THE GENERALIZED HYERS-ULAM STABILITY OF ADDITIVE FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN SPACE

Changil Kim and Chul Kang*
Department of Mathematics Education
Dankook University
126, Jukjeon, Yongin
Gyeonggi-do 448-701, Korea
e-mail: kci206@hanmail.net
Department of Applied Mathematics
Hankyong National University
327 Chungang-no Anseong-si
Kyonggi-do 456-749, Korea
e-mail: stat@hknu.ac.kr

Abstract

In this paper, we investigate the following additive functional inequality $$
\|f(x)+f(y)+f(2 z)\| \leq\|f(x+y)-f(-2 z)\|
$$ and prove the generalized Hyers-Ulam stability of it in nonArchimedean spaces.

Received: February 15, 2014; Accepted: March 12, 2014
2010 Mathematics Subject Classification: 39B82, 46Bxx.
Keywords and phrases: additive functional inequality, non-Archimedean Banach Space.
*Corresponding author

1. Introduction and Preliminaries

The stability problems concerning group homomorphisms were raised by Ulam [11] in 1940 and affirmatively answered for Banach spaces by Hyers [7] in the next year. Hyers theorem was generalized by Aoki [1] for additive mappings and by Rassias [10] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta [3] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias approach.

The functional equation

$$
\begin{equation*}
f(x+y)=f(x)+f(y) \tag{1.1}
\end{equation*}
$$

is called the Cauchy additive functional equation. In particular, every solution of the Cauchy additive functional equation is said to be an additive mapping.

In [4], Gilányi showed that if a mapping $f: X \rightarrow Y$ satisfies the following functional inequality

$$
\begin{equation*}
\left\|2 f(x)+2 f(y)-f\left(x y^{-1}\right)\right\| \leq\|f(x y)\| \tag{1.2}
\end{equation*}
$$

then f satisfies the Jordan-Von Neumann functional equation

$$
2 f(x)+2 f(y)-f\left(x y^{-1}\right)=f(x y) .
$$

Gilányi [5] and Fechner [2] proved the Hyers-Ulam stability of (1.2). Park et al. [9] proved the Hyers-Ulam stability of the following functional inequalities:

$$
\begin{equation*}
\|f(x)+f(y)+f(z)\| \leq\|f(x+y+z)\| . \tag{1.3}
\end{equation*}
$$

Hensel [6] has introduced a normed space which does not have the Archimedean property. During the last three decades, the theory of nonArchimedean spaces has gained the interest of physicists for their research in particular in problems coming from quantum physics, p-adic strings and superstrings [8].

A valuation is a function $|\cdot|$ from a field K to $[0, \infty)$ such that for all $r, s \in K$, the following conditions hold: (i) $|r|=0$ if and only if $r=0$, (ii) $|r s|=|r||s|$, (iii) $|r+s| \leq|r|+|s|$.

A field K is called a valuation field if K carries a valuation. A valuation $|\cdot|$ is called a non-Archimedean valuation if $|x+y| \leq \max \{|x|,|y|\}$ for all $x, y \in K$. A field K with a non-Archimedean valuation is called a nonArchimedean field. Clearly, $|-1|=|1|=1$ and $|n| \leq 1$ for all $n \in N$.

Let $\left\{x_{n}\right\}$ be a sequence in a non-Archimedean space X. Then $\left\{x_{n}\right\}$ is called a Cauchy sequence if, for any $\varepsilon>0$, there is a positive integer k such that $\left\|x_{n}-x_{m}\right\| \leq \varepsilon$ for all $m, n \geq k$ and all $z \in X$ and $\left\{x_{n}\right\}$ is called convergent to x, denoted by $\lim _{n \rightarrow \infty} x_{n}=x$, if for any $\varepsilon>0$, there is a positive integer k such that $\left\|x_{n}-x\right\| \leq \varepsilon$ for all $n \geq k$. Hence by the definition of non-Archimedean normed space (see [6] and [8]), we have

$$
\left\|x_{n}-x_{m}\right\| \leq \max \left\{\left\|x_{j+1}-x_{j}\right\| \mid m \leq j \leq n-1\right\} \quad(n>m),
$$

a sequence $\left\{x_{n}\right\}$ is Cauchy in a non-Archimedean space $(X,\|\cdot\|)$ if and only if $\left\{x_{n+1}-x_{n}\right\}$ converges to zero in $(X,\|\cdot\|)$. A non-Archimedean space in which every Cauchy sequence is a convergent sequence is called a nonArchimedean Banach space.

In this paper, we investigate the following functional inequality

$$
\begin{equation*}
\|f(x)+f(y)+f(2 z)\| \leq\|f(x+y)-f(-2 z)\| \tag{1.4}
\end{equation*}
$$

and prove the generalized Hyers-Ulam stability of it in non-Archimedean spaces.

2. Solutions and Stability of (1.4)

In this section, let X be a non-Archimedean space and Y be a nonArchimedean Banach space. We start with the following theorem:

Theorem 2.1. A mapping $f: X \rightarrow Y$ satisfies (1.4) if and only if f is additive.

Proof. Suppose that f satisfies (1.4). Setting $x=y=z=0$ in (1.4), we have $\|3 f(0)\| \leq\|0\|$ for all $w \in X$ and so we have

$$
\begin{equation*}
f(0)=0 . \tag{2.1}
\end{equation*}
$$

Putting $y=-x$ and $z=0$ in (1.4), we have $\|f(x)+f(-x)\| \leq\|0\|$ for all $w \in X$ and so $\|f(x)+f(-x)\| \leq 0$ for all $w \in X$. Hence we have

$$
\begin{equation*}
f(-x)=-f(x) \tag{2.2}
\end{equation*}
$$

for all $x \in X$. Replacing x, y, z by $-2 x-2 y, 2 x, 2 y$, respectively, in (1.4), by (2.2), we have

$$
\begin{equation*}
\|f(-2 x-2 y)+f(2 x)+f(2 y)\| \leq\|f(-2 y)-f(-2 y)\|=0 \tag{2.3}
\end{equation*}
$$

for all $x, y, w \in X$. Hence $\|f(-2 x-2 y)+f(2 x)+f(2 y)\|=0$ for all $w \in X$, and by (2.2), we have

$$
\begin{equation*}
f(2 x+2 y)=f(2 x)+f(2 y) \tag{2.4}
\end{equation*}
$$

for all $x, y \in X$. Replacing $2 x$ and $2 y$ by x and y, respectively, in (2.4), we can show that f is additive. The converse is trivial.

Now, we will prove the generalized Hyers-Ulam stability of (1.4) in non-Archimedean spaces.

Theorem 2.2. Assume that $\phi: X^{3} \rightarrow[0, \infty)$ is a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\phi\left((-2)^{n} x,(-2)^{n} x,(-2)^{n} x\right)}{|2|^{n}}=0 \tag{2.5}
\end{equation*}
$$

for all $x \in X$ and for any $x \in X$, the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \max \left\{\left.\frac{\phi\left((-2)^{k} x,(-2)^{k} x,-(-2)^{k} x\right)}{|2|^{k-1}} \right\rvert\, 0 \leq k \leq n-1\right\} \tag{2.6}
\end{equation*}
$$

exists. Let $f: X \rightarrow Y$ be a mapping such that

$$
\begin{equation*}
\|f(x)+f(y)+f(2 z)\| \leq\|f(x+y)-f(-2 z)\|+\phi(x, y, z) \tag{2.7}
\end{equation*}
$$

for all $x, y, z \in X$. Then there exists an additive mapping $A: X \rightarrow Y$ such that A satisfies (1.4) and

$$
\begin{align*}
& \|f(x)-A(x)\| \\
\leq & \lim _{n \rightarrow \infty} \max \left\{\left.\frac{\phi\left((-2)^{k} x,(-2)^{k} x,-(-2)^{k} x\right)}{|2|^{k-1}} \right\rvert\, 0 \leq k \leq n-1\right\} \tag{2.8}
\end{align*}
$$

for all $x \in X$. Moreover, if $\phi: X^{4} \rightarrow[0, \infty)$ satisfies

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\left.\frac{\phi\left((-2)^{i} x,(-2)^{i} x,(-2)^{i} x\right)}{|2|^{i}} \right\rvert\, k \leq i \leq n-1\right\}=0 \tag{2.9}
\end{equation*}
$$

then A is a unique additive mapping satisfying (2.8).
Proof. Replacing x, y, z by $(-2)^{n} x,(-2)^{n} x,-(-2)^{n} x$ in (2.7), respectively, and dividing (2.7) by $|2|^{n+1}$, since $f(0)=0$, we have

$$
\left\|\frac{f\left((-2)^{n} x\right)}{(-2)^{n}}-\frac{f\left((-2)^{n+1} x\right)}{(-2)^{n+1}}\right\| \leq \frac{\phi\left((-2)^{n} x,(-2)^{n} x,-(-2)^{n} x\right)}{|2|^{n+1}}
$$

for all $x \in X$ and all $n \in \mathbb{N}$. By (2.5), $\left\{\frac{f\left((-2)^{n} x\right)}{(-2)^{n}}\right\}$ is a Cauchy sequence in Y for all $x \in X$ and since Y is a non-Archimedean Banach space, there is a function $A: X \rightarrow Y$ such that $A(x)=\lim _{n \rightarrow \infty} \frac{f\left((-2)^{n} x\right)}{(-2)^{n}}$ for all $x \in X$. Moreover, for $0 \leq m<n$, we have

$$
\begin{align*}
& \left\|\frac{f\left((-2)^{n} x\right)}{(-2)^{n}}-\frac{f\left((-2)^{m} x\right)}{(-2)^{m}}\right\| \\
\leq & \max \left\{\left.\frac{\phi\left((-2)^{k} x,(-2)^{k} y,(-2)^{k} z\right)}{|2|^{k+1}} \right\rvert\, m \leq k \leq n-1\right\} \tag{2.10}
\end{align*}
$$

for all $x \in X$. Replacing x, y, z by $(-2)^{n} x,(-2)^{n} y,(-2)^{n} z$ in (1.4), respectively, and dividing (1.4) by $|2|^{n}$, we have

$$
\begin{align*}
& \left\|\frac{f\left((-2)^{n} x\right)}{(-2)^{n}}+\frac{f\left((-2)^{n} y\right)}{(-2)^{n}}+\frac{f\left((-2)^{n} 2 z\right)}{(-2)^{n}}\right\| \\
\leq & \frac{\left\|f\left((-2)^{n}(x-y)\right)-f\left((-2)^{n+1} 2 z\right)\right\|}{|2|^{n}}+\frac{\phi\left((-2)^{n} x,(-2)^{n} y,(-2)^{n} z\right)}{|2|^{n}} \\
\leq & \left\|\frac{f\left((-2)^{n}(x-y)\right)}{(-2)^{n}}-\frac{f\left((-2)^{n+1} 2 z\right)}{(-2)^{n}}\right\|+\frac{\phi\left((-2)^{n} x,(-2)^{n} y,(-2)^{n} z\right)}{|2|^{n}} \tag{2.11}
\end{align*}
$$

for all $x \in X$ and all $n \in \mathbb{N}$. Letting $n \rightarrow \infty$ in (2.11), by (2.5), we have

$$
\|A(x)+A(y)+A(2 z)\| \leq\|A(x-y)-A(2 z)\|
$$

for all $x, y, z \in X$. By Theorem 2.1, A is additive and by (2.6) and (2.10), we have (2.8).

Now, we show the uniqueness of A. Suppose that (2.5) holds and A_{0} is an additive mapping with (2.8). Then for any positive integer $n, 2^{n} A(x)=$ $A\left(2^{n} x\right)$ and $2^{n} A_{0}(x)=A_{0}\left(2^{n} x\right)$ for all $x \in X$. Hence by (2.8), we have

$$
\begin{aligned}
& \left\|A(x)-A_{0}(x)\right\| \\
\leq & \frac{\left\|A\left((-2)^{k} x\right)-f\left((-2)^{k} x\right)\right\|}{|2|^{k}}+\frac{\left\|A_{0}\left((-2)^{k} x\right)-f\left((-2)^{k} x\right)\right\|}{|2|^{k}} \\
\leq & \lim _{n \rightarrow \infty} \max \left\{\left.\frac{\phi\left((-2)^{i+k} x,(-2)^{i+k} x,-(-2)^{i+k} x\right)}{|2|^{i+k}} \right\rvert\, 0 \leq i \leq n-1\right\} \\
\leq & \lim _{n \rightarrow \infty} \max \left\{\left.\frac{\phi\left((-2)^{i} x,(-2)^{i} x,-(-2)^{i} x\right)}{|2|^{i}} \right\rvert\, k \leq i \leq n-1\right\}
\end{aligned}
$$

for all $x \in X$ and all $k \in \mathbb{N}$. Hence, letting $k \rightarrow \infty$ in the above inequality, by (2.5), we have $A(x)=A_{0}(x)$ for all $x \in X$.

Related with Theorem 2.2, we can also have the following theorem. And the proof is similar to that of Theorem 2.2.

Theorem 2.3. Assume that $\phi: X^{3} \rightarrow[0, \infty)$ is a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}|2|^{n} \phi\left(\frac{x}{(-2)^{n}}, \frac{x}{(-2)^{n}}, \frac{x}{(-2)^{n}}\right)=0 \tag{2.12}
\end{equation*}
$$

for all $x \in X$ and for any $x \in X$, the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \max \left\{\left.|2|^{k-1} \phi\left(\frac{x}{(-2)^{k}}, \frac{x}{(-2)^{k}}, \frac{-x}{(-2)^{k+2}}\right) \right\rvert\, 0 \leq k \leq n-1\right\} \tag{2.13}
\end{equation*}
$$

exists. Let $f: X \rightarrow Y$ be a mapping satisfying (2.7). Then there exists an additive mapping $A: X \rightarrow Y$ such that A satisfies (1.4) and

$$
\begin{align*}
& \|f(x)-A(x)\| \\
\leq & \lim _{n \rightarrow \infty} \max \left\{\left.|2|^{k-1} \phi\left(\frac{x}{(-2)^{k}}, \frac{x}{(-2)^{k}}, \frac{-x}{(-2)^{k}}\right) \right\rvert\, 0 \leq k \leq n-1\right\} \tag{2.14}
\end{align*}
$$

for all $x \in X$. Moreover, if $\phi: X^{3} \rightarrow[0, \infty)$ satisfies

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\left.|2|^{i} \phi\left(\frac{x}{(-2)^{i}}, \frac{x}{(-2)^{i}}, \frac{x}{(-2)^{i}}\right) \right\rvert\, k \leq i \leq n-1\right\}=0, \tag{2.15}
\end{equation*}
$$

then A is a unique additive mapping satisfying (2.8).
As an example of $\phi(x, y)$ in Theorem 2.2 and Theorem 2.3, we can take $\phi(x, y, z)=\varepsilon\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)$. Then we can formulate the following corollary:

Corollary 2.4. Let $f: X \rightarrow Y$ be a mapping such that

$$
\begin{equation*}
\|f(x)+f(y)+f(2 z)\| \leq\|f(x+y)-f(-2 z)\|+\phi(x, y, z) \tag{2.16}
\end{equation*}
$$

for all $x, y, z \in X$. Suppose that $|2|<1$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that A satisfies (1.4) and

$$
\|A(x)-f(x)\| \leq \begin{cases}|2|^{1-p}\left(2|2|^{p}+1\right)\|x\|^{p}, & \text { if } 1<p \\ |2|^{-1-p}\left(2|2|^{p}+1\right)\|x\|^{p}, & \text { if } 0<p<1\end{cases}
$$

for all $x \in X$.

References

[1] T. Aoki, On the stability of the linear transformation in Banach space, J. Math. Soc. Japan 2 (1950), 64-66.
[2] W. Fechner, Stability of a functional inequality associated with the Jordan-von Neumann functional equation, Aequationes Math. 71 (2006), 149-161.
[3] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[4] A. Gilányi, Eine zur parallelogrammgleichung äquivalente ungleichung, Aequationes Math. 62 (2001), 303-309.
[5] A. Gilányi, On a problem by K. Nikoden, Math. Inequal. Appl. 5 (2002), 701-710.
[6] K. Hensel, Über eine neue Begründung der Theorie der algebraischen, Zahlen. Jahresber. Dtsch. Math.-Ver. 6 (1897), 83-88.
[7] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222-224.
[8] H. Khodaei and T. M. Rassias, Approximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl. 1 (2010), 22-41.
[9] C. Park, Y. Cho and M. Han, Functional inequalities associated with Jordan-von Neumann type additive functional equations, J. Inequal. Appl. 2007, Art. ID 41820, 13 pp.
[10] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[11] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science ed., Wiley, New York, 1940.

