describe compositions of multiples of polygonal numbers of 



On Sums of Figurate Numbers ... 115 

positive rank, we consider representations of a poset ( ),,1 ≤′cP  with Hasse 

diagram showed in Figure 5, in this case, ,1 Δ
∇ += bacP  the pair ( )ba,  is 

L-suitable, ncccaaa <′<′<′<′= 2111,  is a chain, 1bb =▲  and aa \Δ  

.∅=  

 
Figure 5 

In this section, we describe some compositions of numbers of type 

,0
20

n
jc

pnn
j +=′ +  ,1≥j  via differentiations of posets icc aai += 1\1PP  with 

jn cc =  in the chain C. Such posets are defined in such a way that, relations 

between points of 1\1 acP  have not changes. Furthermore, ,ii ca <′  ( )1, −ii ca  

is a pair of points L-suitable and ia  inherits all relations that ( )1−ia  had with 

points of ( )Δ−2ic  (see Figure 5 with ).0 bc =  

Let 1cΛ  be a representation of poset 1cP  such that { =|∈⊃Λ ttc N01
 

},0n
rp  where 0n

rp  denotes the 0n -gonal number of rank r, ,50 ≥n  fixed. 

Furthermore, 

( ) ( (( ) )),,, 000
11 110

nnn
bb ppnn =λ  

( ) ( (( ) )),,, 000
220

nnn
bb ppnn =λ  

( ) ( (( ) ( ) )),,, 1
3

1
232

0000
11

nnnn
aa ppppn +=λ  

( ) ( (( ) )) .1,,, 000
220 ≥=λ ++ ippnn nn

i
n
icc ii

 (9) 
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Each representation icΛ  of icP  is defined in such a way that 001 icc Λ=Λ  

for each xxi nax λ≠ ,,  are those defined in the representation 1cΛ  of ,1cP  

in this case, 00
2

nn
ia ppn i ι+ +=  and (( ) ( ) ),11

2
00 nn

ia ppi ι+=λ  22 +<ι≤ i  

and .1 ji ≤≤  

In a poset ( ),1, −
′

ii caP  ,1 j≤ι≤  we denote, ,\ −
ι

+
ιι ΔΔ

= ccd  =′ +
ιc

n  

,0
0

n
dpn
ι

 where 0n
dp
ι

 is the ιd th 0n -gonal number, in this case, .10
1 =np  

If ,,,,
111111

bbbbbbccccc nnnnnnn ′=Δ′−′=Δ−′=Δ′−′=Δ +++
−ι

+
ι

+
ι

 then 

a partition λ of +′
jc

n  in the poset ( )01, caP′  is of type I, if it has at least jd  

parts with the form: 

(( ) ( ) ( ) ( ) ) ,\,1
1

−+
ΔΔ

+
ι+

ι
∈ΔΔΔ′=λ jj

f
b

f
b

f
c

f
x ccxn bbcx  

where for each ,P∈z  { }1,0∈zf  if ,\ −+
ΔΔ

∈ jj ccz  0=zf  otherwise. 

Furthermore, if ,λ∈′xn  then λ∉′yn  if xy ≠  and .1,\ jccy jj ≤ι≤∈ −+
ΔΔ

 

A partition λ is of type II for a positive number +′
jc

n  in a poset ( )1, −
′

ii caP  

if it is not of type I. Moreover, either +λ′=λ
jc

 or its parts have the form: 

( ) { },1,0,,,,, 652165211 ∈=λ fffllyxvuts h
ffflll h  

exponents 1, 0, indicate the existence of the corresponding term in the 
partition, in this case: 

( ) (( ) ( ) ) ,222,, 11
2

00 +≤+<ι≤=λ=′= ι+− jipptns nn
iaa ii

 

( ) ,,,00
2 +− Δ=μ=++′= ι+ gi ch

nn
ia

xvppnu  

(( )( ) ) (( )( ) ) ,2,1,000 2 jhjgppy cJn
d

nn
d ≤≤≤≤== ϖ

ϖϖ

−  

01,01,,1 1221 =⇒==⇒=≤ϖ≤ llllji  
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and if ,03
0 =p  then in the poset ( )01, caP′  we have that 

( ) ( ) ( )[ ] (( ) ) { },1,0,2425620 12
00

0 ∈−−+−+=μ − mphnn mn
d

m
h h

 

( ) ( ) ( ) ( ) ,6,1,12461954 000
3

60 0
≥≥−−++−+=Δ −+ nggnnpn ncg

 

( ),11535 −+=Δ + g
gc

 if ,50 =n  

,
1122
−−−− ′−′−′=Δ

accc
nnn  

,3,
1

jhnn
hhh ccc

≤≤′−′=Δ −
−

−−  

( ) ( ) ( )[ ] .2,2425620 00 jhhnn
hc ≤≤−−+−+=Δ −  

Values ±
−

±± ′−′=Δ
1hhh ccc

nn  in ( )1, −
′

ii caP  are those used in ( )01, caP′  by 

considering the corresponding translations. Furthermore, if we let H denote 
the set of parts of type II and assume { },,,,,, yxvutsH =  then such parts 

are assigned to a partition of type II of 0
20

n
jc pnn j +=  as follows: 

Let ( )1, −
Γ ii ca  be the graph whose vertices are points of the chains 

+−− ++ CCai  of ( )1, −
′

ii caP  with edges defined according to the following 

diagram for :1 ji ≤≤  

 

A partition of type II for jcn  is obtained from ( )1, −
Γ ii ca  by assigning a 

unique element of H (keeping the order induced by ( )), icaP′  to each vertex of 

a path ( )1, −
Γ⊂ ii caP  which has as initial vertex a point in −− + Cai  with 
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final vertex .+jc  Therefore, numbers 
ι+

Δ ic  or ( )20n
di

p
ι+

 are associated to the 

vertex ,−
ι+ic  1≥ι  whereas, vertices ,, +

ι+
+

ii cc  have associated numbers of 

the form ( ) ,200 −nn
di

p  ( ) 200 −
ι+

nn
di

p  or ,+
ι+

Δ
ic  respectively. Furthermore, if 

Pc ∈−
ι  is the maximum of the chain −C  in P, then to each vertex of type 

Pck ∈+  with k<ι  it is assigned the part +Δ
kc

 and the number ( ) 200 −
ι

nn
dp  it 

is associated to the minimum +
ιc  of the chain +C  in P. 

For ,1≥ι  a term ( ) ,200 −
ι

nn
dp  occurs only once in a partition and a term 

of the shape ( )20n
di

p
ι+

 occurs if and only if vertex −
ι+ic  is the minimum in the 

chain −C  in a path P. Furthermore, note that ( )PcPa ii ∈∈ −−  if and only if 

11 =l  1( 2 =l  in such a case −
ic  is the minimum of the path P). 

For example the 3d  partitions of type I of 0
1 30

n
c

pnn =′ +  are 

.

,

,

1

1

11

+

+

+

′

Δ+′

Δ+Δ+′

c

cb

cbb

n

n

n

 

The 13 −d  partitions of type II of 0
30
npn  are 

( ) ( )( ) (( ) ( ) ( ) ( )( ) )21
3

1
2

121 00
1

00
1

00
111

−−
−−− ′=+λ+′ nn

d
nn

a
nn

dca
pppnpn  and 

((( ) ) ( )( ) ).21
32

1 00
1

00
1

−++′ −
nn

d
nn

a
pppn  (10) 

In particular, if ,50 =n  then partitions of type I of 60 are 60 = 5 + 20 + 35 = 

25 + 35 whereas partitions of type II are 7 + 12 + 5 + 12 + 12 + 12 = 24 + 12 
+ 12 + 12. 
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Partitions of type I of 110 are 110 = 5 + 20 + 35 + 50 = 25 + 35 + 50 = 
60 + 50. Partitions of type II are 7 + 12 + 5 + 12 + 12 + 12 + 50 = 24 + 12 + 
12 + 12 + 50 = 7 + 12 + 5 + 20 + 22 + 22 + 22 = 24 + 20 + 22 + 22 + 22 = 22 
+ 22 + 22 + 22 + 22 = 17 + 22 + 5 + 22 + 22 + 22 = 44 + 22 + 22 + 22 = 10 + 
12 + 22 + 22 + 22 + 22. The last one obtained from poset ( )12, caP′  (in fact, 

).222222221210
2

+++++=λ′ +c  

Note that, in partition, 5 + 20 + 35 + 50, according to the derived poset 
of the poset showed in Figure 5, we have ,51 =bn  ,20=Δb  ,35

1
=Δ +c

 

.50
2
=Δ +c

 

Partition =λ′ +
2c

 7 + 5 + 12 + 20 + 22 + 22 + 22 is defined in such a way 

that numbers ,7=s  ,125 +=t  ,202
2

=μ=Δ −c
 ( ) ( ) +== 2235

4
35

2
ppd  

2222 +  are assigned to the path ( ) :01, caP Γ⊂  

.2211
+−−− →→→= cccaP  

Note that, in the representation of ( )1, −
′

ll caP  a term −′
la

n  can be given by 

the identities ,1,00
11 ≥=−=′ +++− lappn ij

n
j

n
jial

 where ija  is the ijth entry 

of the matrix: 

( ) ( )

( ) ( ) ( )⎩
⎨
⎧

≥>−−+−++−

≥=−−+−
=

.1,1,127463

,1,1,1232

000

00

jijininn

jijnn
aij  

If in the representation over ∗N  of a poset icP  we have (( ) ( ))00 n
k

n
ja pp=λ  

then graphs ( )1, −
Γ ii ca  define corresponding partitions of type II (taking into 

account all possible combinations of l, ,hf  5f  and )6f  of 0
2 0

n
rc pnn r =′

−
 

fixed. We let ( )rkjN ,,  denote the number of partitions generated in this 

way. 
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The following result is a consequence of facts described above. 

Theorem 4. If N denotes the number of partitions of type I and II of 

,00
n
rpn  ,4≥r  ,50 ≥n  then 

( ) ( ) ( ) .126
123 3

1
3

3 −+++
−−−

= −− rpprrrN rr  

Proof. We apply differentiation L to the poset 1cP  (see Figure 5) with 

respect to the pair ( )ba ,1  with ,2−= rn  then partitions +λ′
ic

 define partitions 

of type II of ,0
2

0
n
rc

pn
r

=λ′ +
−

 note that terms ( ) ,
1 −−

Δ=−
jjj ccc kkI  are in 

bijective correspondence with numbers 

( ) ( ) ( )( ).2425620 00 −−+−+=μ hnnh  

Since by definition the number of partitions of type I of 0
2

0
n
rc pnn

r
=′ +

−
 is 

rdr =−2  and ,00
1 32

nn
a ppn +=  we have ( ) .23,3,2 =N  In the corresponding 

derived poset it is easy to see that 

( ) ( ) ( )∑
−

=
−

∇+∇+ −=+=
2

2

3
11 .12,3,2

r

i
ri pccrN  

If we consider that for 21 −≤< rk  fixed, in poset ,kcP  relations and 

points in P⊂∇B  are invariants and that the pair of points ( )1, −kk ca  is           

L-suitable, then we apply differentiation L to the posets kcP  with respect to 

these points for each 21 −≤< rk  with a representation of the form =λ
ka  

(( ) ( ) ),1
2

1
2

00 n
k

n pp +  ,00
22

n
k

n
a ppn

k ++=  ,0
20

n
ic pnn

i +=  (( ) ),00
2

nn
ic p

i +=λ  <1  

,2−≤ rk  2−≤≤ rik  keeping without changes the other identities in 
formulas (9). We can see that the total number of new parts furnished for 
these differentiations to the partitions of type II of the new +′

ic
n  are 
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( ) ( )122 −−=∇+ krck  for each k. Then for rk ≤0  fixed we have: 

( ) ( ) ,4,12,,2 000 rkkrrkN ≤≤−−=  

thus 

( ) ( )∑
=

−==>
r

k
rprkNrkN

4

3
30

0

.2,,2,3,2  

If we use same arguments for each ,13, 00 −≤≤ rjj  we conclude that 

( ) ,,13,,, 000
3

00 0
rkjrjprkjN jr ≤≤−≤≤= −  

thus 

( ) ( ) ( ) ( )∑
−

=

−−−
=≥

3

1

3 .6
123,,3

r

i
i

rrrprkjN  

Therefore, if ,2 rkj ≤<≤  then 

 ( ) ( ) ( ) .126
123 3

1
3

3 −+++
−−−

= −− rpprrrN rr  ~ 

A partition γ is said to be of type III if it is obtained from a partition λ of 

type II by applying the substitution 
( )

( )
(( ) ).2 0

00

0
02

2
n
dnn

d

n

i
i

pn
p

−
∂

λ∂
−

−
 If =λ′ ka  

(( ) ( ) )11 00 n
d

n
j k

pp  in the derived poset ( )1, −
′

kk caP  and the partition λ of +′
ic

n  is 

of type III, then the partition ( )k
k

an
d

n
j

n
pp

′
∂∂

λ∂
00

2
 is of type IV whereas, if λ is 

of type II for the same number then, ( )k
k

an
d

n
j

n
pp

′
∂∂

λ∂
00

2
 is a partition of type V. 

We let Γ denote the set of partitions of these types and ( )00, n
rr pnP Γ  denotes 

the number of partitions of type Γ of the number .00
n
rpn  
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Remark 5. By definition, it is easy to see that partitions of type II of 
00

n
rpn  equal partitions of type III. And partitions of type IV equal partitions 

of type V, ,4≥r  .50 ≥n  

Lemma 6. If ( )00,IV n
rr pnP  is the number of partitions of type IV of 

,00
n
rpn  then ( ) ( ) ( ) .6

12,IV 00
rrrpnP n

rr
−−

=  

Proof. Note that to each pair of numbers ( )00 ,2
nn

i pp ι+  with <ι≤2  

,2+i  ,21 −≤≤ ri  it is possible to assign a unique poset icP  with a 

representation satisfying 00
2

nn
ia ppn i ι+ +=  in which case ( ) −=∇+ rci  

( ),1+i  in the corresponding derived poset ( ).1, −
′

ii caP  Thus, if we denote iP′  

this family of posets, then the number of partitions of type IV can be 

obtained by calculating ( ) ( ) ( )∑ ∑
′∈

−

=

∇+

+

−−
==

iic

r

j
ji

rrrpc
P

2

1

3 .6
12  ~ 

Theorem 4, Remark 5 and Lemma 6 allow us to obtain the following 
result. 

Theorem 7. The number of partitions of types I, II, IV, V of 00
n
rpn  with 

4≥r  and 50 ≥n  is given by the formula 

( ) .2
10931

2
3

2
+−

+−= −
rrprM r  

Corollary 8. ( ) ( ).2mod, 00 rpnP n
rr ≡Γ  

Proof. ( ) ., 00 rNMpnP n
rr −+=Γ  ~ 

We say that a partition is of type VI, if it is obtained as a partition of type 

III by defining the substitution 
( )

(( ) ( ) ).,3 1
02

2
00

00

0 n
d

n
dnn

d

n

ii
i

ppn
p

−
∂

λ∂
−

−
 These 

partitions allow us to obtain the following results: 
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Lemma 9. The number of partitions of type VI of ,00
n
rpn  ,50 ≥n  

,4≥r  equals the number of partitions of type III. 

Theorem 10. The number of partitions of type Ξ of ,00
n
rpn  ,50 ≥n  

4≥r  is 

( ) ,22, 00 rNMpnP n
rr −+=Ξ  

where a partition λ is said to be of type Ξ if and only if λ is a partition of one 
of the types I to VI. As an example, the following are the list of partitions of 
types III, IV, V and VI of 110: 

Partitions of type III are 7 + 12 + 5 + 36 + 50 = 24 + 36 + 50 = 7 + 12 + 
5 + 20 + 66 = 24 + 20 + 66 = 22 + 22 + 66 = 17 + 22 + 5 + 66 = 44 + 66 = 10 
+ 12 + 22 + 66, 

Partitions of type IV are 7 +17 +36 + 50 = 7 +17 + 20 + 66 = 17 + 27 + 
66 = 10 + 34 + 66, 

Partitions of type V are 7 + 17 + 12 + 12 + 12 + 50 = 7 + 17 + 20 + 22 + 
22 + 22 = 17 + 27 + 22 + 22 + 22 = 10 + 34 + 22 + 22 + 22, 

Partitions of type VI are 7 + 12 + 5 + 24 + 12 + 50 = 24 + 24 + 12 + 50 
= 7 + 12 + 5 + 20 + 44 + 22 = 24 + 20 + 44 + 22 = 22 + 22 + 44 + 22 = 17 + 
22 + 5 + 44 + 22 = 44 + 44 + 22 = 10 + 12 + 22 + 44 + 22. 

4. The Guy’s Problems 

In this section, we give some advances to the problems (1) and (3) 
mentioned in pages 101 and 102. 

4.1. Sums of three squares of a given shape 

In this section, we give advances to the solutions of problem (1) 
mentioned in pages 101 and 102. 

The following result is a consequence of the definition of substitution 
derivative: 
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Theorem 11. If ,03
1

3
0 == −pp  ,13

1 =p  then each number of the form 

324 +n  can be written as a sum of three square of numbers of the form 

( ),16 −r  where ( )
5

1, 2 +−= iij psn  and 

( ) ( ) ( ) .1,,12191515797 3
2

3
2, ≥−+++−+= −− jiippjs ijij  (11) 

Proof. Note that, each term of ( )ijs ,  can be obtained by applying the 

following derivatives: 

( ) ( ) ,2,,,3,, 55
255

2
5

12
5

55

2
>⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂∂

λ∂
≥

∂∂

λ∂
+ ipp

pp
jpp

pp
i

kk

k
jj

kk

k  

to the partition (( ) ),55
kk p=λ  of elements of the sequence ( += −

3
135 kk pa  

),57 +k  .1>k  Therefore, ( )ijs ,  is a sum of five pentagonal numbers of the 

form ( )
5

1
5

52
5

2
5

1, 2 ++++ +++= ijjiij pppps  thus ( )
5

2
5

1
5

1, 2 +++ +=− jiiij ppps  

.5
52 ++ jp  Therefore for i, j fixed, ( ( ) ) ( )( ) +−+=+− +

25
1, 1163224 ips iij  

( )( ) ( )( ) ( ) ( ) ( ) .2912116561526126 22222 +++++=−++−+ jjijj  ~ 

The arguments used in proof of Theorem 11 allow to obtain the following 
result. 

Corollary 12. If ,03
1

3
0 == −pp  ,13

1 =p  then each number of the form 

324 +n  can be written as a sum of three square of numbers of the form 

( ),16 −r  where ( )
5

1, 2 +−= iij ptn  and 

 ( ) ( ) ( ) .1,,1219311032 3
2

3
2, ≥−+++−+= −− jiippjt ijij  (12) 

If in Theorem 11, we set 6
jp  or 7

jp  instead of 5
jp  and define in the 

corresponding proof sequence ka  as ( )3
24546 −++−= kk pka  or =ka  

( ),5657 3
2−++− kpk  ,1>k  respectively, then we obtain the following 
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results which are other advances to the first problem mentioned in pages 101 
and 102, regarding hexagonal and heptagonal numbers. 

Corollary 13. If ,03
1

3
0 == −pp  ,13

1 =p  then any number of the form 

2740 +n  is a sum of three square of numbers of the form ,310 −r  where 

( )
7

1, 4 +−= iij pnn  and 

( ) ( ) ( ) .1,,1552525193165 3
2

3
2, ≥−+++−+= −− jiippjn ijij  (13) 

Corollary 14. If ,03
1

3
0 == −pp  ,13

1 =p  then any number of the form 

38 +n  is a sum of three square of numbers of the form ,14 −r  where =n  

( )
6

1, 3 +− iij pm  and 

( ) ( ) ( ) .1,,1361620175130 3
2

3
2, ≥−+++−+= −− jiippjm ijij  (14) 

4.2. The equation nkzyx =++ 333  

In this section, we use arguments used in the proof of Theorem 11 to 
give sequences of positive integers which are solutions of a Diophantine 
equation of the form 

 ,333 nkzyx =++  (15) 

where x, y, z, n are positive integers and .51 ≤≤ k  Cases 2,1=k  are 

indexed in [15] as problem D5. In [18], Koyama describes efficient 
algorithms to solve equations of type (15) if .2=k  

We let ( ) ( )
6

213 ++
=ρ

ttt
t  the tth tetrahedral number. 

The following result describes sequences of positive integers which can 
be written as a sum of five cubic numbers. 

Theorem 15. If 1,0 3
1

3
0 == pp  and ,1, ≥ji  then all positive numbers 

of the form ( ) 82, ++− ijij qs  is a sum of four cubes with two of them equal, 
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where ( ) ( ) ( ) ( ) ++++++++= − 1723065076908911508 3
1

3
, ipjpjs jjij  

( ) .1981836144 3
1

3
1

3
−− ρ+ρ++ jiipj  

Proof. If kq  is the kth cubic number, then the sequence ( )ijs ,  can be 

obtained by deriving each partition (( ) ),5
2+=λ kk q  of the sequence =+2ka  

∑
=

−− +++
k

t
tk ppk

1

3
2

3
1 ,30909540  in such a way that 

( ) .12,4,, 12
22

2
kssqqqq ss

kk
k ≤−≥

∂∂
λ∂

+
++

 

Therefore ( ) 8282723, 2 ++++++ +++= ijijjjij qqqqs  is a sum of five cubes 

with two of them equal. ~ 

As an example, the following is the matrix ( ( ) )ijsS ,=  of size :34 ×  

.

242952121418457

171521470112538

1158196888047

738459774786

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=S  

Theorem 15 allows to obtain formulas for numbers which can be written 
as sums of two or three cubic numbers. To do that it suffices to evaluate the 
following differences: 

( ) ,3 72382, ++++ +=− jjijij qqqs  

( ) .2 8272382, ++++++ ++=− ijjjijij qqqqs  (16) 

Formulas (16) and Theorem 15 allow to obtain the following result. 

Corollary 16. For all ,1, ≥ji  the triplet ( )zyx ,,  with ,3+= jx  =y  

72 +j  and 82 ++= ijz  is a solution of the Diophantine equation 

 ( ) .2 82,
333

++−=++ ijij qszyx  (17) 
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Corollary 17. If ,1, ≥ji  then ( ) ( )42,84 +−=+−= jyjx  and =z  

82 ++ ij  is a solution of the Diophantine equation 

( ) ( ),2 ,,
333

ijij nszyx −=++  

where 

( ) ( ) ( ) ( )1723065076908911508 3
1

3
, +++++++= − ipjpjm jjij  

( ) ,1981836144 3
1

3
1

3
−− ρ+ρ+++ jiipj  

and 

( ) ( ) ( ) ( ) ( ) ( ) ( )12389121167141934068, −−−+−−+−+= jjjjjjn ij  

( ( ) ( ) ( )) ( )112121150397 −−−+−++ ijjj  

( ) ( ) ( ) ( ) ( ) ( ).1231256 −−−+−−++ iiiiij  

That is, 

,
242952121418457
171521470112538
1158196888047
738459774786

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=S  .
261292510224183
163261550914788
943988088261
493444654068

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=N  

Proof. If kq  is the kth positive cube, each term ( ),, ijm  ( )ijn ,  can be 

obtained via the substitutions 

( ) ( ),,,, 8442
8282

2

12
22

2

++
++++

+
++ ∂∂

λ∂
∂∂
λ∂

jj
ijij

ji
ss

kk
k qqqqqqqq  

,12,4 kss ≤−≥  

where jik λλ ,  are partitions such that 
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(( ) ),5
2+=λ kk q  

(( ) ( ) ( ) ).3
82

1
3

1
72 ++++=λ ijjjji qqq  (18) 

 ~ 

4.3. Representations of posets and compositions into cubic numbers 

Let kq  be the kth positive cubic number. Then the poset 1cP  (see Figure 

5) is represented over ∗N  in the following form: 

( ) ( (( ) )),,, 5
1111

qqn bb =λ  

( ) ( (( ) )),,, 5
22 qqn bb =λ  

( ) ( (( ) ( ) )),,, 1
3

1
23211

qqqqn aa +=λ  

( ) ( (( ) )) .1,,5, 5
22 ≥=λ ++ iqqn iicc ii

 (19) 

We let qΛ  denote this representation. Posets icP  of Subsection 3.2 are 

represented in the same way, taking into account the following changes: 

,1,1,,11 ≥≥=−=′ +++− ljiaqqn ijjjial
 where 

( )⎪⎩

⎪
⎨
⎧

≥>+ρ−ρ

≥=+
=

+

+

.1,1,6

,1,1,16
33

3
1

jii

jip
a

jji

j
ij  

Furthermore, for ,1,,2 ≥≥ hkj  

 .305,122,2 3
1

3
12 +++ +=Δ+=Δ=′ +−− hcjckc ppqn

hjk
 (20) 

Therefore all results regarding partitions of type Γ and Ξ for 00
n
rpn  obtained 

in Section 3 are valid for numbers ,5 rq  where rq  denotes the rth cubic 

number. In particular, we have the following results by using the notation qΞ  
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for partitions of type Ξ (induced by representation qΓ  and its differentiations) 

of numbers of the form :5 rq  

Lemma 18. If N is the number of partitions of type qI  and qII  of 

,4,5 ≥rqr  then 

( ) ( ) ( ) .126
123 3

1
3

3 −+++
−−−

= −− rpprrrN rr  

Theorem 19. If ,4≥r  then 

( ) ( ).2mod05, ≡−Γ rqP rqr  

Corollary 20. The number of partitions of type qΞ  of ,4,5 ≥rqr  is 

( ) ( ) .22,5, 00 rNMpnPqP n
rrrqr −+=Ξ=Ξ  

As an example, the following are the partitions of type qΞ  of .5320 4q=  

Partitions of type I are 320 = 5 + 35 + 95 + 185 = 40 + 95 + 185 = 135 + 
185, 

Partitions of type II are 19 + 8 + 27 + 27 + 27 + 27 + 185 = 54 + 27 + 27 
+ 27 + 185 = 19 + 8 + 27 + 74 + 64 + 64 + 64 = 54 + 74 + 64 + 64 + 64 = 64 
+ 64 + 64 + 64 + 64 = 56 + 8 + 64 + 64 + 64 + 64 = 128 + 64 + 64 + 64 = 37 
+ 27 + 64 + 64 + 64 + 64, 

Partitions of type III are 19 + 8 + 27 + 81 + 185 = 54 + 81 + 185 = 19 + 
8 + 27 + 74 + 192 = 54 + 74 + 192 = 64 + 64 + 192 = 56 + 8 + 64 + 192 = 
128 + 192 = 37 + 27 + 64 + 192, 

Partitions of type IV are 19 + 35 + 81 + 185 = 19 + 35 + 74 + 192 = 56 + 
72 + 192 = 37 + 91 + 192, 

Partitions of type V are 19 + 35 + 27 + 27 + 27 + 185 = 19 + 35 + 74 + 
64 + 64 + 64 = 56 + 72 + 64 + 64 + 64 = 37 + 91 + 64 + 64 + 64, 
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Partitions of type VI are 19 + 8 + 27 + 27 + 54 + 185 = 54 + 54 + 27 + 
185 = 19 + 8 + 27 + 74 + 128 + 64 = 54 + 74 + 128 + 64 = 64 + 64 + 128 + 
64 = 56 + 8 + 64 + 128 + 64 = 128 + 128 + 64 = 37 + 27 + 64 + 128 + 64. 

We also have the following result. 

Theorem 21. If 

( ) ( ) ( ) ( ) ( ) ( ) ( )12389121167141934068, −−−+−−+−+= jjjjjjt ij  

( ) ( ) ( )( ) ( )112121150397 −−−+−++ ijjj  

( ) ( ) ( ) ( ) ( ) ( ) ,1,,1231256 ≥−−−+−−++ jiiiiiij  

then the quintuplet ,82 ++= ijv  ,3+= jw  ,72 += jx  42 += jy  and 

84 += jz  is a solution of the Diophantine equation 

 ( ).,
33333

ijtzyxwv =++++  (21) 

Proof. Since for each (( ) ( ) ( ) )3
82

1
3

1
72,, ++++=λ ijjjji qqqji  is a 

partition of ( ) ,, ijs  ( )ijt ,  can be obtained by calculating the derivatives 

 ( )., 8442
8282

2

++
++++ ∂∂

λ∂
jj

ijij

ji qqqq  ~ 

The following is a matrix ( ( ) )ijtT ,=  of size :34 ×  

.

261292510224183

163261550914788

943988088261

493444654068

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=T  

The following result is a consequence of formulas (16). 

Corollary 22. If ,1, ≥ji  then ,3+= jw  ,72 += jx  ,82 ++= ijy  

42 += jz  is a solution of the Diophantine equation 
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 ( ) .2 4282,
3333

+++ +−=+++ jijij qqszyxw  (22) 

In particular, there exist integers Z∈cba ,,  such that ( ) ( ) =− ijij ts ,,  

.2 333 cba ++  

Proof. For the difference ( ) ( )ijij ts ,, −  it suffices to write += jc 2  

,8+i  ( ),42 +−= jb  ( ).84 +−= ja  ~ 

Remark 23. Note that, it is easy to see that if ( )nξ  denotes the sum of 

the digits of n mod 9, then ( ( ) ) 584, =−ξ +jij qt  and ( ( ) )82, ++−ξ ijij qs  

.5=  

If ( ),3mod2, ≡ji  then ( ) ( )9mod482, −≡− ++ijij qs  and ( ) −ijt ,  

( ).9mod484 −≡+jq  

Furthermore, since ( ) ( )9mod423 282, −≡+− ++++ kijijij qqs  if 2=k  

l9+  and ( ) ( ).9mod423 282, −≡+− ++++ kijijij qqs  

If ( ) ( ).3mod1,3mod2,1,456 ≡≡≥+= ijllk  

We have the following corollary: 

Corollary 24. If ( ),3mod2, ≡ji  ( ),3mod1≡h  ,456 lk +=  2=m  

,9l+  ,1,,, ≥ljih  then 

( ) ( ),9mod482, −≡− ++ijij qs  

( ) ( ),9mod484, −≡− +jij qt  

( ) ( ),9mod42 4282, −≡+− +++ jijij qqs  

( ) ( ),9mod423 282, −≡+− ++++ khjhjhj qqs  

( ) ( ),9mod423 282, −≡+− ++++ mijijij qqs  (23) 

and each number of the forms: ( ) ,82, ++− ijij qs  ( ) ,84, +− jij qt  ( ) −ijs ,  
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42822 +++ + jij qq  and ( ) 18,23 282, ≥≠+− ++++ nqqs nijijij  is a sum of 

four positive cubic numbers. 

Proof. It suffices to note that the triplet ,3+= jx  ,72 += jy  jz 2=  

ni ++  is a solution of the Diophantine equation 

 ( ) .232 282,
333

nijijij qqszyx ++++ +−=++  (24) 

 ~ 

As an example an nm ×  matrix of type ( ( ) )82, ++−ξ ijij qs  (see 

Corollary 24) has the form: 

.

831831
759759
318318
831831
759759
318318

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=U  

5. Partitions of Types I and II of 1755 5
5 =p  

In this section, we illustrate how partitions of types I and II can be 
obtained via differentiations of posets ,

icP  ,31 ≤≤ i  with the following 

Hasse diagrams: 

 

These posets are of the type 1cP  as showed in Figure 5 with .3=n  
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In this case, we consider representations over ∗N  of posets icP  and its 

corresponding derivatives ( ),1, −
′

ii caP  ,31 ≤≤ i  where for each ,31 ≤≤ i  we 

have 

,1 Cbbaici
+++=P  

where { }321 cccC <′<′=  is a chain such that { },ii ca <′  .31 ≤≤ i  

Furthermore, ,11 cbb <′<′  the pair of points ( )1, −ii ca  is L-suitable in each 

poset icP  and .0 bc =  

As an example of a representation of poset 1cP  over ∗N  with 50 =n  

(see formulas (9)), has the form: 

( ) ( ),11111,5, 11 ++++=λbbn  

( ) ( ),55555,25, ++++=λbbn  

( ) ( ),125,17, 11 +=λaan  

( ) ( ),1212121212,60, 11 ++++=λccn  

( ) ( ),2222222222,110, 22 ++++=λccn  

( ) ( ).3535353535,175, 33 ++++=λccn  (25) 

The following is the representation of the corresponding derived poset 

( ) :01, caP′  

( ) ( ),11111,5, 11 ++++=′′ bb nn  

( ) ( ),55555,25, ++++=λ′′ bbn  

( ) ( ),7,7,
11

=λ′′ −− aa
n  

( ) ( ),125,17,
11

+=λ′′ −− cc
n  
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( ) ( ),2222,44,
22

+=λ′′ −− cc
n  

( ) ( ),3535,70,
33

+=λ′′ −− cc
n  

( ) ( ),1212121257,60,
11

+++++=λ′′ ++ cc
n  

( ) ( ),222222201257,110,
22

++++++=λ′′ ++ cc
n  

( ) ( ).35353526201257,175,
33

+++++++=λ′′ ++ cc
n  (26) 

In the sequel, we give representations of posets 2cP  and ( ),12, caP′  

respectively, with :50 =n  

( ) ( ),11111,5, 11 ++++=λbbn  

( ) ( ),55555,25, ++++=λbbn  

( ) ( ),225,27, 22 +=λaan  

( ) ( ),1212121212,60, 11 ++++=λccn  

( ) ( ),2222222222,110, 22 ++++=λccn  

( ) ( ).3535353535,175, 33 ++++=λccn  (27) 

The representation of the derived poset ( )12, caP′  is given by the following 

formulas: 

( ) ( ),11111,5, 11 ++++=λ′′ bbn  

( ) ( ),55555,25, ++++=λ′′ bbn  

( ) ( ),17,17,
22

=λ′′ −− aa
n  

( ) ( ),125,27,
22

+=λ′′ −− cc
n  

( ) ( ),2222,44,
22

+=λ′′ −− cc
n  
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( ) ( ),3535,70,
33

+=λ′′ −− cc
n  

( ) ( ),1212121257,60,
11

+++++=λ′′ ++ cc
n  

( ) ( ),222222201257,110,
22

++++++=λ′′ ++ cc
n  

( ) ( ).35353526201257,175,
33

+++++++=λ′′ ++ cc
n  (28) 

Formulas given above can be used for posets 3cP  and ( )23, caP′  taking into 

account the following changes: 

( ) ( ),355,40, 33 +=λaan  in ,3cP  

( ) ( ),30,30,
33

=λ′′ −− aa
n  

( ) ( ),355,40,
33

+=λ′′ −− cc
n  in ( ).23, caP′  (29) 

The following is the matrix ( )ijaA =  furnishing terms −= ++−
5

1jia
pn

l
 

:5
1+jp  

.

30

2317

13107

=A  

In these graphics, we show all partitions of types I and II of ,5 5
rp  

52 ≤≤ r  induced by the derivatives of .1cP  
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A partition of type II of 175 can be obtained in this example by choosing 

a graph ( )1, −
Γ ii ca  whose vertices are points in chains −−+ + CaC i,  of a 

poset ( )1, −
′

ii caP  with edges linking points as shown below ( ( ) ).for 01, caP′  We 

consider paths ( )1, −
Γ⊂ ii caP  with initial vertex in a point of the chain 

−− + Cai  of ( )1, −
′

ii caP  and final vertex ,3
+c  

 

bci =≤≤ 0,31  and choosing a unique number according to the graphic for 

each point of P. Numbers in parentheses mean that they occur in the partition 
and that the corresponding point is an initial vertex of P. The first term of a 

partition of type II is induced by a vertex of the form −
ia  and it does not 

contain parts in parentheses. Note that, if ,2 Pc ∈+  then the number associated 
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to +
3c  is 65 and that an expression of type (( ) )35

ip  occurs once in the 

partition. Actually, the term (( ) )35
ip  occurs in the partition if and only if 

+
−2ic  is the minimum of the chain +C  in the path P. 

As an example, we can consider the following path ( )01, caP Γ⊂  such 

that 

,3221
++−− →→→= ccccP  

then the corresponding partition of type II associated to P has the form: 

.652222222024 +++++  

A partition of type II of 175 associated to the path ⊂→= +−
33 ccP  

( )23, caΓ  has the form: 

.35353570 +++  

Partitions of type I are obtained in the same way taking into account that 

each path is contained in the graph +Γ  (shown below) with initial point in 

( ).01,1 cab P′⊂∇  Furthermore, each path must be finished in +
3c  (there exists 

only one path for each point in :)1
∇b  

.3211
++++ →→→→=Γ cccbb  

In this case, 255 == bb nn ,
1

 and so on. We assume that there exist the path 

++ → 33 cc  such that .
3

175=+cn  There are not two terms of the form ,xn  

∇∈ 1bx  associated to a path and no paths associate a term of the form .3n  

Therefore, partitions of type Γ of 175 are: 

Partitions of type I, 5 + 20 + 35 + 50 + 65 = 25 + 35 + 50 + 65 = 60 + 50 
+ 65 = 110 + 65 = 175. 
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Partitions of type II, 7 + 5+ 12 + 12 + 12 + 12 + 50 + 65 = 24 + 12 + 12 
+ 12 + 50 + 65 = 7 + 5 + 12 + 20 + 22 + 22 + 22 + 65 = 24 + 20 + 22 + 22 + 
22 + 65 = 22 + 22 + 22 + 22 + 22 + 65 = 7 + 5 + 12 + 20 + 26 + 35 + 35 + 35 
= 24 + 20 + 26 + 35 + 35 + 35 = 22 + 22 + 26 + 35 + 35 + 35 = 35 + 35 + 35 
+ 35 + 35. 

17 + 5 + 22 + 22 + 22 + 22 + 65 = 44 + 22 + 22 + 22 + 65 = 17 + 5 + 22 
+ 26 + 35 + 35 + 35 = 44 + 26 + 35 + 35 + 35 = 30 + 5 + 35 + 35 + 35 + 35 = 
70 + 35 + 35 + 35 = 10 + 12 + 22 + 22 + 22 + 22 + 65 = 10 + 12 + 22 + 26 + 
35 + 35 + 35 = 23 + 12 + 35 + 35 + 35 + 35 = 13 + 22 + 35 + 35 + 35 + 35. 

Partitions of type III, 7 + 5 + 12 + 36 + 50 + 65 = 24 + 36 + 50 + 65 = 7 
+ 5 + 12 + 20 + 66 + 65 = 24 + 20 + 66 + 65 = 22 + 22 + 66 + 65 = 7 + 5 + 
12 + 20 + 26 + 105 = 24 + 20 + 26 + 105 = 22 + 22 + 26 + 105 = 35 + 35 + 
105. 

17 + 5 + 22 + 66 + 65 = 44 + 66 + 65 = 17 + 5 + 22 + 26 + 105 = 44 + 26 
+ 105 = 30 + 5 + 35 + 105 = 70 + 105 = 10 + 12 + 22 + 66 + 65 = 10 + 12 + 
22 + 26 + 105 = 23 + 12 + 35 + 105 = 13 + 22 + 35 + 105. 

Partitions of type IV, 7 + 17 + 36 + 50 + 65 = 7 + 17 + 20 + 66 + 65 = 7 
+ 17 + 20 + 26 + 105 = 17 + 27 + 66 + 65 = 17 + 27 + 26 + 105 = 30 + 40 + 
105 = 10 + 34 + 66 + 65 = 10 + 34 + 26 + 105 = 23 + 47 + 105 = 13 + 57 + 
105. 

Partitions of type V, 7 + 17 + 12 + 12 + 12 + 50 + 65 = 7 + 17 + 20 + 22 
+ 22 + 22 + 65 = 7 + 17 + 20 + 26 + 35 + 35 + 35 = 17 + 27 + 22 + 22 + 22 + 
65 = 17 + 27 + 26 + 35 + 35 + 35 = 30 + 40 + 35 + 35 + 35 = 10 + 34 + 22 + 
22 + 22 + 65 = 10 + 34 + 26 + 35 + 35 + 35 = 23 + 47 + 35 + 35 + 35 = 13 + 
57 + 35 + 35 + 35. 
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