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Abstract

In this work, we consider an ill-posed Cauchy problem for an elliptic
equation with variable coefficients. We assume the existence of a

solution u(x, -) in H 2(R) and we use a wavelet regularization method.

Furthermore, we get the numerical estimates for the convergence of
the method and prove the uniqueness of the solution for the problem.

1. Introduction

In paper [3], we studied the following ill-posed parabolic problem with
variable coefficients:
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K(xX)uy(x, t) =u/x, 1), t>0, 0<x<lI,
u(O’ ) =& ux(oa ) =0,

0 < a < K(x) <+, K continuous.

By assuming the existence of a solution for this problem, we had regularized

the ill-posedness of the problem approximating it by well-posed problems in

the scaling spaces of the Meyer multiresolution analysis with an estimate

€1Tor.

Furthermore, in our work [2], under the hypothesis that

L
K(x)

Lipschitz, we proved that the above mentioned problem has at most one

solution u(x, -) in the Sobolev space H'(R).

In another work [4], we had extended the results in [2] and [3] to the

hyperbolic problem with u(x, -) € H?(R):
K(x)uy(x, t) =uy(x, 1), 120, 0<x<l,
u(0,) =g, uy(0,:)=0,
0 < a < K(x) <+, K continuous.
Now, we will consider the following elliptic problem:
K(x)uyge(x, p) +uyy(x, y) =0, 0<x <1, —0<y<+o,
u(0, y) = g(y) ux(0,y) =0, —o0 <y <o,

0 < a < K(x) < +oo, K continuous.

(1.1)

In [6] and [7], the authors considered the Cauchy problem for the

Laplace equation (1.1) in the case K(x)=1, and in [8], the authors

considered the three dimensional problem.
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We assume g e L*(R) and the problem (1.1) to have a solution u(x, -)
e H%(R).
Our approach follows quite closely to the one used in [2-4].

The problem (1.1) is ill-posed in the following sense: if the problem has
a solution, then a small disturbance on the boundary specification g of the
problem can produce a large alteration in the solution (see Note (1)).

We consider a multiresolution analysis with the Meyer’s wavelet because
its Fourier transform has compact support. So, the orthogonal projections
onto scaling spaces cutoff the high frequencies.

From the variational formulation of the approximating problem on the

scaling space V;, we get an infinite-dimensional system of second order

ordinary differential equations with wvariable coefficients. An estimate
obtained for the solution of this evolution problem is used to regularize the
ill-posed problem approaching it by well-posed problems. Using an estimate
obtained for the difference between the exact solution of problem (1.1) and

its orthogonal projection onto V;, we get an estimate for the difference

between the exact solution of problem (1.1) and the orthogonal projection,

onto V;, of the solution of the approximating problem defined on the scaling

space V;_j. Further we consider that 1/K(x) is Lipschitz and we prove that
the existence of a solution u(x, -) € H>(R) implies its uniqueness.

It is very important to point out that our result is weaker than the overall

uniqueness of a solution u(-, -) of problem (1.1), which cannot be discussed
without further conditions on this problem. Our uniqueness result supposes
that x e (0, 1) is fixed and it is the solution u(x, -) € H*(R), as function of

the second variable, which is proved to be unique. More precisely, a solution

u(x, -) can only be modified in a subset of (—o0, +o0) of measure zero.

In Section 2, we construct the Meyer multiresolution analysis. In Section

3, we get the estimates of the numerical stability and the convergence of
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the wavelet Galerkin method. In Section 4, we prove the uniqueness of the

solution.
For a function h e L'(R)( L*(R), its Fourier transform is given by

h(E) = IR h(x)e ™5dx. We use the notation ¢* and exp x indistinctly.

2. Meyer Multiresolution Analysis

Definition 2.1. A multiresolution analysis, as defined in [1], is a

sequence of closed subspaces V; in I’ (R), called scaling spaces, satisfying:
M) V; cV;_ forall jeZ.
M2) |, V) is dense in I*(R).
(M3) ﬂjez v; ={0}.

(M4) f eV, ifand only if £(2/ ) e V.
(M5) f eV, ifandonly if f(-— k) eV, forall k € Z.

(M6) There exists ¢ € ¥y such that {¢g s : k € Z} is an orthonormal

basis in Vj, where ¢; ;(x) = Z_j/2(|)(2_jx —k) for all j, ke Z The

function ¢ is called the scaling function of the multiresolution analysis.

The scaling function of the Meyer multiresolution analysis is the

function ¢ defined by its Fourier transform:

L el<
o0) = foos Ty(l8l-1)] F=lel= i

4n
09 |§|>Ta



Stability and Uniqueness of the Solution of an Ill-posed Elliptic ...

where v is a differentiable function satisfying

0, ifx<0,
v(x) = .
1, ifx=>1

and

v(x)+v(l-x)=1.

151

The associated mother wavelet y, called Meyer’s wavelet, is given by (see

1)
s 2 lel-1)], Fele
> &> 5

We will consider the Meyer multiresolution analysis with scaling function ¢.

We have
— Ty i ke~ o
v (8) = 2P Ry (278),
. N 2 8
So, since supp(\y) = {EJ 3ms €| < gn}, we have that

8
3

supp(\;j\k)z{i; 2n2_j < g < ?th_j}, Vk € Z.

Furthermore,

— 4 .
supp (@ jx ) ={<i; lg| < 52 J}, Vk € 7.

The orthogonal projection onto V;, P; : I*(R) - V;, is given by

Pif(0) = Y (fs @) u(t).

keZ

2.1)

(2.2)
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From (2.2), we see that P; filters away the frequencies higher than %nZ_j .

We have, forall f e I*(R),
f=Pf P
- P =P

- Z<f’ @ k)P jic + Z Z(f: Vi) Wik

keZ I<jkeZ
This implies
e~ A 2 .
Pif(8) = f (&) for |g] < 327/ (2.3)

since, by (2.1), iy (£) = 0 forall / < j and | & < %n2_j.

Considering the corresponding orthogonal projections in the frequency

~ e
space, P; : L (R) > V; = span{¢ }keZ’

o~ 1 e~~~
P f = Z%(f P jk )Pk
keZ
we have
1 P
f 22_ f (ij (pjk_z<f’ (ij>(pjk:ij'
keZ keZ

Then (2.3) implies that

__L v 7—p

_ 1 Y,
==lU-B)J |
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1 —~ A
:E" (I=P))x;f |

<15 I @4

2

where y; is the characteristic function in (—oo, —% n2~/ } U [§ n2~/, +ooj.

3. Stability and Convergence of the Method

In this section, we approach the ill-posed problem (1.1) by well-posed
problems, and we show, with an estimate error, the convergence of the
wavelet method used. The next lemma is given in [3].

Lemma 3.1. Let u and v be positive continuous functions, x > a and

¢c>0.Ifu(x)<c+ I:J.:v(t)drds, then

u(x) < ¢ exp[ f x j :V(r)dtdsj.

Proof. See [3, p. 215]. L]

Applying the Fourier transform with respect to variable y in problem
(1.1), we obtain the following problem in the frequency space:

2
Uy (x, &) = %ﬁ(x, £), 0<x<l, EeR,

uA(O’ E_,) = g’\(g)’ u’\x(os ) =0

whose solution satisfies

XeSs 2
(e, 2)| <1 20) |+ [ ] (e £ s

Then, by Lemma 3.1, for g(&§) # 0, we have

i 2) <] &0 x| [ s | 61
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Lemma 3.2. The operator D ;(x) defined by

[(P)n(Drez, kez = [ﬁ (@l ij)leZ ke

satisfies the following three conditions:
(1) (Dj)lk(x) = (Dj)kz(x)~

(2) (D)) (x) = (D; )(l—k)o(x)' Hence, (D} )y, (x) is a Toeplitz matrix.

24771
@) [ D;(x) [ < nKT

Proof. The proof follows as in [2], regarding that in (1), we can integrate

twice by parts, since @ and ¢’ are reals and @ ;(x) = 0, ¢'%(x) =0,

when x — +o0, and in (3), T'; is defined by:
—J —j+l N2 —j+1 2 20 — 2
L) ==277[=27"n) [ @jo(t =27/ m) |+ 7] 9o (1) |
+ (27 ¢ 0 (1427 ) ], O
Let us now consider the following approximating problem in V; :

K ()t (x, ¥) + Pjty(x, ) = 0,0 < x <1, 00 < y < +oo,

u,(0,-) =0, '
u(x, y)eVv;,

where the projection in the first equation of (3.2) is needed because we can
have ¢ € V; with ¢" ¢ V/; (see Note (2) below).

Its variational formulation is
{(K(x)uxx T Uy, (pjk> =0,
(0, ), o) =(Pig, o), (ux(0,°), @) =(0, 9 4), keZ,
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where ¢ j; is the orthonormal basis of V; given by the scaling function ¢.

Consider u; is a solution of the approximating problem (3.2), given by

uj(x, y)= Zlez wi(x)@ ;(»). Then we have
)50 9 = 3 ()
and (u;) . (x, y) = ZleZ wi(x)® j;(»). Therefore,

Ke) (1) (s ) + (1), (5, )

= K(x) 2 wi(x)0;u(») + D wi(x) ().

leZ leZ
Hence,

(K(x)())yy +(u)),y @g) =0

= <ZK(X)WZ'<PJ'1 + ZW;(P'}za <ij> =0

leZ leZ

= ZK(X)W§'<<PJ'1, Q) = —Z wi{@'1,  ji)

leZ leZ

< K(x)w) = —ZW1<(p;~1, k), kel

leZ
d? 1,
(S

d2
dx leZ

o,
where, as defined before, (D;); (x)= m((p 1> ® k). Thus, we get an

infinite-dimensional system of ordinary differential equations:
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d2

—5w=-D;(x)w,

dx 3.3)
w(0) =7, G
w'(0) =0,

where y is given by
Pjg = ZYZ(ij = Z(ga (sz>(pj2'
zel zel

Lemma 3.3. If w is a solution of the evolution problem of second order
(3.3), then

[ < v exp(4—f+ln2 Nt m).

Proof. Follows by Lemma 3.1 and Lemma 3.2. See details in [3]. O

Theorem 3.4 (Stability). Let u; and v; be solutions in V; of the

approximating problems (3.2) for the boundary specifications g and g,
respectively. If | g — & | < &, then

4—j+1n2 )
o j(x, ) =vi(x, ) || < sexp[Tx ,
where a. satisfies 0 < oo < K(x) < +o0 as in the definition of the problem
(1.1). Forj such that 477 < Lzlog 8_1, we have
2n

)
” uj(x’ ')_Vj(x’ ) " S 81 !

Proof. By Lemma 3.3 and linearity of (3.3), the proof follows quite
closely to the one of Theorem 3.4 in [3, p. 221]. O
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We will consider the problem (1.1), for the functions g e I (R) such

that g(£) exp(&? /(2a)) € I*(R), where & is the Fourier transform of g. The
2
inverse Fourier transform of exp(— éz;alé'], for instance, satisfies this

condition. Define
R iz 2
f = g(&)exp 2q | € L°(R). (3.4)
Proposition 3.5. If u(x, t) is a solution of problem (1.1), then
2 n2 - 2
| ulx, )= Pulx, ) | < f ||L2(R) exp —574 (1-x7)1

where f'is given by (3.4).
Proof. Follows by (2.4) and (3.1) as Proposition 3.5 in [3]. O

Proposition 3.6. If u is a solution of problem (1.1) and u;_y is a

solution of the approximating problem in V;_y, then

(e, &) = iy (v, ©) for | &] < gm2 7 (3.5)

Consequently,
Piu(x, ) = Puj_(x, -). (3.6)
Proof. See Proposition 3.6 in [3]. O

Theorem 3.7. Let u be a solution of (1.1) with the condition u(0, -) = g,
and let f be given by (3.4). Let v;_y be a solution of (3.2) in V;_; for the

boundary specification g such that | g —g || < e If j = j(e) is such that

477 = izlog 8_1, then
8
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l—x2 %(I_XZ)
I Py (e, ) —ulx, [ <& + [ fll2g) -2 '

Proof.
| Ppvjma(x, ) —u(x, ) |

< Ppvj_(x, o) = P, -) + P, <) — u(x, -) |

< Ppvjor(x, ) = P, o) |+ Pulx, ) = ulx, ) |
Let u;_; be a solution of (3.2) in V;_; for the boundary specification g. By
(3.6), Pju(x, -) = Pju;_(x, -). Thus, by Theorem 3.4, we have

| Ppvja(x, ) = Pulx, ) || = | Ppv;q(x, ) = Py (x, ) |
<[ wicaCe ) —uja(x )

< 8l—x )

Now, by Proposition 3.5,
2 th - 2
| Pju(x, J—ulx, )| < f ”Lz(R) exp —574 (1-x%)

R
Sllf”ﬁ(u@)'*‘33’6(1 !

1 2
_.2 —(1-x7)
Then | Piv;_j(x, ) —u(x, ) | < e 4| f ||L2(R)836 . O

4. Uniqueness of the Solution

The infinite-dimensional system of ordinary differential equations (3.3)

can be written in the following way:

dv

a——Dj(x)w+0v, w

dw E = Aj(x)Va

e Oow+v, T
* 7(0)=(0,v),

w(0) = y and v(0) = 0,
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where V = (v, w) € X = I>(R)x I>(R), x € [0, 1) and

0 -D j(x)}

4= [1 0

with | 4;(x)V ||y = | (D;(x)w, v) |y = \/” Dj(x)w ”122 +[v ”122
Lemma 4.1. For all jeZ, A;j(x): X — X is a uniformly bounded
linear operator on x € [0, 1).

Proof. By Lemma 3.2 and the hypothesis 0 < o < K(x) < 400, we have

2 ,—j+1 2 ,—j+1
4™/ 4/
10,0 < g =)

If [V, =1 then [w|,2 <1 and || v|2 < 1. So,

2 2 2
|4, Ly = I Dy 0w B + vy < K2 41

Hence, the operator 4;(x) is uniformly bounded on x € [0, 1). O

Lemma 4.2. Ifﬁ is Lipschitz on [0, 1), then x + D;(x) is Lipschitz
on [0,1), Vj € Z. Consequently, x > A;(x) is Lipschitz on [0, 1).

1 ”

Proof. Dj(x) szj’ where (Bj)lk = ((pﬂ, (ij> and | B; | <

n?47/*! Then

Rk

with L; = L - n?47/ +1, where L is the Lipschitz constant of 1

K(x)’
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Now,

| 4;(x)—4;x) = sup [ (4;(x) = 4;NV |
vex,| V=1

sup | (D;(x) = D;(X)w |2

wel? || =1

| D;(x) - D;(%) |

Lemma 4.3. For each j e Z, the operator [0,1)> x > A;(x) is

continuous in the uniform operator topology.

Proof. Let x € [0, 1) and &> 0. By Lemma 4.2, 4;(x) is Lipschitz

with Lipschitz constant L;. Let 8, = &/L;. We have, for X € [0, 1):
|x_x|<88:>||AJ(X)_AJ(;CI)"SLJ|X_;C’|<LJ8828 ]

By previous lemmas, we have:

Theorem 4.4. The infinite-dimensional system of ordinary differential

equations (3.3) has a unique solution.

Proof. The result follows by Lemma 4.1, Lemma 4.2, Lemma 4.3 above

and Theorem 5.1 in [5, p. 127]. O

Theorem 4.5. Let u be a solution of problem (1.1) with condition u(0, )
= g, where g satisfies (3.4). Then, for any sequence j, such that j, —

—0 as n —> 4o, there exists a unique sequence u Jn of solutions of the
approximating problems (3.2) in an with conditions u Jn 0, )= Pjng and

Vx € [0, 1) such that

.72
])jn +1ujn (x’ ) - u(x, ) in L (R)
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Proof. By Theorem 4.4, each approximating problem has a unique

solution. Then the result follows by Theorem 3.7, with g = g, since that j

and ¢ are functionally related by 477 = % log g ! independently of u. [J
8n

Corollary 4.6. Problem (1.1) has at most one solution, for each
x € [0, 1), where g satisfies (3.4).

5. Conclusions

We have considered a solution u(x, -) € H>(R) for the ill-posed elliptic

problem K(x)uy, +uy, =0, 0<x <1, —0o<y<+o, u0,)=ge 12(R)

and u,(0, -) = 0, where K(x) is continuous, 0 < o < K(x) < +o0, _sz) is
Lipschitz and g(&)exp(& /Qa)) € I*(R). Utilizing a wavelet Galerkin

method with the Meyer multiresolution analysis, we regularize the ill-
posedness of the problem, approaching it by well-posed problems in the
scaling spaces and we have shown the convergence of the wavelet Galerkin
method applied to our problem, with an estimate error. We have shown that
the solution u(x, -) is unique, for each x € [0, 1), fixed.

Notes. (1) Consider the Laplace equation with Cauchy conditions on x:
U (X, )+ (x, ) =0, 0<x<l, —0<y<+o,
u(Os ) = 8n> ux(oa ) =0,
where

n~2 cos «/Eny, if 0<y<y,

gn(y) :{

, otherwise.
The solution of this problem is
2
) (v2nx)*/ <<
uy(x, y) = Zj:o” cos(v2ny) Q) Tosy<yo

0, otherwise.
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We have that g, (v) converges uniformly to zero as n tends to infinity, while

for x > 0, the solution u,(x, y) does not tend to zero.

(2) Note that (9;;) ¢V;. In fact, if (p;) €V;, then (9;) =

ZkeZ a9 ;. Hence,

(pp) = Z 0L @ jie-
keZ

So, we would have

_21/26—12”@@(2] £) = ZothJ/ze_’zj/ %(p(z] £).
keZ

This equality implies &2 = Dies —ake_"[zj(k‘l)ﬁ]‘
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