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Abstract 

In this work, we consider an ill-posed Cauchy problem for an elliptic 
equation with variable coefficients. We assume the existence of a 

solution ( )⋅,xu  in ( )RH 2  and we use a wavelet regularization method. 

Furthermore, we get the numerical estimates for the convergence of 
the method and prove the uniqueness of the solution for the problem. 

1. Introduction 

In paper [3], we studied the following ill-posed parabolic problem with 
variable coefficients: 
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( ) ( ) ( ) ,10,0,,, <<≥= xttxutxuxK txx  

( ) ( ) ,0,0,,0 =⋅=⋅ xugu  

( ) ,0 ∞+<≤α< xK  K continuous. 

By assuming the existence of a solution for this problem, we had regularized 
the ill-posedness of the problem approximating it by well-posed problems in 
the scaling spaces of the Meyer multiresolution analysis with an estimate 
error. 

Furthermore, in our work [2], under the hypothesis that ( )xK
1  is 

Lipschitz, we proved that the above mentioned problem has at most one 

solution ( )⋅,xu  in the Sobolev space ( ).1 RH  

In another work [4], we had extended the results in [2] and [3] to the 

hyperbolic problem with ( ) ( ):, 2 RHxu ∈⋅  

( ) ( ) ( ) ,10,0,,, <<≥= xttxutxuxK ttxx  

( ) ( ) ,0,0,,0 =⋅=⋅ xugu  

( ) ,0 ∞+<≤α< xK    K continuous. 

Now, we will consider the following elliptic problem: 

( ) ( ) ( ) ,,10,0,, ∞+<<∞−<<=+ yxyxuyxuxK yyxx  

( ) ( ) ( ) ,,0,0,,0 ∞+<<∞−== yyuygyu x  

( ) ,0 ∞+<≤α< xK  K continuous. (1.1) 

In [6] and [7], the authors considered the Cauchy problem for the 
Laplace equation (1.1) in the case ( ) ,1≡xK  and in [8], the authors 

considered the three dimensional problem. 
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We assume ( )RLg 2∈  and the problem (1.1) to have a solution ( )⋅,xu  

( ).2 RH∈  

Our approach follows quite closely to the one used in [2-4]. 

The problem (1.1) is ill-posed in the following sense: if the problem has 
a solution, then a small disturbance on the boundary specification g of the 
problem can produce a large alteration in the solution (see Note (1)). 

We consider a multiresolution analysis with the Meyer’s wavelet because 
its Fourier transform has compact support. So, the orthogonal projections 
onto scaling spaces cutoff the high frequencies. 

From the variational formulation of the approximating problem on the 
scaling space ,jV  we get an infinite-dimensional system of second order 

ordinary differential equations with variable coefficients. An estimate 
obtained for the solution of this evolution problem is used to regularize the 
ill-posed problem approaching it by well-posed problems. Using an estimate 
obtained for the difference between the exact solution of problem (1.1) and 
its orthogonal projection onto ,jV  we get an estimate for the difference 

between the exact solution of problem (1.1) and the orthogonal projection, 
onto ,jV  of the solution of the approximating problem defined on the scaling 

space .1−jV  Further we consider that ( )xK1  is Lipschitz and we prove that 

the existence of a solution ( ) ( )RHxu 2, ∈⋅  implies its uniqueness. 

It is very important to point out that our result is weaker than the overall 
uniqueness of a solution ( )⋅⋅,u  of problem (1.1), which cannot be discussed 

without further conditions on this problem. Our uniqueness result supposes 

that ( )1,0∈x  is fixed and it is the solution ( ) ( ),, 2 RHxu ∈⋅  as function of 

the second variable, which is proved to be unique. More precisely, a solution 
( )⋅,xu  can only be modified in a subset of ( )∞+∞− ,  of measure zero. 

In Section 2, we construct the Meyer multiresolution analysis. In Section 
3, we get the estimates of the numerical stability and the convergence of     
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the wavelet Galerkin method. In Section 4, we prove the uniqueness of the 
solution. 

For a function ( ) ( ),21 RLRLh ∩∈  its Fourier transform is given by 

( ) ( )∫ ξ−=ξ R .:ˆ dxexhh ix  We use the notation xe  and exp x indistinctly. 

2. Meyer Multiresolution Analysis 

Definition 2.1. A multiresolution analysis, as defined in [1], is a 

sequence of closed subspaces jV  in ( ),2 RL  called scaling spaces, satisfying: 

(M1) 1−⊆ jj VV  for all .Zj ∈  

(M2) ∪ Zj jV∈  is dense in ( ).2 RL  

(M3) { }.0∩ Zj jV∈ =  

(M4) jVf ∈  if and only if ( ) .2 0Vf j ∈⋅  

(M5) 0Vf ∈  if and only if ( ) 0Vkf ∈−⋅  for all .Zk ∈  

(M6) There exists 0V∈φ  such that { }Zkk ∈φ :,0  is an orthonormal 

basis in ,0V  where ( ) ( )kxx jj
kj −φ=φ −− 22 2

,  for all ., Zkj ∈  The 

function φ  is called the scaling function of the multiresolution analysis. 

The scaling function of the Meyer multiresolution analysis is the 
function ϕ  defined by its Fourier transform: 

( )













π>ξ

π≤ξ≤π




 





 −ξ

π
νπ

π≤ξ

=ξϕ

,3
4,0

,3
4

3
2,12

3
2cos

,3
2,1

:ˆ  
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where ν is a differentiable function satisfying 

( )




≥
≤

=ν
1if,1

,0if,0
x
x

x  

and 

( ) ( ) .11 =−ν+ν xx  

The associated mother wavelet ,ψ  called Meyer’s wavelet, is given by (see 

[1]) 

( )















π>ξ

π≤ξ≤π




 





 −ξ

π
νπ

π≤ξ≤π




 





 −ξ

π
νπ

=ξψ ξ

ξ

.3
8,0

,3
8

3
4,14

3
2cos

,3
4

3
2,12

3
2sin

:ˆ 2

2

i

i

e

e

 

We will consider the Meyer multiresolution analysis with scaling function .ϕ  

We have 

n ( ) l ( )2 22 2 .
jj i k j

jk e− ξψ ξ = ψ ξ  

So, since ( ) ,3
8

3
2:ˆsupp





 π≤ξ≤πξ=ψ  we have that 

 (n ) 2 8supp ; 2 2 , .3 3
j j

jk k− −  ψ = ξ π ≤ ξ ≤ π ∀ ∈ 
  

Z� (2.1) 

Furthermore, 

 (n ) 4supp ; 2 , .3
j

jk k−  ϕ = ξ ξ ≤ π ∀ ∈ 
  

Z  (2.2) 

The orthogonal projection onto ( ) ,:, 2
jjj VRLPV →  is given by 

( ) ( )∑
∈

ϕϕ=
Zk

jkjkj tftfP .,  
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From (2.2), we see that jP  filters away the frequencies higher than .23
4 j−π  

We have, for all ( ),2 RLf ∈  

ffPfPf jj +−=  

( ) fPIfP jj −+=  

∑ ∑∑
∈ ≤ ∈

ψψ+ϕϕ=
Z Zk jl k

lklkjkjk ff .,,  

This implies 

 n ( ) ( )ˆ
jP f fξ = ξ  for j−π≤ξ 23

2  (2.3) 

since, by (2.1), ( ) 0ˆ =ξψlk  for all jl ≤  and .23
2 j−π≤ξ  

Considering the corresponding orthogonal projections in the frequency 

space, m ( ) m {n}2: span ,j j jk k
P L R V

∈
→ = ϕ Z  

m n n1 , ,2j jk jk
k

P f f
∈

= ϕ ϕ
π∑

Z
 

we have 

m n n n n1ˆ ˆ , , .2j jk jk jk jk j
k k

P f f f P f
∈ ∈

= ϕ ϕ = ϕ ϕ =
π∑ ∑

Z Z
 

Then (2.3) implies that 

( ) n1
2j jI P f f P f− = −
π

 

( m )1 ˆ
2 jI P f= −
π
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( m )1 ˆ
2 j jI P f= − χ
π

 

,f̂jχ≤  (2.4) 

where jχ  is the characteristic function in .,23
223

2, 




 ∞+π



 π−∞− −− jj ∪  

3. Stability and Convergence of the Method 

In this section, we approach the ill-posed problem (1.1) by well-posed 
problems, and we show, with an estimate error, the convergence of the 
wavelet method used. The next lemma is given in [3]. 

Lemma 3.1. Let u and v be positive continuous functions, ax ≥  and 

.0>c  If ( ) ( ) ,∫ ∫ ττ+≤
x
a

s
a

dsdvcxu  then 

( ) ( ) .exp 





 ττ≤ ∫ ∫

x

a

s

a
dsdvcxu  

Proof. See [3, p. 215].  

Applying the Fourier transform with respect to variable y in problem 
(1.1), we obtain the following problem in the frequency space: 

( ) ( ) ( ) ,,10,,ˆ,ˆ
2

RxxuxKxuxx ∈ξ<<ξξ=ξ  

( ) ( ) ( ) 0,0ˆ,ˆ,0ˆ =⋅ξ=ξ xugu  

whose solution satisfies 

( ) ( ) ( ) ( )∫ ∫ τξτ
τ

ξ+ξ≤ξ
x s

dsduKgxu
0 0

2
.,ˆˆ,ˆ  

Then, by Lemma 3.1, for ( ) ,0ˆ ≠ξg  we have 

 ( ) ( ) ( ) .1expˆ,ˆ
0 0

2




 τ

τ
ξξ≤ξ ∫ ∫

x s
dsdKgxu  (3.1) 
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Lemma 3.2. The operator ( )xD j  defined by 

[( ) ( )] ( ) ZZZZ
∈∈

∈∈ 



 ϕϕ′′=

kl
jkjlkllkj xKxD

,
, ,1  

satisfies the following three conditions: 

(1) ( ) ( ) ( ) ( ).xDxD kljlkj =  

(2) ( ) ( ) ( )( ) ( ).0 xDxD kljlkj −=  Hence, ( ) ( )xD lkj  is a Toeplitz matrix. 

(3) ( ) ( ) .4 12

xKxD
j

j
+−π≤  

Proof. The proof follows as in [2], regarding that in (1), we can integrate 
twice by parts, since ϕ  and ϕ′  are reals and ( ) ,0→ϕ xjk  ( ) ,0→ϕ′ xjk  

when ,±∞→x  and in (3), jΓ  is defined by: 

( ) [( ) n ( ) n ( )2 2 21 1 2
0 02 2 2− − + − +Γ = − − π ϕ − π + ϕj j j

j j jt t t t t  

( ) n ( ) ]2 21 1
02 2 .− + − ++ + π ϕ + πj j

jt t   

Let us now consider the following approximating problem in :jV  

 

( ) ( ) ( )

( )

( )

( )











∈

=⋅

=⋅

∞+<<∞−<<=+

,,

,0,0

,,0

,,10,0,,

j

x

j

yyjxx

Vyxu

u

gPu

yxyxuPyxuxK

 (3.2) 

where the projection in the first equation of (3.2) is needed because we can 
have jV∈ϕ  with jV∉ϕ′′  (see Note (2) below). 

Its variational formulation is 

( )

( ) ( )





∈ϕ=ϕ⋅ϕ=ϕ⋅

=ϕ+

,,,0,,0,,,,0

,0,

ZkugPu

uuxK

jkjkxjkjjk

jkyyxx
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where jkϕ  is the orthonormal basis of jV  given by the scaling function .ϕ  

Consider ju  is a solution of the approximating problem (3.2), given by 

( ) ( ) ( )∑ ∈ ϕ= Zl jllj yxwyxu .,  Then we have 

( ) ( ) ( ) ( )∑ ∈
ϕ′′= Zl jllyyj yxwyxu ,  

and ( ) ( ) ( ) ( )∑ ∈ ϕ′′= Zl jllxxj yxwyxu .,  Therefore, 

( ) ( ) ( ) ( ) ( )yxuyxuxK yyjxxj ,, +  

( ) ( ) ( ) ( ) ( )∑ ∑
∈ ∈

ϕ′′+ϕ′′=
Z Zl l

jlljll yxwyxwxK .  

Hence, 

( ) ( ) ( ) 0, =ϕ+ jkyyjxxj uuxK  

( ) 0, =ϕϕ′′+ϕ′′⇔ ∑ ∑
∈ ∈Z Zl l

jkjlljll wwxK  

( )∑ ∑
∈ ∈

ϕϕ′′−=ϕϕ′′⇔
Z Zl l

jkjlljkjll wwxK ,,  

( ) ∑
∈

∈ϕϕ′′−=′′⇔
Z

Z
l

jkjllk kwwxK ,,  

( )∑
∈

ϕϕ′′−=⇔
Zl

jkjllk xKww
dx
d ,1

2

2
 

( ) ( )∑
∈

−=⇔
Zl

lkjlk xDww
dx
d ,2

2
 

where, as defined before, ( ) ( ) ( ) .,1
jkjllkj xKxD ϕϕ′′=  Thus, we get an 

infinite-dimensional system of ordinary differential equations: 
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( )

( )

( )












=′

γ=

−=

,00

,0

,2

2

w

w

wxDw
dx
d

j
 (3.3) 

where γ  is given by 

∑ ∑
∈ ∈

ϕϕ=ϕγ=
Z Zz z

jzjzjzzj ggP .,  

Lemma 3.3. If w is a solution of the evolution problem of second order 
(3.3), then 

( ) ( ) .14exp
0 0

21 





 τ

τ
πγ≤ ∫ ∫+− x sj dsdKxw  

Proof. Follows by Lemma 3.1 and Lemma 3.2. See details in [3].  

Theorem 3.4 (Stability). Let ju  and jv  be solutions in jV  of the 

approximating problems (3.2) for the boundary specifications g and ,~g  

respectively. If ,~ ε≤− gg  then 

( ) ( ) ,2
4exp,, 2

21









α
πε≤⋅−⋅

+−
xxvxu

j
jj  

where α  satisfies ( ) ∞+<≤α< xK0  as in the definition of the problem 

(1.1). For j such that ,log
2

4 1
2

−− ε
π
α≤j  we have 

( ) ( ) .,,
21 x

jj xvxu −ε≤⋅−⋅  

Proof. By Lemma 3.3 and linearity of (3.3), the proof follows quite 

closely to the one of Theorem 3.4 in [3, p. 221].  
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We will consider the problem (1.1), for the functions ( )RLg 2∈  such 

that ( ) ( ( )) ( ),2expˆ 22 RLg ∈αξξ  where ĝ  is the Fourier transform of g. The 

inverse Fourier transform of ,2exp
2











α
ξ+ξ

−  for instance, satisfies this 

condition. Define 

 ( ) ( ).2expˆ: 2
2

RLgf ∈







α
ξξ=  (3.4) 

Proposition 3.5. If ( )txu ,  is a solution of problem (1.1), then 

( ) ( ) ( ) ( ) ,149
2exp,, 2

2
2 








−

α
π−≤⋅−⋅ − xfxuPxu j

Lj R  

where f is given by (3.4). 

Proof. Follows by (2.4) and (3.1) as Proposition 3.5 in [3].  

Proposition 3.6. If u is a solution of problem (1.1) and 1−ju  is a 

solution of the approximating problem in ,1−jV  then 

 ( ) ( )ξ=ξ − ,ˆ,ˆ 1 xuxu j  for .23
4 j−π≤ξ  (3.5) 

Consequently, 

 ( ) ( ).,, 1 ⋅=⋅ − xuPxuP jjj  (3.6) 

Proof. See Proposition 3.6 in [3].  

Theorem 3.7. Let u be a solution of (1.1) with the condition ( ) ,,0 gu =⋅  

and let f be given by (3.4). Let 1−jv  be a solution of (3.2) in 1−jV  for the 

boundary specification g~  such that .~ ε≤− gg  If ( )ε= jj  is such that 

,log
8

4 1
2

−− ε
π
α=j  then 
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( ) ( ) ( )
( )

.,,
2

2
2 136

1
1

1
x

RL
x

jj fxuxvP
−−

− ε⋅+ε≤⋅−⋅  

Proof. 

( ) ( )⋅−⋅− ,,1 xuxvP jj  

( ) ( ) ( ) ( )⋅−⋅+⋅−⋅≤ − ,,,,1 xuxuPxuPxvP jjjj  

( ) ( ) ( ) ( ) .,,,,1 ⋅−⋅+⋅−⋅≤ − xuxuPxuPxvP jjjj  

Let 1−ju  be a solution of (3.2) in 1−jV  for the boundary specification g. By 

(3.6), ( ) ( ).,, 1 ⋅=⋅ − xuPxuP jjj  Thus, by Theorem 3.4, we have 

( ) ( ) ( ) ( )⋅−⋅=⋅−⋅ −−− ,,,, 111 xuPxvPxuPxvP jjjjjjj  

( ) ( )⋅−⋅≤ −− ,, 11 xuxv jj  

.
21 x−ε≤  

Now, by Proposition 3.5, 

( ) ( ) ( ) ( )







−

α
π−≤⋅−⋅ − 2

2
149

2exp,, 2 xfxuxuP j
Lj R  

( )
( )

.
2

2
136

1 x
Lf

−
ε⋅≤ R  

Then ( ) ( ) ( )
( )

.,,
2

2
2 136

1
1

1
x

RL
x

jj fxuxvP
−−

− ε+ε≤⋅−⋅   

4. Uniqueness of the Solution 

The infinite-dimensional system of ordinary differential equations (3.3) 
can be written in the following way: 

( )

( ) ( )












=γ=

+=

+−=

,00and0

,0

,0

vw

vwdx
dw

vwxDdx
dv

j

  
( )

( ) ( )





γ=

=

,,00

,
T

j

V

VxAdx
dV
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where ( ) ( ) ( ) [ )1,0,:, 22 ∈×=∈= xRlRlXwvV  and 

( )
( )








 −
=

01

0 xD
xA j

j  

with ( ) ( ( ) ) ( ) ., 22
22 lljXjXj vwxDvwxDVxA +==  

Lemma 4.1. For all ,Zj ∈  ( ) XXxAj →:  is a uniformly bounded 

linear operator on [ ).1,0∈x  

Proof. By Lemma 3.2 and the hypothesis ( ) ,0 ∞+<≤α< xK  we have 

( ) ( ) .:44 1212
j

jj
j KxKxD =

α
π≤π≤

+−+−
 

If ,1=XV  then 12 ≤lw  and .12 ≤lv  So, 

( ) ( ) .1222
22 +≤+= jlljXj KvwxDVxA  

Hence, the operator ( )xAj  is uniformly bounded on [ ).1,0∈x   

Lemma 4.2. If ( )xK
1  is Lipschitz on [ ),1,0  then ( )xDx j6  is Lipschitz 

on [ ) .,1,0 Zj ∈∀  Consequently, ( )xAx j6  is Lipschitz on [ ).1,0  

Proof. ( ) ( ) ,1
jj BxKxD =  where ( ) jkjllkjB ϕϕ′′= ,  and ≤jB  

.4 12 +−π j  Then 

( ) ( ) ( ) ( ) xxLxKxKxDxD j
j

jj
~4~

11~ 12 −≤π−≤− +−  

with ,4 12 +−π⋅= j
j LL  where L is the Lipschitz constant of ( ) .1

xK  
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Now, 

( ) ( ) ( ( ) ( )) Xjj
VXV

jj VxAxAxAxA ~sup~
1,

−=−
=∈

 

( ( ) ( )) 2
2

~sup
1,

ljj
wlw

wxDxD −=
=∈

 

( ) ( )xDxD jj
~−=  

.~xxL j −≤   

Lemma 4.3. For each ,Zj ∈  the operator [ ) ( )xAx j6�1,0  is 

continuous in the uniform operator topology. 

Proof. Let [ )1,0∈x  and .0>ε  By Lemma 4.2, ( )xAj  is Lipschitz 

with Lipschitz constant .jL  Let .: jLε=δε  We have, for [ ):1,0~ ∈x  

 ( ) ( ) .~~~ ε=δ⋅<−≤−⇒δ<− εε jjjj LxxLxAxAxx   

By previous lemmas, we have: 

Theorem 4.4. The infinite-dimensional system of ordinary differential 
equations (3.3) has a unique solution. 

Proof. The result follows by Lemma 4.1, Lemma 4.2, Lemma 4.3 above 

and Theorem 5.1 in [5, p. 127].  

Theorem 4.5. Let u be a solution of problem (1.1) with condition ( )⋅,0u  

,g=  where g satisfies (3.4). Then, for any sequence nj  such that →nj  

∞−  as ,∞+→n  there exists a unique sequence nju  of solutions of the 

approximating problems (3.2) in njV  with conditions ( ) gPu nn jj =⋅,0  and 

[ )1,0∈∀x  such that 

( ) ( )⋅→⋅+ ,,1 xuxuP nn jj  in ( ).2 RL  
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Proof. By Theorem 4.4, each approximating problem has a unique 
solution. Then the result follows by Theorem 3.7, with ,~ gg =  since that j 

and ε  are functionally related by 1
2 log

8
4 −− ε

π
α=j  independently of u.  

Corollary 4.6. Problem (1.1) has at most one solution, for each 
[ ),1,0∈x  where g satisfies (3.4). 

5. Conclusions 

We have considered a solution ( ) ( )RHxu 2, ∈⋅  for the ill-posed elliptic 

problem ( ) ,0=+ yyxx uuxK  ,10 << x  ,∞+<<∞− y  ( ) ( )RLgu 2,0 ∈=⋅  

and ( ) ,0,0 =⋅xu  where ( )xK  is continuous, ( ) ,0 ∞+<≤α< xK  ( )xK
1  is 

Lipschitz and ( ) ( ( )) ( ).2expˆ 22 RLg ∈αξξ  Utilizing a wavelet Galerkin 

method with the Meyer multiresolution analysis, we regularize the ill-
posedness of the problem, approaching it by well-posed problems in the 
scaling spaces and we have shown the convergence of the wavelet Galerkin 
method applied to our problem, with an estimate error. We have shown that 
the solution ( )⋅,xu  is unique, for each [ ),1,0∈x  fixed. 

Notes. (1) Consider the Laplace equation with Cauchy conditions on x: 

( ) ( ) ,,10,0,, ∞+<<∞−<<=+ yxyxuyxu yyxx  

( ) ( ) ,0,0,,0 =⋅=⋅ xn ugu  

where 

( )




 ≤≤

=
−

.otherwise,0

,0if,2cos 0
2 yynyn

ygn  

The solution of this problem is 

( ) ( ) ( )
( )







≤≤= ∑∞

=
−

.otherwise,0

,0if,!2
22cos, 00

2
2 yyj

nxnynyxu j

j

n  
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We have that ( )ygn  converges uniformly to zero as n tends to infinity, while 

for ,0>x  the solution ( )yxun ,  does not tend to zero. 

(2) Note that ( ) .jjl V∉″ϕ  In fact, if ( ) ,jjl V∈″ϕ  then ( ) =″ϕ jl  

∑ ∈ ϕαZk jkk .  Hence, 

( )
n n.

∈

′′ϕ = α ϕ∑jl k jk
k Z

 

So, we would have 

( ) ( )∑
∈

ξ−ξ− ξϕα=ξϕ−
Zk

jij
k

jlij jj
ee .2ˆ22ˆ2

22222  

This equality implies [ ( ) ]∑ ∈
ξ−−α−=ξ Zk

lki
k

j
e .22  

References 

 [1] I. Daubechies, Ten Lectures on Wavelets, CBMS - NSF 61 SIAM, Regional 
Conferences Series in Applied Mathematics, Pennsylvania, USA, 1992. 

 [2] E. P. Lopes and J. R. L. de Mattos, Uniqueness of the solution of a partial 
differential equation problem with a non-constant coefficient, Proc. Amer. Math. 
Soc. 136 (2008), 2201-2207. 

 [3] J. R. L. de Mattos and E. P. Lopes, A wavelet Galerkin method applied to     
partial differential equations with variable coefficients, Electron. J. Differ. Eq. 
Conf. 10 (2003), 211-225. 

 [4] J. R. L. de Mattos and E. P. Lopes, Regularization of an ill-posed hyperbolic 
problem and the uniqueness of the solution by a wavelet Galerkin method, Anal. 
Theory Appl. 28(2) (2012), 125-134. 

 [5] A. Pazzy, Semigroups of Linear Operators and Applications to Partial Differential 
Equations, Applied Mathematical Sciences 44, Springer-Verlag, New York, USA, 
1983. 



Stability and Uniqueness of the Solution of an Ill-posed Elliptic … 163 

 [6] C. Y. Qiu and C. L. Fu, Wavelets and regularization of the Cauchy problem for 
the Laplace equation, J. Math. Anal. Appl. 338 (2008), 1440-1447. 

 [7] C. Vani and A. Avudainayagam, Regularized solution of the Cauchy problem for 
the Laplace equation using Meyer wavelets, Math. Comput. Modelling 36 (2002), 
1151-1159. 

 [8] J. R. Wang and W. F. Wang, Uniform Meyer solution to the three dimensional 
Cauchy problem for Laplace equation, Anal. Theory Appl. 27(3) (2011), 265-277. 


