Far East Journal of Mathematical Sciences (FJMS) © 2014 Pushpa Publishing House, Allahabad, India Published Online: May 2014 Available online at http://pphmj.com/journals/fjms.htm

Volume 88, Number 2, 2014, Pages 233-240

THE GENERALIZED HYERS-ULAM STABILITY OF ADDITIVE FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN SPACE

Changil Kim and Chul Kang*

Department of Mathematics Education **Dankook University** 126, Jukjeon, Yongin Gyeonggi-do 448-701, Korea

e-mail: kci206@hanmail.net

Department of Applied Mathematics Hankyong National University 327 Chungang-no Anseong-si Kyonggi-do 456-749, Korea

e-mail: stat@hknu.ac.kr

Abstract

In this paper, we investigate the following additive functional inequality

$$|| f(x) + f(y) + f(2z) || \le || f(x + y) - f(-2z) ||$$

and prove the generalized Hyers-Ulam stability of it in non-Archimedean spaces.

Received: February 15, 2014; Accepted: March 12, 2014

2010 Mathematics Subject Classification: 39B82, 46Bxx.

Keywords and phrases: additive functional inequality, non-Archimedean Banach Space.

*Corresponding author

1. Introduction and Preliminaries

The stability problems concerning group homomorphisms were raised by Ulam [11] in 1940 and affirmatively answered for Banach spaces by Hyers [7] in the next year. Hyers theorem was generalized by Aoki [1] for additive mappings and by Rassias [10] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta [3] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias approach.

The functional equation

$$f(x + y) = f(x) + f(y)$$
 (1.1)

is called the *Cauchy additive functional equation*. In particular, every solution of the Cauchy additive functional equation is said to be an *additive mapping*.

In [4], Gilányi showed that if a mapping $f: X \to Y$ satisfies the following functional inequality

$$||2f(x) + 2f(y) - f(xy^{-1})|| \le ||f(xy)||,$$
 (1.2)

then f satisfies the Jordan-Von Neumann functional equation

$$2f(x) + 2f(y) - f(xy^{-1}) = f(xy).$$

Gilányi [5] and Fechner [2] proved the Hyers-Ulam stability of (1.2). Park et al. [9] proved the Hyers-Ulam stability of the following functional inequalities:

$$||f(x) + f(y) + f(z)|| \le ||f(x + y + z)||.$$
 (1.3)

Hensel [6] has introduced a normed space which does not have the Archimedean property. During the last three decades, the theory of non-Archimedean spaces has gained the interest of physicists for their research in particular in problems coming from quantum physics, *p*-adic strings and superstrings [8].

A *valuation* is a function $|\cdot|$ from a field K to $[0, \infty)$ such that for all $r, s \in K$, the following conditions hold: (i) |r| = 0 if and only if r = 0, (ii) |rs| = |r| |s|, (iii) $|r + s| \le |r| + |s|$.

A field K is called a *valuation field* if K carries a valuation. A valuation $|\cdot|$ is called a *non-Archimedean valuation* if $|x+y| \le \max\{|x|, |y|\}$ for all $x, y \in K$. A field K with a non-Archimedean valuation is called a *non-Archimedean field*. Clearly, |-1| = |1| = 1 and $|n| \le 1$ for all $n \in N$.

Let $\{x_n\}$ be a sequence in a non-Archimedean space X. Then $\{x_n\}$ is called a *Cauchy sequence* if, for any $\varepsilon > 0$, there is a positive integer k such that $\|x_n - x_m\| \le \varepsilon$ for all $m, n \ge k$ and all $z \in X$ and $\{x_n\}$ is called *convergent* to x, denoted by $\lim_{n \to \infty} x_n = x$, if for any $\varepsilon > 0$, there is a positive integer k such that $\|x_n - x\| \le \varepsilon$ for all $n \ge k$. Hence by the definition of non-Archimedean normed space (see [6] and [8]), we have

$$||x_n - x_m|| \le \max\{||x_{j+1} - x_j|| | |m \le j \le n-1\} \ (n > m),$$

a sequence $\{x_n\}$ is Cauchy in a non-Archimedean space $(X, \|\cdot\|)$ if and only if $\{x_{n+1} - x_n\}$ converges to zero in $(X, \|\cdot\|)$. A non-Archimedean space in which every Cauchy sequence is a convergent sequence is called a *non-Archimedean Banach space*.

In this paper, we investigate the following functional inequality

$$|| f(x) + f(y) + f(2z) || \le || f(x+y) - f(-2z) ||$$
 (1.4)

and prove the generalized Hyers-Ulam stability of it in non-Archimedean spaces.

2. Solutions and Stability of (1.4)

In this section, let X be a non-Archimedean space and Y be a non-Archimedean Banach space. We start with the following theorem:

Theorem 2.1. A mapping $f: X \to Y$ satisfies (1.4) if and only if f is additive.

Proof. Suppose that f satisfies (1.4). Setting x = y = z = 0 in (1.4), we have $||3f(0)|| \le ||0||$ for all $w \in X$ and so we have

$$f(0) = 0. (2.1)$$

Putting y = -x and z = 0 in (1.4), we have $||f(x) + f(-x)|| \le ||0||$ for all $w \in X$ and so $||f(x) + f(-x)|| \le 0$ for all $w \in X$. Hence we have

$$f(-x) = -f(x) \tag{2.2}$$

for all $x \in X$. Replacing x, y, z by -2x - 2y, 2x, 2y, respectively, in (1.4), by (2.2), we have

$$|| f(-2x - 2y) + f(2x) + f(2y) || \le || f(-2y) - f(-2y) || = 0$$
 (2.3)

for all $x, y, w \in X$. Hence || f(-2x - 2y) + f(2x) + f(2y) || = 0 for all $w \in X$, and by (2.2), we have

$$f(2x + 2y) = f(2x) + f(2y)$$
 (2.4)

for all $x, y \in X$. Replacing 2x and 2y by x and y, respectively, in (2.4), we can show that f is additive. The converse is trivial.

Now, we will prove the generalized Hyers-Ulam stability of (1.4) in non-Archimedean spaces.

Theorem 2.2. Assume that $\phi: X^3 \to [0, \infty)$ is a function such that

$$\lim_{n \to \infty} \frac{\phi((-2)^n x, (-2)^n x, (-2)^n x)}{|2|^n} = 0$$
 (2.5)

for all $x \in X$ and for any $x \in X$, the limit

$$\lim_{n \to \infty} \max \left\{ \frac{\phi((-2)^k x, (-2)^k x, -(-2)^k x)}{|2|^{k-1}} \mid 0 \le k \le n - 1 \right\}$$
 (2.6)

exists. Let $f: X \to Y$ be a mapping such that

$$||f(x) + f(y) + f(2z)|| \le ||f(x+y) - f(-2z)|| + \phi(x, y, z)$$
 (2.7)

for all $x, y, z \in X$. Then there exists an additive mapping $A: X \to Y$ such that A satisfies (1.4) and

$$|| f(x) - A(x) ||$$

$$\leq \lim_{n \to \infty} \max \left\{ \frac{\phi((-2)^k x, (-2)^k x, -(-2)^k x)}{|2|^{k-1}} \mid 0 \leq k \leq n - 1 \right\}$$
 (2.8)

for all $x \in X$. Moreover, if $\phi: X^4 \to [0, \infty)$ satisfies

$$\lim_{k \to \infty} \lim_{n \to \infty} \max \left\{ \frac{\phi((-2)^{i} x, (-2)^{i} x, (-2)^{i} x)}{|2|^{i}} \mid k \le i \le n - 1 \right\} = 0, \quad (2.9)$$

then A is a unique additive mapping satisfying (2.8).

Proof. Replacing x, y, z by $(-2)^n x$, $(-2)^n x$, $-(-2)^n x$ in (2.7), respectively, and dividing (2.7) by $|2|^{n+1}$, since f(0) = 0, we have

$$\left\| \frac{f((-2)^n x)}{(-2)^n} - \frac{f((-2)^{n+1} x)}{(-2)^{n+1}} \right\| \le \frac{\phi((-2)^n x, (-2)^n x, -(-2)^n x)}{|2|^{n+1}}$$

for all $x \in X$ and all $n \in \mathbb{N}$. By (2.5), $\left\{ \frac{f((-2)^n x)}{(-2)^n} \right\}$ is a Cauchy sequence in Y for all $x \in X$ and since Y is a non-Archimedean Banach space, there is a function $A: X \to Y$ such that $A(x) = \lim_{n \to \infty} \frac{f((-2)^n x)}{(-2)^n}$ for all $x \in X$. Moreover, for $0 \le m < n$, we have

$$\left\| \frac{f((-2)^{n} x)}{(-2)^{n}} - \frac{f((-2)^{m} x)}{(-2)^{m}} \right\|$$

$$\leq \max \left\{ \frac{\phi((-2)^{k} x, (-2)^{k} y, (-2)^{k} z)}{|2|^{k+1}} \mid m \leq k \leq n-1 \right\}$$
(2.10)

for all $x \in X$. Replacing x, y, z by $(-2)^n x$, $(-2)^n y$, $(-2)^n z$ in (1.4), respectively, and dividing (1.4) by $|2|^n$, we have

$$\left\| \frac{f((-2)^{n}x)}{(-2)^{n}} + \frac{f((-2)^{n}y)}{(-2)^{n}} + \frac{f((-2)^{n}2z)}{(-2)^{n}} \right\|$$

$$\leq \frac{\| f((-2)^{n}(x-y)) - f((-2)^{n+1}2z) \|}{|2|^{n}} + \frac{\phi((-2)^{n}x, (-2)^{n}y, (-2)^{n}z)}{|2|^{n}}$$

$$\leq \left\| \frac{f((-2)^{n}(x-y))}{(-2)^{n}} - \frac{f((-2)^{n+1}2z)}{(-2)^{n}} \right\| + \frac{\phi((-2)^{n}x, (-2)^{n}y, (-2)^{n}z)}{|2|^{n}}$$
 (2.11)

for all $x \in X$ and all $n \in \mathbb{N}$. Letting $n \to \infty$ in (2.11), by (2.5), we have

$$||A(x) + A(y) + A(2z)|| \le ||A(x - y) - A(2z)||$$

for all $x, y, z \in X$. By Theorem 2.1, A is additive and by (2.6) and (2.10), we have (2.8).

Now, we show the uniqueness of A. Suppose that (2.5) holds and A_0 is an additive mapping with (2.8). Then for any positive integer n, $2^n A(x) = A(2^n x)$ and $2^n A_0(x) = A_0(2^n x)$ for all $x \in X$. Hence by (2.8), we have

$$\|A(x) - A_{0}(x)\|$$

$$\leq \frac{\|A((-2)^{k}x) - f((-2)^{k}x)\|}{|2|^{k}} + \frac{\|A_{0}((-2)^{k}x) - f((-2)^{k}x)\|}{|2|^{k}}$$

$$\leq \lim_{n \to \infty} \max \left\{ \frac{\phi((-2)^{i+k}x, (-2)^{i+k}x, -(-2)^{i+k}x)}{|2|^{i+k}} \mid 0 \leq i \leq n-1 \right\}$$

$$\leq \lim_{n \to \infty} \max \left\{ \frac{\phi((-2)^{i}x, (-2)^{i}x, -(-2)^{i}x)}{|2|^{i}} \mid k \leq i \leq n-1 \right\}$$

for all $x \in X$ and all $k \in \mathbb{N}$. Hence, letting $k \to \infty$ in the above inequality, by (2.5), we have $A(x) = A_0(x)$ for all $x \in X$.

Related with Theorem 2.2, we can also have the following theorem. And the proof is similar to that of Theorem 2.2.

Theorem 2.3. Assume that $\phi: X^3 \to [0, \infty)$ is a function such that

$$\lim_{n \to \infty} |2|^n \phi \left(\frac{x}{(-2)^n}, \frac{x}{(-2)^n}, \frac{x}{(-2)^n} \right) = 0$$
 (2.12)

for all $x \in X$ and for any $x \in X$, the limit

$$\lim_{n \to \infty} \max \left\{ \left| 2 \right|^{k-1} \phi \left(\frac{x}{(-2)^k}, \frac{x}{(-2)^k}, \frac{-x}{(-2)^{k+2}} \right) \right| 0 \le k \le n-1 \right\}$$
 (2.13)

exists. Let $f: X \to Y$ be a mapping satisfying (2.7). Then there exists an additive mapping $A: X \to Y$ such that A satisfies (1.4) and

$$|| f(x) - A(x) ||$$

$$\leq \lim_{n \to \infty} \max \left\{ \left| 2 \right|^{k-1} \phi \left(\frac{x}{(-2)^k}, \frac{x}{(-2)^k}, \frac{-x}{(-2)^k} \right) \right| 0 \leq k \leq n - 1 \right\}$$
 (2.14)

for all $x \in X$. Moreover, if $\phi: X^3 \to [0, \infty)$ satisfies

$$\lim_{k \to \infty} \lim_{n \to \infty} \max \left\{ \left| 2 \right|^{i} \phi \left(\frac{x}{(-2)^{i}}, \frac{x}{(-2)^{i}}, \frac{x}{(-2)^{i}} \right) \right| k \le i \le n - 1 \right\} = 0, (2.15)$$

then A is a unique additive mapping satisfying (2.8).

As an example of $\phi(x, y)$ in Theorem 2.2 and Theorem 2.3, we can take $\phi(x, y, z) = \varepsilon(\|x\|^p + \|y\|^p + \|z\|^p)$. Then we can formulate the following corollary:

Corollary 2.4. Let $f: X \to Y$ be a mapping such that

$$|| f(x) + f(y) + f(2z) || \le || f(x+y) - f(-2z) || + \phi(x, y, z)$$
 (2.16)

for all $x, y, z \in X$. Suppose that |2| < 1. Then there exists a unique additive mapping $A: X \to Y$ such that A satisfies (1.4) and

$$||A(x) - f(x)|| \le \begin{cases} |2|^{1-p}(2|2|^p + 1)||x||^p, & \text{if } 1 < p, \\ |2|^{-1-p}(2|2|^p + 1)||x||^p, & \text{if } 0 < p < 1 \end{cases}$$

for all $x \in X$.

References

- [1] T. Aoki, On the stability of the linear transformation in Banach space, J. Math. Soc. Japan 2 (1950), 64-66.
- [2] W. Fechner, Stability of a functional inequality associated with the Jordan-von Neumann functional equation, Aequationes Math. 71 (2006), 149-161.
- [3] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
- [4] A. Gilányi, Eine zur parallelogrammgleichung äquivalente ungleichung, Aequationes Math. 62 (2001), 303-309.
- [5] A. Gilányi, On a problem by K. Nikoden, Math. Inequal. Appl. 5 (2002), 701-710.
- [6] K. Hensel, Über eine neue Begründung der Theorie der algebraischen, Zahlen. Jahresber. Dtsch. Math.-Ver. 6 (1897), 83-88.
- [7] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222-224.
- [8] H. Khodaei and T. M. Rassias, Approximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl. 1 (2010), 22-41.
- [9] C. Park, Y. Cho and M. Han, Functional inequalities associated with Jordan-von Neumann type additive functional equations, J. Inequal. Appl. 2007, Art. ID 41820, 13 pp.
- [10] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
- [11] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science ed., Wiley, New York, 1940.