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Abstract

We use techniques of the theory of algorithms of differentiation of
posets and P-partitions to describe identities of some one-dimensional
compositions involving polygonal and cubic numbers. We also
describe with these techniques numbers which can be written as a sum
of three square of numbers of a given shape or sequences of numbers
which can be written as sums of three, four or five cubic numbers.

1. Introduction

The theory of algorithms of differentiation of posets was introduced by
Nazarova and Roiter in 1972. Actually, they introduced the theory of
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representations of posets and used it to give a proof of the second conjecture
of Brauer-Thrall. Researches in this theory are oriented to give a complete
description of the indecomposable objects of the additive category rep P of
k-linear representations of a given poset P [2, 7-9] and [20].

Algorithms of differentiation of posets are the main tool in the theory of
representations of posets, such algorithms are functors D : rep P — rep P’

from a category of representations of a poset P to the category of
representations of a poset ', in this case D reduces the dimension of the

category rep P and induces a categorical equivalence between some quotient
categories. For example, the following is the definition of the algorithm of
differentiation with respect to a maximal point given by Nazarova and
Roiter:

Let (P, <) be an ordinary poset. Then a maximal point x € max P is
suitable for this differentiation if the subset N < P of all points n e P
incomparable with x has width w(N) < 2.

The algorithm of differentiation with respect to a suitable point b e
max P is defined in such a way that if N = P\b,, then

R = (P\b)UN

with a partial order induced by P\b and N=NU X+ylx,yeN,x£y,

y £ x}. Figure 1 below shows the Hasse diagram of this differentiation.
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Gabriel proved that | IndP| =|Ind % |+| N |+1, where | Ind P | denotes
the number of classes of indecomposable objects in rep P and | N | is the
size of N [13, 17, 20].

A representation U’ = (Ug; Uy |xeBy) of R is defined by the
following formulae from a representation U = (Ugy; U, | x € P) of P, where

Uy is a finite-dimensional k-vector space and U, < Uy is a subspace of Uy
for each x € P.

Uy = Uy,

Uy =Uy, for x € P\b,

Usty = U(xey)p foreachdyad {x, y} < N,

¢' = ¢|Uy for any linear map-morphism ¢ : Uy — Vg € repP. (D)

Gabriel also proved that there exists a categorical equivalence
repP/(Ind N) > rep%;, where (Ind N) denotes the ideal of all morphisms

passing through sums of indecomposable objects defined by the subset N, in
this case rep®/(Ind N) is a quotient category. In this paper, we use these

ideas in order to describe advances to the following open problems
mentioned by Guy in [14-16] and Cafiadas and Irlande in [4]:

(1) What theorems are there, stating that all numbers of a suitable shape
are expressible as the sum of three (say) squares of numbers of a
given shape? For instance, can all sufficiently large numbers be
expressed as the sum of three pentagonal (hexagonal, heptagonal)
numbers of nonnegative rank? Equivalently, is every sufficiently
large number of shape 24n+3 (8n+ 3, 40n + 27) expressible as

the sum of three squares of numbers of shape
6r —1 (4r -1, (10r £ 3))?

(2) There are theorems giving the number of representations of a number
n, as the sum of triangular or square numbers. Can we find
corresponding results for any of the other polygonal numbers?
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(3) Is every number of the form 9n+4 the sum of four cubes?
Deshouillers et al. believe that 7373170279850 is the largest integer
which cannot be expressed as the sum of four nonnegative integral
cubes [12]. Actually more demanding is to ask if every number is the
sum of four cubes with two of them equal.

Regarding partitions and compositions, we recall that a partition of a
positive integer n is a finite nonincreasing sequence of positive integers

M, Ao, ..., Ay such that Zir:l;‘i =n. The A; are called the parts of the

partition [1]. A composition is a partition in which the order of the summands
is considered.

Partitions of positive numbers may be treated as a linear array whose
sum is prescribed

S

n:n1+n2+---+nS:Zni, nizni+1,
i=1

higher-dimensional partitions are arrays whose sum is n. In this case;

n= Z Miiy...ir where Migia...ir = Migiz...Jr @)
i, 1r >0

whenever iy < jp, i < jp, ... iy < jp (all ny, . are nonnegative integers)

[1]. In particular, the plane partitions of n are two-dimensional arrays of
nonnegative integers in the first quadrant subject to a nonincreasing
condition along rows and columns. For example there are six plane partitions
of 3:

000 - 000 00O 00O 000 100
000 - 00O 100 000 100,and1 0 O.
300 - 210 200 111 110 100

According to Andrews [1], there is much of interest when the dimension
is 1 or 2, and very little when the dimension exceeds 2. In this paper, we use
ideas from the theory of algorithms of differentiation to obtain identities for
some one-dimensional compositions involving polygonal and cubic numbers.
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Concerning higher-dimensional partitions, we recall that, Stanley has shown
that numerous partition and permutation problems can be treated through the
use of P-partitions, i.e., order-preserving maps from a partially ordered set P
to a chain with special rules specifying where equal values may occur [1, 21,
22]. For instance, if P is a p-element chain, then a P-partition of a positive
integer n is equivalent to an ordinary partition of n into at most p parts. Some
relationships between P-partitions and the counting of chains in the set of
order ideals of P ordered by inclusion are well described by Stanley in [21]
and [22]. Furthermore, Stanley’s work on P-partitions allows him to deduce
results (regarding r-dimensional partitions), easily from a general reciprocity
theorem [1, 21]. We also recall that the first author et al. in [6] describe some
compositions of dimension three by using P-partitions.

This paper is organized as follows: Some of the basic definitions and
notations concerning posets and P-partitions are included in Section 2. In
Section 3, we describe numbers which can be written as a sum of three
square of numbers of a given shape, in Section 4, we solve Diophantine
equations involving cubic numbers, in particular, we describe some
sequences whose terms can be written as a sum of four cubes with two of
them equal. Finally, in Section 5, we give examples of compositions defined
in Section 3 with the help of some algorithms of differentiation and
P-partitions.

Remark 1. We will use the customary symbols N, Z and R for the set
of natural numbers, integers and real numbers, respectively.
2. Preliminaries
This section introduces some other basic definitions, and notations to be
used throughout the paper [5, 6, 10, 11, 19, 21, 22].
2.1. Posets

An ordered set (or partially ordered set or poset) is an ordered pair of the
form (P, <) of a set P and a binary relation < contained in P x P, called the

order (or the partial order) on P such that < is reflexive, antisymmetric and
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transitive [11]. The elements of P are called the points of the ordered set. We
will write x <y for x <y and x # vy, in this case we will say x is strictly

less than y. An ordered set will be called finite (infinite) if and only if the
underlying set is finite (infinite). Usually we shall be a little slovenly and say
simply P is an ordered set where it is necessary to specify the order relation
overtly we write (P, <).

Let P be an ordered set and let x, y € P we say x is covered by y if
x<yand x<z<y implies z = x.

An ordered set C is called a chain (or a totally ordered set or a linearly
ordered set) if and only if forall p,ge C wehave p<qorqg<p (ie,p
and q are comparable). On the other hand, an ordered set P is called an

antichainif x <y inPonlyif x =y [11].

Let P be an ordered set. A chain C in P will be called a maximal chain if
and only if for all chains K < P with C < K we have C = K.

If n is a positive integer we let n denote the n-element poset with the
special property that any two elements are comparable [22]. We also define a
subposet Q of a poset P to be convex if y € Q whenever x < y < z inPand

X, Z € Q.

Let P be a finite ordered set. We can represent P by a configuration of
circles (representing the elements of P) and interconnecting lines (indicating
the covering relation). The construction goes as follows.

(1) To each point x € P, associate a point p(x) of the Euclidean plane

R?, depicted by a small circle with center at p(x).

(2) For each covering pair x <y in P, take a line segment I(x, y)

joining the circle at p(x) to the circle at p(y).
(3) Carry out (1) and (2) in such a way that

(@) if x <y, then p(x) is lower than p(y),
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(b) the circle at p(z) does not intersect the line segment | (x, y) if

z=xand z#y.

A configuration satisfying (1)-(3) is called a Hasse diagram or diagram
of P. In the other direction, a diagram may be used to define a finite ordered

set; an example is given below, for a poset (Mz, <) ={(i, j)|0<i <3,

0<j<3c N? whose points satisfy the following condition:
(i, )= (@', j)ifandonlyifi<i'and j < j', forall (i, j), (i, j') € Mz. (3)

In this case, N has been equipped with its natural ordering.

Oas
23
Oz 13
Mz = 12 03
O 02
01
0 00

Figure 2

Let (P, <) and (Q, <) be ordered sets and let f : P — Q be a map.
Then f is called an order-preserving function if and only if for all x, y € P

we have:

x <y = f(x) < f(y).
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We shall say that two posets P and Q are isomorphic if there exists an
order-preserving bijection f : P — Q, whose inverse is order-preserving. In
such a case, we shall write P = Q.

Let (P, <) and (Q, <) be ordered sets. Then f : P — Q is called an
(order) embedding if and only if f is injective, and for all x, y € P, we have:

x 2y e f(x) D f(y).

If (P, <) and (Q, <) are posets, then the direct (or cartesian) product of
P and Q is the poset (P x Q, <) onthe set {(x, y): x € P and y € Q} such
that (x, y) < (X, ¥y) in PxQ if x<x"inPand y < y" in Q. To draw the
Hasse diagram of P x Q (when P and Q are finite), draw the Hasse diagram
of P, replace each element x of P by a copy Q, of Q and connect

corresponding elements of Q, and Qy (with respect to some isomorphism

Qx = Qy) ifxandy are connected in the Hasse diagram of P.

A further operation that we wish to consider is the dual of a poset P. This

is the poset P* on the same set as P, but such that x < y in P* if and only

if y<xinP.IfPand P* are isomorphic, then P is called self-dual.

An order ideal of a poset (P, <) is a subset | of P such that if x € | and
y <X, then y e l. We let J(P) denote the set of all order ideals of P,
ordered by inclusion. In particular, we define the order ideal or down-set of
acPtobeay ={qeP:q<al Dually,a” ={qe?P:a<q}is the filter
or up-set of a [19].

Note that, k-element antichains in P correspond to elements of J(P) that
cover exactly k-elements.

If X, y belong to a poset P, then an upper bound of x and y is an element
z € P, satisfying x <z and y < z. A least upper bound of x and y is an

upper bound z of x and y such that every upper bound w of x and y satisfies
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z < w. Ifaleast upper bound of x and y exists, then it is clearly unique and is
denoted x v y. Dually one can define the greatest lower bound x A y, when
it exists. A lattice is a poset L for which every pair of elements has a least
upper bound and greatest lower bound. We say that a poset P has a 0 if
there exists an element 0 € P such that 0 < x for all x e P. Similarly, P
has a 1 if there exists 1 e P such that x <1 for all x e P. Clearly all finite

lattices have 0 and 1. Since the union and intersection of order ideals is
again an order ideal, it follows from the well-known distributivity of set
union and intersection over one another that J(?) is indeed a distributive

lattice [22].

A finite nonnegative lattice path in the plane (with unit steps to the right
and down) is a sequence L = (v, V,, ..., V), Where v; € N? and vj 4 —V;
= (1, 0) or (0, -1) [22].

As an example, let 8 be the set of all sequences of nonnegative integers

{fi}j=;, where only a finite number of terms are not null. To each sequence

{f;} € 8 there is associated a partition A = (1'(12‘(23f3 ...), where f; denotes
the number of times that the part i occurs in A. (8, <) is a poset if < is

defined in such a way that
{fi} <{g;}, if f; < g, foralli.
In fact § is a lattice with operations A and v given by
{fit Adoi} ={min(fi, gi)},  {fi} v {gi} = {max(f;, gj)}.

A subset C < 8 such that {fj} € C and {g;} < {f;} imply {g;j} € C is called
an ideal partition. Moreover, two ideal partitions C; and C, are equivalent
if P(Cq, n) = P(C,, n) for all integer n, in such a case we write, C; ~ C,.

We recall here that the fundamental problem for ideal partitions consists of
giving a complete characterization of its equivalence classes [1].
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Given a finite poset P with |P | = n in [22] it is defined an extension of

P to a total order or linear extension of P as an order-preserving bijection
o : P — n. The number of extensions of P to a total order is denoted e(%P).

Actually, e(?P) is also equal to the number of maximal chains of J(%).
We may identify a maximal chain of J(P) with a certain type of lattice
path in Euclidean space as follows [22]. Let Cy, ..., C be a partition of P

into chains. Defineamap & : J(P) - N¥ py:
8(1) = (1NCy ] [1NCy | [1NC ).

If we give NX the obvious product order, then & is an injective lattice
homomorphism that is cover-preserving (and therefore rank-preserving).

Thus in particular J (%) is isomorphic to a sublattice of NK. Given & J(P)

— NK, as above, define [ = UT cx(8(T)), where cx denotes convex hull

in RX, T ranges over all intervals of J(P) that are isomorphic to Boolean
algebras. Thus Iy is a compact polyhedral subset of RX. It is then clear that
the number of maximal chains in J(?) is equal to the number of lattice paths
from the origin (0, 0, ..., 0) = 8(0) to 8(1), with unit steps in the direction of
the coordinate axes. In other words, e(?) is equal to the number of ways of
writing

8(1)=v1+v2+---+vn, (4)

where each v;j is a unit coordinate vector in RX and where Vi +Vy +ee +
vj € I'5, foralli.

For example, let M =2xn, and take C; ={(2, j)|jen}, Co =
{L j)jen} Then 8(I(M))={(Gi, j)e N?|0<i< j<nl. Forexample
when n =3 we obtain Figure 2. Hence e(M) is equal to the number of
lattice paths from (0, 0) to (n, n) with steps (1, 0) and (0, 1), which never
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rise above the main diagonal x =y of the plane (x, y)-plane. It can be

2n
shown that e(2xn) = ﬁ[ j = C,,. These numbers are called Catalan
n

numbers [22].

We let M, denote the poset (8(J(2 x n)), <), where =< is the relation
defined in (3).
2.2. P-partitions

The theory of P-partitions which is a common generalization of the
theory of partitions and the theory of compositions was introduced by
Stanley in 1972 [1, 6, 21]. In order to give a definition of P-partition we must
define labeled ordered sets. In this case if (N, <) is the set of natural

numbers equipped with its natural ordering and (P, <) is a poset with
| P| = p, then a labeling w of P is a bijection w: P — {1, 2, ..., p} = N. A
labeling w is called a natural labeling if it satisfies

x <y implies w(x) < w(y).
w is called a strict labeling if
x <y implies w(x) > w(y).
An ordered set together with a labeling w is called a labeled ordered set.
If w is a labeling of (®, <), then a (P, w)-partition of n or poset
partition isamap o : P — N satisfying the conditions:
1. x <y in P implies o(x) > o(y), i.e., o is order-reversing,

2. x <y in®Pand w(x) > w(y) implies o(x) > o(y),
3. Dlo(x)=n.

xeP

If w is a natural labeling, then o is called a P-partition. If w is a strict
labeling, then o is called a strict P-partition. If o is a (P, w)-partition, then

the values o(x), x € P, are called the parts of .
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Figure 3 above, shows a (M3, w)-partition of 22 = C; + C, + C3 + Cy,
where C; denotes the ith Catalan number. In this case, we have labeled M3
with a map w: Mz — P such that P = {1, ..., 10}, w(i, 3)=4-1i, if 0<
i<3 wW(j,2)=7-j, if0<j<2 wk,1)=9-k, if 0<k <1 and
w(0, 0) = 10.

Some relationships between P-partitions and the counting of chains in
the set of order ideals of P ordered by inclusion are well described by
Stanley in [21] and [22]. Actually, he describes in [21] the following relation

between the number of some P-partitions of a positive integer n, denoted
a,, and the number e(P) of extensions of P to a total order. In this case, we

have considered that | ?| = p [2, 7, 10]:

e(P)n p_l(l + o(%))

T

as N — oo.
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We let A(P, w) denote the class of all (P, w) partitions. Define two
labelings w, W' to be equivalent (denoted w ~ w') if A(P, w) = A(P, w").

In [21, 22], Stanley mentioned a number of interesting combinatorial
problems concerning labeling of ordered sets, for example: Given a labeled
ordered set (P, w), how many labelings are equivalent to w?

Most of the preceding concepts can be extended to infinite posets. For
example the notion of a P-partition can be extended in such a way that the
following finiteness conditions hold:

1. For every element x € P there is some P-partition ¢ such that
o(x) > 0.

2. There exist only finitely many P-partitions of any given integer n.

Therefore, if P is a poset, then an order-reversing map w from P to the set of
nonnegative integers is a labeling of P if additionally only finitely many x
have w(x) > 0. In this case a labeling w of P is a P-partition of n if

> w(x)=n [1].

xeP

Remark 2. We have considered only the cases for which a P-partition is
an order-reversing map. The order-preserving case can be obtained simply by
dualizing the poset P [21].

3. The Main Results

In this section, we follow ideas of the first author who uses in [3] theory
of algorithms of differentiation in order to give advances to the solution of
the problems (1)-(3) mentioned in pages 101 and 102. To do that, it is
associated to a given P-partition a suitable set of partitions.

3.1. Representation of posets over a set of positive integers

Let (N*, <) be the set of positive integers endowed with the usual order

and (P, <) an ordinary poset P = . A representation of the poset P over
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N* is a system of positive integers with the form:
A = (Ag; (ny, Ax)|x € P), ®)
where Ag  N*, (Ag # @) Ay is a partition of the positive number n, with

parts in Ag and | &y | is the size or cardinal of A,. Moreover,

x<'y=ne<ny, A <[y | and max{iy} < max{ry) (6)

Two representations (over N*), Al = (Alo; (nk, x)|x e P) and A% =
(A%; (n)%, k2X)|x e P) of a given poset P are equivalent if and only if

Al = A% and ni = nf for each x € P. In this case the fundamental

problem consists of characterizing the corresponding equivalence classes by
calculating P(Ag, ny) for each x e P. Note that, this problem is similar to
the problem of classification of ideal partitions.

If A= (1f1 i ...mfm) is a partition with parts in a set Hg the uth
substitution derivative of A with respect to the part i is a partition with parts
in Hp obtained from A by substituting one or several occurrences of i € A

by the number u € Hy. We let A;(u) = %(u) denote this substitution and

write:

M) = () = @hui it m ),

n
T2 )= @ (- DG i Dm0 < g
o
Furthermore, different substitutions can be applied to the same partition A.

We let

ok

.z~ _ fl 'fitfl fm <t <
6ilai2...aik(”1’”2""'“k) @F Ut mm), 1<t <k

denote such substitutions.
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If (P, <) is a poset, then we say that a pair (a, b) € P is L-suitable or
suitable for differentiation L if a and b are incomparable and there exists a
chain C ={c; <' ¢y --- <" ¢} such that a <’ ¢;, b <’ ¢; and

P=a+b, +C.
The differentiation of a poset P with a pair (a, b), L-suitable is a poset 33('61, b)
such that
Rapy=a +P/@")+C”+C",
where C™ ={c; <---<¢p}, CT ={¢ <--- <} arechainswith a~ < ¢
=a and foreachi, 1<i<n, ¢ < ci+, a, ¢ and ci+ inherit all relations

that points a and c; had with the other points in P. In 9>/aV points and
relations have not changes. In fact, these new relations and the original ones

defined in fP/aV induce all relations in Jj ). Figure 4 shows the Hasse

diagram of this reduction.

Figure 4

Henceforth, we shall assume that if A is a representation of a poset P
with a pair of points (a, b), L-suitable with t fixed, ky, € N for each x € P,
then

Ay = ((ky)'), forall x e bY + B,

%
E M 0) = (10 (), if xeC,
okl ta
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Iy = Agq,
|ha|<| Ae, l
0<ng —ng —|Jg [kg < Na,
o =ng —Ng —|Jg |Ke, < maxida}. (7)

Representation A’ of the derived poset fP('a,b) is given by the following

formulae if 2 < j <i;

Ay = Ag,

=oAL = (o)),

a a

ncl, =Ny, xcl, =Aa.

' ' |
=]l kg A= (k) ' ),

, 1, Byl Jei |
=g, M = (o0 xcl_(| le; [(ke; =Koy )7ke @),

(n,, A5) = (hy, (h})), forall x e by, if BY N{a™} = @,
hy = min{a, min{n, — ny |x € B}},

(N, &) = (nyg, Ay), forall x e by, if BY N{a~} =&,

5 = {1, i>2, ®)

0, otherwise.

Remark 3. If i =1 in formulas (8), then we assume that the formula for
k’c+ is obtained by applying the same formula given for X’C+ and deleting the
1 i

term | 1, |(kcj — ij—l)' Furthermore, wcf =g,

3.2. Compositions of polygonal numbers

In order to describe compositions of multiples of polygonal numbers of
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positive rank, we consider representations of a poset (Tcl, <'), with Hasse

diagram showed in Figure 5, in this case, ?01 =a’ + b,, the pair (a, b) is
L-suitable, a = a1, a; <' ¢ <' ¢y <'--- <" ¢, isachain, b, =b; and aj\a
= (.

b1
Figure 5

In this section, we describe some compositions of numbers of type
né =Ny prj‘iz, J 21, via differentiations of posets J, = % \ay + a; with
Cn = Cj inthe chain C. Such posets are defined in such a way that, relations
between points of i, \a; have not changes. Furthermore, a; <’ ¢;, (&, ¢i_1)
is a pair of points L-suitable and a; inherits all relations that a(j_y) had with
points of C(i-2), (see Figure 5 with ¢y = b).

Let Ag, be a representation of poset J, such that Ago > {teN|t=

pfo}, where pf© denotes the ng-gonal number of rank r, ny > 5, fixed.

Furthermore,
(N, M) = (Nopy®, ((pr®)™)),

(N, &) = (Nop3°, ((p32)™)),
(Ngy» hay) = (p3° + 5%, ((P32)'(p50)H),

(NG, Ae,) = (No P2, (pi%)™)), i>1. 9)
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Each representation A, of T is defined in such a way that Ac o = Ago

for each x # aj, ny, Ay are those defined in the representation Acl of fPCl,

in this case, n, = pi% + pi° and Ay = (PO (P, 2<1<i+2
and 1<i<j.

’

In a poset iP(’ai,cifl), 1<1<j, we denote, d, = | cfA\cl‘A , nCl+ =
ngpg®. where pg0 is the d, th ng-gonal number, in this case, p° = 1.
1 1

! _n -n' _ —n. —n! —-n!
If Acr_ncl+ nCT_l'ACf nCl+ Np, Ap =Ny — Np, Ap =N, then

a partition A of né]T in the poset fP(’aLCO) is of type I, if it has at least d;
parts with the form:

h=((m) (A ot (8p) P (ap) "), x e cf \ej,,
where for each ze®P, f,e€{0,1} if ze C}LA \CJTA, f, =0 otherwise.

Furthermore, if ny € A, then ny ¢ L if y # x and y € cJTA\cJTA, 1<1<.

A partition A is of type Il for a positive number n(':+ in a poset iP(},li,ciil)
j

if it is not of type I. Moreover, either A = x;ﬁ or its parts have the form:
]

A= (s'lt'lu'zvfhxf5yf6), I, Ir, fy, f5, fg € {0, 1},

exponents 1, 0, indicate the existence of the corresponding term in the
partition, in this case:

5= (M) t="hy = (PPN, 2<i<it2<j+2,
i+2

u=0"_+p +pl), v=pp, x=A_,
aj Cq

y = «pgg J0-2)) = ((pQ‘;)“CW)), 1<g<ij2<h<j,

1£i,m£j,|1=1:>|2=0,|2=1:>|1=0
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and if pg = 0, then in the poset J, ¢,) we have that

un = [20+6(ng —5) + (29 — 4) (h = 2)I" (pg)*)' ™ m e {0. L,
A . =54+19(ng — 6) + 4p§n0_6) +ng(ng —2)(g —-1), g =1, ny > 6,
A : =35+15(g —1), if ng =5,

A_=n_-n_-n"_,
C2 €2 G a

A_=n_-n_ ,3<h<],
Ch Ch Ch-1

B>
I
Il

[20 + 6(ng —5)+ (2ng —4)(h—2), 2<h< ]

Y ) ; ' i !
Values Acﬁ _ncﬁ ncﬁ_l in Ry, ¢_,) are those used in T o) by

considering the corresponding translations. Furthermore, if we let H denote
the set of parts of type Il and assume H = {s, t, u, v, x, y}, then such parts

are assigned to a partition of type Il of Nc; = Ng p?ﬁz as follows:
Let Ta ¢ o) be the graph whose vertices are points of the chains

a- +C~ +C* of :P(,aivci—l) with edges defined according to the following

diagramfor 1 <i < j:

c;
2 S
Tagice )= @ — i€ L (’f_l e (:r
N\ / Y T
Gy = wne 654 = ¢

A partition of type Il for Ne; is obtained from Ta i q) by assigning a
unique element of H (keeping the order induced by 33 Ci)) to each vertex of

a path P < I ¢ ,) Which has as initial vertex a point in aj + C~ with
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final vertex c}“. Therefore, numbers A, or (ng’ )2 are associated to the
1+1
vertex ¢;,,, t>1 whereas, vertices ¢;*, ¢;.,, have associated numbers of
No \Ng—2 N \Np—2 ; ;
the form (p,2)™ ™%, (pyY ) or A, , respectively. Furthermore, if
i i+t i+1

c, € P is the maximum of the chain C~ in P, then to each vertex of type

ck € P with 1 < k it is assigned the part A and the number (pg0 )”0_2 it
k 1

is associated to the minimum c¢,” of the chain C* in P.

For 1>1, aterm (pg0 )”0_2, occurs only once in a partition and a term
1
of the shape (pgl'_0 )2 occurs if and only if vertex ¢, is the minimum in the
1+
chain C™ in a path P. Furthermore, note that a; € P (¢; e P) if and only if

l; =1 (I, =1 insuchacase ¢ isthe minimum of the path P).

For example the dg3 partitions of type | of n(':+ =Ny pgo are
1

!
nbl +Ab+ACf'
np +A .,
b Cl+
n..
o

The d3 — 1 partitions of type Il of ng pgo are

(n;f )+ bt (ng )"0~ = ((n;l_ )(p30)!(p50 )1(|ng )M0=2)) and

(0 )"+ 2 + p®)(pg?) ™). (20)

In particular, if ng =5, then partitions of type | of 60 are 60 =5 + 20 + 35 =

25 + 35 whereas partitions of type Il are 7+ 12 +5+ 12+ 12 + 12 =24 + 12
+12 + 12.
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Partitions of type | of 110 are 110 =5+ 20+ 35+50=25+ 35+ 50 =
60 + 50. Partitions of type ll are 7 + 12+ 5+ 12 + 12+ 12 +50=24 + 12 +
12+12+50=7+12+5+20+22+22+22=24+20+22+22+22=22
+22+22+22+22=17+22+5+22+22+22=44+22+22+22=10+
12 + 22 + 22 + 22 + 22. The last one obtained from poset 3, ¢,) (in fact,

x;+ =10+12 + 22 + 22 + 22 + 22).
2
Note that, in partition, 5 + 20 + 35 + 50, according to the derived poset
of the poset showed in Figure 5, we have Ny =5 Ap =20, AC+ = 35,
1

Partition k;+ =7+5+12+20+ 22+ 22+ 22 is defined in such a way
2
_ _ e — 5133 _ (53 _
that numbers s =7, t=5+12, A _ =u; =20, (pdz) =(p3)’ =22+
2

22 + 22 are assigned to the path P < I3 ¢o):

P=aj >¢ —>cC —>Cj.

Note that, in the representation of iP(’aI o_q) aterm n;_ can be given by
= |

- gy ’ _ no no _ . L -
the identities nal_ = Piyj+1 — Pji1 = &ij I'>1, where aj; is the ijth entry
of the matrix:

2no — 3+ (ng — 2)(j - 1), i=1j>1,
ai; =
U 3ng + 64+ (4ng — 7)i + (ng — 2)i(j - 1), i>1 j>1.

If in the representation over N* of a poset %, we have 1, = ((p}°)(p,°))

then graphs Ty cq) define corresponding partitions of type Il (taking into

account all possible combinations of I, f,, f5 and fg) of nc , = NoPr°

fixed. We let N(], k, r) denote the number of partitions generated in this

way.
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The following result is a consequence of facts described above.

Theorem 4. If N denotes the number of partitions of type | and Il of

nopr, r >4, ny =5, then

N —3)(r52)(r—1) +2pS g+ ply+r—1.
Proof. We apply differentiation L to the poset iPC (see Figure 5) with

respect to the pair (a;, b) with n = r — 2, then partitions k’ define partitions

of type Il of k;+ = ngpy°, note that terms | | |(k )=A = are in
r‘_

CJ -1
bijective correspondence with numbers

up =(20+6(ng —5) + (2ng — 4)(h = 2)).
Since by definition the number of partitions of type | of n(’:+ =N pro is
r-2

dr_p=randny = p2° + p3°, we have N(2, 3, 3) = 2. In the corresponding

derived poset it is easy to see that

r-2
N@ 3 1) =2/(c)" [+ D) [ = pig -1

i=2
If we consider that for 1 < k <r — 2 fixed, in poset Tck, relations and
points in BY < P are invariants and that the pair of points (ay, cx_1) is
L-suitable, then we apply differentiation L to the posets fPCk with respect to
these points for each 1 < k < r — 2 with a representation of the form Mo, =
1 1
((pgo) (pk+2) ) Ng, = p20 + pk+21 Ng, = n0p|+zv G = ((sz)nO) 1<
k<r-2, k<i<r-2 keeping without changes the other identities in

formulas (9). We can see that the total number of new parts furnished for
these differentiations to the partitions of type Il of the new n(':.+ are
1
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2| (¢ W | = 2(r — k —1) for each k. Then for kg < r fixed we have:
N(2, ko, r):2(r—k0—1), 4Sk0§|’,
thus
.
N(2 k>3,1)= Y N(2 ko, 1) =2pi_s.
Ko=4

If we use same arguments for each jg, 3 < jo < r —1, we conclude that

N(jo,ko,r)z prs,)_jo, 3Sj0§|’—1, joSkoﬁr,

thus

r-3
NG 23 k=Y pP —3)(rg2)(r -1
i=1

Therefore, if 2 < j <k <r, then

N = (r—3)(rg2)(r—1)

+2p§_3+pf_1+r—1. O

A partition vy is said to be of type Il if it is obtained from a partition A of
(nO_Z);L

type 1l by applying the substitution ———
o(pg)o~

(o ~2)pf0). IF X =

((p}° )1(in )') in the derived poset R, o, ) and the partition 2 of s is

2
of type I, then the partition L(n;ﬂk) is of type IV whereas, if A is
op°opg°
J dg
2%\ . iy
of type Il for the same number then, oo (nék) is a partition of type V.
ap; op
i “Fdy

We let T denote the set of partitions of these types and P, (T, ngpy©) denotes

the number of partitions of type I" of the number ng pPO.
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Remark 5. By definition, it is easy to see that partitions of type Il of
Ny pPO equal partitions of type Ill. And partitions of type IV equal partitions
oftypeV, r > 4, ng > 5.

Lemma 6. If P.(IV, ngpy©) is the number of partitions of type IV of

(r—2)(r—1)r.

noPrO, then P(1V, ngp/0) = 5

Proof. Note that to each pair of numbers (pi”fz, p0) with 2 <1<

i+2, 1<i<r-2, itis possible to assign a unique poset Tci with a

representation satisfying n,. = P, + p/0 in which case | )Y |=r-

(i +1), in the corresponding derived poset R . ,). Thus, if we denote J’

this family of posets, then the number of partitions of type IV can be
r-2

. . v 3 (r=2)(r=r

obtained by calculating > | (¢i")" | = jzlpj =

G e®

O

Theorem 4, Remark 5 and Lemma 6 allow us to obtain the following
result.

Theorem 7. The number of partitions of types I, I, IV, V of ng pro with

r >4 and ny > 5 is given by the formula

3r2 —9r +10
M = (r-1)p;_, L B
Corollary 8. P,(T, ngp©) = r (mod 2).
Proof. P.(T, ngpy®) =M + N —r. O

We say that a partition is of type VI, if it is obtained as a partition of type
.. . . 8”0_27u No No 1
I by defining the substitution —————((ng —3)p,?, (P’ )"). These
opy ) o
1

partitions allow us to obtain the following results:
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Lemma 9. The number of partitions of type VI of ngp/®, ng =5,

r > 4, equals the number of partitions of type IlI.

Theorem 10. The number of partitions of type = of ng pPO, Ng =5,

r>4.is
P(Z, ngpf®) = M + 2N —2r,

where a partition 2 is said to be of type = if and only if A is a partition of one
of the types I to VI. As an example, the following are the list of partitions of
types I, IV, V and VI of 110:

Partitions of type Illare 7+ 12 +5+36 +50=24+36+50=7 + 12 +
5+20+66=24+20+66=22+22+66=17+22+5+66=44+66=10
+12 + 22 + 66,

Partitions of type IV are 7 +17 +36 + 50 = 7 +17 + 20 + 66 = 17 + 27 +
66 = 10 + 34 + 66,

Partitions of typeVare 7+ 17 +12+12+12+50=7+ 17+ 20 + 22 +
22+22=17+27+22+22+22=10+34+22 + 22 + 22,

Partitions of type Vlare 7+ 12 +5+24 + 12 +50 =24 + 24 + 12 + 50
=7+12+5+20+44+22=24+20+44+22=22+22+44+22=17 +
22+5+44+22=44+44+22 =10+ 12 +22 + 44 + 22.

4. The Guy’s Problems

In this section, we give some advances to the problems (1) and (3)
mentioned in pages 101 and 102.

4.1. Sums of three squares of a given shape

In this section, we give advances to the solutions of problem (1)
mentioned in pages 101 and 102.

The following result is a consequence of the definition of substitution
derivative:
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Theorem 11. If pg’ = p§1 =0, pf’ =1, then each number of the form
24n + 3 can be written as a sum of three square of numbers of the form

(6r —1), where n = s(j j) - 2pp,, and
Sy =97 +57(j—1)+15p3 o +9pd, +21(i-1), i, j>1. (11)

Proof. Note that, each term of S(j,i) can be obtained by applying the

following derivatives:

o _ o _
— 5= (0}, P3j1) §23 ( : ks](pg, pY), i>2,
OPK 9Pk OPK 9Pk

to the partition A, = ((pp)°), of elements of the sequence ay = 5(3p|§’_1 +

7k +5), k > 1. Therefore, S(j, i) is a sum of five pentagonal numbers of the
form s iy = PP + p?+2 + pgj+5 +2pj.q thus S(j,i) ~ 2P = PP + p?+2
+ pgj+5. Therefore for i, j fixed, 24(sj, i) - 2pP.1)+3=(6(i+1)-1)% +
(6(j +2)—1)% +(6(2j +5)—1)% = (6i +5)* + (6] +11)> + (12j + 29)°. O

The arguments used in proof of Theorem 11 allow to obtain the following
result.

Corollary 12. If pg = p§1 =0, p13 =1, then each number of the form
24n + 3 can be written as a sum of three square of numbers of the form

(6r —1), where n =t ;) - 2p?,4 and
t(.)=32+10(j - +3p3 o +9pd, +21(i-1), i, j>1 (12)

If in Theorem 11, we set p® or p] instead of p3 and define in the

corresponding proof sequence a, as ay = 6(—4 + 5k + 4p|§_2) or ay =

7(-5 + 6k +5pf_2), k > 1, respectively, then we obtain the following
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results which are other advances to the first problem mentioned in pages 101
and 102, regarding hexagonal and heptagonal numbers.

Corollary 13. If pS’ = p§1 =0, pf’ =1, then any number of the form
40n + 27 is a sum of three square of numbers of the form 10r — 3, where

N =ngj i) —4pi7+1 and
N(j.i) =165+ 93(j — 1)+ 25p3_5 + 25p7 » +55(i 1), i, j>1. (13)

Corollary 14. If pg = p§1 =0, pf =1, then any number of the form
8n + 3 is a sum of three square of numbers of the form 4r —1, where n =

m(ji) - 3PP and
m(j.i) =130+ 75(j - 1)+ 20p3_, +16p , +36( -1), i, j>1. (14)

4.2. The equation x3 + y3 +kz2 =n

In this section, we use arguments used in the proof of Theorem 11 to
give sequences of positive integers which are solutions of a Diophantine
equation of the form

X3 + y3 +kz2 =n, (15)

where X, y, z, n are positive integers and 1 <k <5. Cases k =1, 2 are

indexed in [15] as problem D5. In [18], Koyama describes efficient
algorithms to solve equations of type (15) if k = 2.

W the tth tetrahedral number.

We let pf’ =

The following result describes sequences of positive integers which can
be written as a sum of five cubic numbers.

Theorem 15. If pg =0, p13 =1 and i, j =1, then all positive numbers

of the form s j) — d2ji4+g is @ sum of four cubes with two of them equal,
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where s(j. i) = 508 + (j +1)891+ 690p3 + (507 + 306 + 72p3 1) (i +1) +

(144 + 36 j) p{ + 18p 1 +198p3 1.
Proof. If gy is the kth cubic number, then the sequence sj j) can be

obtained by deriving each partition A, = ((gy.»)°), of the sequence ay, , =

Kk
40 + 95k + 90pi_; + 30> p,, insuch away that
t=1

0%y

—— — (s, , §=>4, 25-1<k.
5Qk+2GQk+2 (qS q25+1)

Therefore s¢j j) = djy3 + U2j47 + d2j+i+8 + 202+i+g IS @ sum of five cubes

with two of them equal. O

As an example, the following is the matrix S = (s(j, i)) of size 4 x 3:

4786 5977 7384
8047 9688 11581

B 12538 14701 17152 |
18457 21214 24295

S

Theorem 15 allows to obtain formulas for numbers which can be written
as sums of two or three cubic numbers. To do that it suffices to evaluate the
following differences:

S(j,i) ~3U2j+i+8 = Aj+3 + U247,
S(j,i) ~ 202j+i+8 = Uj+3 + U2j+7 + U2j+its: (16)
Formulas (16) and Theorem 15 allow to obtain the following result.

Corollary 16. For all i, j > 1, the triplet (X, y, z) with x = j+3, y =
2j+7 and z = 2j +1i+ 8 is asolution of the Diophantine equation

3+ y®+22% = 5 i) - Wjaise (17)
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Corollary 17. If i, j>1, then x = —(4j+8),y=—(2j+4) and z =
2] + 1+ 8 isasolution of the Diophantine equation

X3 + y3 +22% = S(j,i) — N(j,i)r
where
M(j.i) = 508 + (J +1)891+ 690p3 + (507 + 306 j + 72p3_1)(i +1)

+ (144 +36j) p +18p7 1 +198p3 4,

and

n(j i) = 4068 + 4193(j — 1) + 1167(j — 2)(j — 1) +89(j — 3) (j -~ 2)(j ~ 1)
+ (397 +150(j — 1) +12(j - 2)(j - 1)) (i - 1)

465+ j)(i—2)(i—1)+ (i - 3)(i - 2)(i - 1),

That is,
4786 5977 7384 .. [ 4068 4465 4934 )
8047 9688 11581 --- 8261 8808 9439
S =|12538 14701 17152 ---|, N =[14788 15509 16326
18457 21214 24295 ... 24183 25102 26129

Proof. If gy is the kth positive cube, each term m(j jy, nj j) can be

obtained via the substitutions

O%j;
002 j+i+8002j+i+8

0%y
00k 4200k 42

(qs’ q25+1)’ (QZj+4v Q4j+8)’

s>4, 2s-1<k,

where Ay, 2 ji are partitions such that
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_ 5
A = ((Ak+2)),

ki = ()47 ()43 (@jsire)®): (18)

4.3. Representations of posets and compositions into cubic numbers
Let gy be the kth positive cubic number. Then the poset fPCl (see Figure

5) is represented over N* in the following form:
(Noy» My ) = (an. ((0)*)),
(N, 1) = (a2, ((92)°)),
(Nays hay) = (G2 + T3, ((G2)"(d3)"),

(N, Ag) = (542, ((@i12)°)  i>1. (19)

We let A denote this representation. Posets F, of Subsection 3.2 are

represented in the same way, taking into account the following changes:

n;l_ = Gisj+1 — dj+1 = &j, I, ] =21, 1 =1, where
3 . .
ay = 6pja+1 i=1j21
6oy —p})+i, i>1 21
Furthermore, for j > 2, k, h > 1,
' 3 3
nCE = 2042, ACJT = 2+12pj, Acf; =5+ 30pp,1. (20)
Therefore all results regarding partitions of type I" and = for nyp;© obtained

in Section 3 are valid for numbers 5q,, where g, denotes the rth cubic

number. In particular, we have the following results by using the notation =
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for partitions of type = (induced by representation I'; and its differentiations)

of numbers of the form 5q; :

Lemma 18. If N is the number of partitions of type I and Il of

5q,, r > 4, then

N - (r—3)(rg2)(r—1)

+2pf_3+ p§_1+ r-1.

Theorem 19. If r > 4, then
Pr (T, 5Gr) — r = 0(mod 2).

Corollary 20. The number of partitions of type Z of 5q,, r = 4, is

Pr(Eq. 50y ) = Pr(E, nopr®) = M + 2N - 2r.
As an example, the following are the partitions of type = of 320 = 5q.

Partitions of type l are320 =5+ 35+ 95 + 185=40 + 95 + 185=135 +
185,

Partitions of type Il are 19 + 8 + 27 + 27 + 27 + 27 + 185 =54 + 27 + 27
+27+185=19+8+27+74+64+64+64=54+74+64+64+64=064
+64+64+64+64=56+8+64+64+64+64=128+64+64+64=237
+27 + 64 + 64 + 64 + 64,

Partitions of type Ill are 19 + 8 + 27 + 81 + 185 =54 + 81 + 185 =19 +
8+27+74+192=54+74+192=64+64+192=56+8+ 64+ 192 =
128 +192 =37 + 27 + 64 + 192,

Partitions of type IVare 19+35+81+185=19+35+74 + 192 =56 +
72+192=37+91+192,

Partitions of type Vare 19 + 35 + 27 + 27 + 27 + 185=19+ 35+ 74 +
64 +64 +64=56+72+64+64+64=37+91+64+64+64,
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Partitions of type VIl are 19 + 8 + 27 + 27 + 54 + 185 =54 + 54 + 27 +
185=19+8+27+74+128+64=54+74+ 128 +64 =64+ 64 + 128 +
64=56+8+64+128+64 =128+ 128+ 64 =37 + 27 + 64 + 128 + 64.

We also have the following result,
Theorem 21. If
t(j.i) = 4068+ 4193(j — 1) +1167(j - 2) (j - 1)+ 89(j - 3)(j — 2) (j - 1)
+(397 +150(j —1) +12(j - 2) (j — 1) (i - 1)
166G+ )i -2 -1+ -3)(-2)(-1).i j>1

then the quintuplet v=2j+i+8, w=j+3, x=2j+7, y=2j+4 and
z = 4j + 8 is asolution of the Diophantine equation

v3+w3+x3+y3+z3=t(jli). (21)

Proof. Since for each i, j, %ji = ((d2j+7) (djs3) (dzj+iss)’) is 2

partition of S(j,i)s 1(j,i) can be obtained by calculating the derivatives

i
002j+i+80U2j+i+8

(d2j+4: Gajrs). O
The following is a matrix T = (tj,j)) of size 4 x 3:

4068 4465 4934

8261 8808 9439
|14788 15509 16326 |

24183 25102 26129

The following result is a consequence of formulas (16).

Corollary 22. If i, j>1, then w= j+3, x=2j+7, y=2j+i+38§,
z = 2j + 4 is asolution of the Diophantine equation
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wo x4 y% 2% = s )~ 202 4iks + U2jea- (22)

In particular, there exist integers a, b, c € Z such that s ) —t(j i) =
a® +b%+ 2¢.

Proof. For the difference s j) —1t(j i) it suffices to write ¢ =2j +
i+8 b=-2j+4), a=—(4j+8). O

Remark 23. Note that, it is easy to see that if &(n) denotes the sum of
the digits of n mod 9, then &(t(; iy —daj+g) =5 and &(S(j i) — U2j+i+8)
=b5.

If i, j=2(mod3), then s(ji)—0d2jsirg =—4(mod9) and t(j ) -

Furthermore, since s(j i) —302j+is8 + 202 j1i+k = —4(mod9) if k =2

+91 and s i) = 302418 + 202j1i+k = —4(mod9).
If k =6+45l,1>1 j=2(mod3),i=1(modS3).

We have the following corollary:

Corollary 24. If i, j =2(mod3), h=1(mod3), k =6+ 45, m=2
+91, h, i, j,1 =1 then

S(j,i) — 92j+i+s = —4(mod9),

t(j,i) — Gaj+g = —4(mod9),

S(j,i) ~ 2%2j+i+8 T G2j+4 = —4(mod9),

S(j,h) — 302j+h+8 + 202j+hek = —4(mod9),

S(j,i) = 302j+i+8 + 202 j+i+m = —4(mod9), (23)

and each number of the forms: s iy = d2jsite, Y(ji) — Gaj+8 S(ji) —
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202j+iv8 + U2j+4 aNd S(j i) = 302j4i+8 + 202j4i4n, 8 # N 2 1 is @ sum of
four positive cubic numbers.

Proof. It suffices to note that the triplet x = j+3, y=2j+7, z=2]
+ i + n is a solution of the Diophantine equation

X3+ y®+22° = S(j,i) —302j+i+8 T 202j+i+n- (24)
]
As an example an mxn matrix of type &(s(j i) —U2jrirg) (see

Corollary 24) has the form:

-k O 00 -k, ©
W 01 b W O
00 N wWw 00 N w
-k O 00 -, ©

w o1 W O
00 N W 00 N w

5. Partitions of Types | and |1 of 5pg =175

In this section, we illustrate how partitions of types | and Il can be
obtained via differentiations of posets fPi, 1<i <3, with the following

Hasse diagrams:

0 C:
€2 / l 2

B ag )
(8] 1
2
\ b b

Py \t’)[ P \\_)h]

These posets are of the type ‘.Pcl as showed in Figure 5 with n = 3.
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In this case, we consider representations over N* of posets T and its
corresponding derivatives {P(Vairci—l)’ 1<i<3, whereforeach1<i <3, we

have

T =a+b+b +C,

where C ={c; <’ ¢, <’ c3} is a chain such that {aj <'¢j}, 1<i <3,
Furthermore, by <" b <" ¢, the pair of points (a;, ¢;_1) is L-suitable in each

poset T, and cg = b.

As an example of a representation of poset F, over N* with ng =5

(see formulas (9)), has the form:

(Nps My ) = (5, 1+1+1+1+1),

(Np, Ap) =(25,5+5+5+5+5),

(Nay. hay) = (17, 5+12),

(Ngys ey ) = (60,12 +12 +12 +12 +12),

(g Ac,) = (110, 22 + 22 + 22 + 22 + 22),

(Ng» Agy) = (175, 35+ 35 + 35 + 35 + 35). (25)

The following is the representation of the corresponding derived poset
Ry co)

(nbl, n51)=(5,1+1+1+1+1),
(nh, Ap) =(255+5+5+5+5),
(n;l_,x;ll_):(Y, 7),

(n'_, M _)=(17,5+12),
C C
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(n_, 1) = (44, 22+ 22),

(nég, kég) = (70, 35 + 35),

(n(’:f, k;f)z (60,7 +5+12+12 +12 +12),

(N5, 20) = (110, 7+ 5412+ 20 + 22+ 22+ 22),
(W, M) = (175, 7+ 5412+ 20 + 26 + 35 + 35 + 35). (26)

In the sequel, we give representations of posets T, and Jjy, ¢)
respectively, with ny = 5:
(Np, Ay ) =(5,1+1+1+1+1),
(Np, Ap) =(25,5+5+5+5+5),
(Na,+ May) = (27, 5+ 22),
(Ney» o) = (60,12 +12 + 12 +12 + 12),
(Ney: hgy) = (110, 22 + 22 + 22 + 22 + 22),
(Neg: Aey) = (175, 35 + 35 + 35 + 35 + 35). (27)

The representation of the derived poset fP(’aZ, ) is given by the following

formulas:

(b, My ) =5, 1+1+1+1+1),
(np, Ap) =(25,5+5+5+5+5),

(nai' xai) = (17, 17),
(n_, A _)=(27,5+12),
2 G

(n’,, k’,) = (44, 22 + 22),
C2 C2
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(n'_, %' _) = (70, 35 + 35),
3 3
(nl’:+, k;+) = (60, 7+5+12 +12 +12 + 12),
1
(nég, 7“;;5) = (110, 7+5+12+ 20 + 22 + 22 + 22),
(n'cér, kég) = (175, 7+5+12 + 20 + 26 + 35 + 35 + 35). (28)

Formulas given above can be used for posets T, and Rj, ¢,) taking into
account the following changes:

(Nag, hay) = (40, 5+ 35), in R,

(nég, wag) = (30, 30),

(nég, 7»;5) = (40, 5+ 35), in Ry, c,)- (29)
The following is the matrix A = (aij) furnishing terms nal_ = Pi5+j+1 -

5 .
Pj+1-

7 110 |13
A=|17]23
30

In these graphics, we show all partitions of types | and Il of 5p?,

2 <1 <5 induced by the derivatives of T .

175 65 35°

110 50 22 26 (333) (352)
60 35 "
(22%) (44)
2 (24)

' !
‘P[eq.:‘ul } (az,e1)
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5+35 (70)

22+ 35

N(3,5,5) = 1 N(4,5,5) =1

A partition of type Il of 175 can be obtained in this example by choosing
a graph I, _,) Whose vertices are points in chains C*,ai +C™ of a
poset R ¢ ;) With edges linking points as shown below (for By, ¢,)). We

consider paths P < I, ¢, ;) With initial vertex in a point of the chain

aj +C” of Ry () and final vertex c3,

4 —_ - 4
Uaye0) = @1 — ¢ Co

1<1i <3, ¢y =b and choosing a unique number according to the graphic for

each point of P. Numbers in parentheses mean that they occur in the partition
and that the corresponding point is an initial vertex of P. The first term of a

partition of type Il is induced by a vertex of the form a; and it does not

contain parts in parentheses. Note that, if c§ e P, then the number associated
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to ¢ is 65 and that an expression of type ((pi5)3) occurs once in the
partition. Actually, the term (( pi5)3) occurs in the partition if and only if

¢;", is the minimum of the chain C™ in the path P.

As an example, we can consider the following path P < Iy, ) such
that
P=c —c, »>c; —cC3,
then the corresponding partition of type 11 associated to P has the form:

24 + 20 + 22 + 22 + 22 + 65.

A partition of type Il of 175 associated to the path P =c3 — ¢ <
Iag,¢c,) has the form:
70 + 35+ 35 + 35.

Partitions of type | are obtained in the same way taking into account that
each path is contained in the graph I'" (shown below) with initial point in

blv c fP(%q,co)- Furthermore, each path must be finished in c3 (there exists

only one path for each point in blv):
I = >b->c »>c »>cj.

In this case, ny =5, ny = 25 and so on. We assume that there exist the path

c3 — ¢z such that n_, = 175. There are not two terms of the form ny,
3

X € blv associated to a path and no paths associate a term of the form n,

Therefore, partitions of type I' of 175 are:

Partitions of type I, 5+ 20 + 35 + 50 + 65 =25 + 35 + 50 + 65 = 60 + 50
+65=110 + 65 = 175.
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Partitions of type Il, 7+ 5+ 12 + 12+ 12+ 12+ 50 + 65 =24 + 12 + 12
+12+50+65=7+5+12+20+22+22+22+65=24+20+22+22 +
22+65=22+22+22+22+22+65=7+5+12+20+26+35+35+35
=24+20+26+35+35+35=22+22+26+35+35+35=35+35+35
+ 35+ 35.

17+5+22+22+22+22+65=44+22+22+22+65=17+5+22
+26+35+35+35=44+26+35+35+35=30+5+35+35+35+35=
70+35+35+35=10+12+22+22+22+22+65=10+12+22+ 26 +
35+35+35=23+12+35+35+35+35=13+22+35+ 35+ 35+ 35.

Partitions of type I, 7 +5+12+36 +50+65=24+36 +50 + 65 =7
+5+12+20+66+65=24+20+66+65=22+22+66+65=7+5+
12+20+26+105=24+20+26+105=22+22+26 +105=35+ 35 +
105.

17+5+22+66+65=44+66+65=17+5+22+26+105=44 + 26
+105=30+5+35+105=70+105=10+12+22+66 +65=10+ 12 +
22+26+105=23+12+35+105=13+22 + 35 + 105.

Partitions of type IV, 7 +17+36+50+65=7+17+20+ 66 + 65 =7
+17+20+26+105=17+27+66 + 65 =17+ 27 + 26 + 105 =30 + 40 +
105=10+34+66 +65=10+34+26+105=23+47+105=13 + 57 +
105.

Partitions of type V, 7+ 17 + 12+ 12+ 12+ 50 + 65 =7 + 17 + 20 + 22
+22+22+65=7+17+20+26+35+35+35=17+27+22+22+22 +
65=17+27+26+35+35+35=30+40+35+35+35=10+34+22 +
22+22+65=10+34+26+35+35+35=23+47+35+35+35=13+
57 + 35+ 35+ 35.
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