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Abstract 

In this paper, a new chaos synchronization method is proposed for 
coupled of arbitrary 3-D quadratic dynamical systems in discrete-time. 
The synchronization scheme, based on nonlinear controllers and 
Lyapunov stability theory, is theoretically rigorous. Numerical 
simulation shows the effectiveness and the feasibility of the new 
method. 

1. Introduction 

Over the last decades, synchronization of chaotic systems has attracted 
more and more attention from many areas of science and technology, due to 
its potential application in secure communications [15, 16]. 

Many types of synchronization phenomenon have been presented such  
as complete synchronization [2], anti-synchronization [14], generalized 
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synchronization [13], projective synchronization [10], generalized projective 
synchronization [12], etc. Various methods and techniques for chaos 
synchronization have been reported to investigate some types of chaos 
synchronization in continuous-time systems, such as OGY method [3], PC 
method [5], feedback approach [7], active and adaptive control [8, 14], 
sliding mode approach [9], backstepping design technique [11, 19], etc. In 
fact, many mathematical models of biological processes, physical processes 
and chemical processes were defined using discrete-time dynamical systems. 
Recently, more attentions were paid to the chaos synchronization in discrete-
time dynamical systems [17]. 

In this paper, using new controller law and Lyapunov stability theory, a 
general method in discrete-time is proposed to achieve synchronization 
between two arbitrary 3-D quadratic chaotic systems. In order to verify the 
effectiveness of the new approach, the proposed scheme is applied to two 
discrete-time hyper-chaotic systems: the 3-D generalized Hénon system [17] 
and the 3-D discrete-time Baier-Klein system [1]. 

The rest of this paper is organized as follows: In Section 2, the new 
discrete chaos synchronization approach is introduced. In Section 3, the 
proposed criterion is applied to achieve synchronization between two 
discrete-time quadratic chaotic systems in 3-D and numerical simulation is 
used to verify its effectiveness. In Section 4, conclusion is followed. 

2. A New Chaos Synchronization Approach 

Consider the following drive and response chaotic systems: 
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where ( ) ( )( ) ,3
31 R∈= ≤≤ii kxkX  ( ) ( )( ) 3

31 R∈= ≤≤ii kykY  are the state 

vectors of the drive system and the response system, respectively, 
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is the vector controller to be determined. Let us define the synchronization 
errors as 

( ) ( ) ( ) .31, ≤≤−= ikxkyke iii  (3) 

From the definition (3), the synchronization errors between the drive 
system (1) and the response system (2) can be derived as follows: 
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To achieve synchronization between systems (1) and (2), we can choose 
the vector controller ( ) 31 ≤≤= iiuU  as follows: 
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and ( ) 31 ≤≤iil  are unknown constants to be determined later. 
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By substituting equation (7) into equation (4), the synchronization errors 
can be written as: 
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Now, we have the following result. 

Theorem 1. If ( ) 31 ≤≤iil  are chosen such that 

6,3 21 >> ll  and ,23 >l  (9) 

then the drive system (1) and the response system (2) are globally 
synchronized under the controller law (7). 

Proof. For stability analysis, let us consider the following quadratic 
Lyapunov function: 
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Using (9), we can prove that 
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then we get: ( )( ) .0<Δ keV  Thus, by Lyapunov stability, it is immediate that 
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We conclude that the drive system (1) and the response system (2) are 

globally synchronized.  

3. Numerical Simulation 

In this section, numerical example is considered to validate the proposed 
chaos synchronization approach. 

The drive system is the 3-D generalized Hénon system [17]: 
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where .3.0,07.1 == ba  

The response system is the 3-D discrete-time Baier-Klein system [1]: 
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where ( )TuuuU 321 ,,=  is the vector controller. 

According to equation (7), the synchronization controllers can be    
written as: 
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and ( ) 31 ≤≤iil  are unknown constants to be determined. 

Finally, the synchronization errors between (12) and (13) can be derived 
as: 
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Corollary 2. For the two coupled 3-D generalized Hénon and 3-D 
discrete-time Baier-Klein systems, if we choose ( ) 31 ≤≤iil  such that ,51 =l  

42 =l  and ,33 =l  then they are globally synchronized. 

By using Matlab, we get the numeric result that is shown in Figure 1. 
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Figure 1. Time evolution of synchronization errors between 3-D generalized 
Hénon system and Baier-Klein system. 

4. Conclusion 

In this paper, a new control scheme was designed to achieve 
synchronization for coupled of 3-D quadratic chaotic systems in discrete-
time. It was showed that the proposed controllers guarantee the asymptotic 
convergence to zero of the errors between the drive and the response 
systems. Finally, numerical simulation was provided to illustrate the 
effectiveness of our approach. 

References 

 [1] G. Baier and M. Klein, Maximum hyperchaos in generalized Hénon maps, Phys. 
Lett. A 51(6-7) (1990), 281-284. 

 [2] S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares and C. S. Zhou, The 
synchronization of chaotic systems, Phys. Rep. 366 (2002), 1-101. 

 [3] E. Ott, C. Grebogi and J. A. Yorke, Controlling chaos, Phys. Rev. Lett. 64 (1990), 
1196-1199. 



Adel Ouannas 232 

 [4] K. Pyragas, Continuous control of chaos by self-controlling feedback, Phys. Lett. 
A 170 (1992), 421-428. 

 [5] L. M. Pecora and T. L. Carrol, Synchronization in chaotic systems, Phys. Rev. 
Lett. 64 (1990), 821-824. 

 [6] M. C. Ho and Y. C. Hung, Synchronization of two different chaotic systems using 
generalized active control, Phys. Lett. A 301 (2002), 424-428. 

 [7] X. Wu, X. Han and J. Lu, Adaptive feedback synchronization of unified chaotic 
systems, Phys. Lett. A 329 (2004), 327-333. 

 [8] S. H. Chen and J. Lu, Synchronization of an uncertain unified systems via 
adaptive control, Chaos Soliton Fractals 14 (2002), 643-647. 

 [9] H. T. Yau, Design of adaptive sliding mode controller for chaos synchronization 
with uncertainties, Chaos Soliton Fractals 22 (2004), 341-347. 

 [10] J. Qiang, Projective synchronization of a new hyperchaotic Lorenz system chaotic 
systems, Phys. Lett. A 370 (2007), 40-45. 

 [11] X. Tan, J. Zhang and Y. Yang, Synchronizing chaotic systems using backstepping 
design, Chaos Solitons Fractals 16 (2003), 37-45. 

 [12] X. Li, Generalized projective synchronization using nonlinear control method, 
International Journal of Nonlinear Science 8 (2009), 79-85. 

 [13] Y. W. Wang and Z. H. Guan, Generalized synchronization of continuous chaotic 
systems, Chaos Solitons Fractals 27 (2006), 97-101. 

 [14] X. Zhang and H. Zhu, Anti-synchronization of two different hyper-chaotic 
systems via active and adaptive control, International Journal of Nonlinear 
Science 6 (2008), 216-223. 

 [15] L. Kocarev and U. Parlitz, General approach for chaotic synchronization with 
applications to communication, Phys. Rev. Lett. 74 (1995), 5028-5030. 

 [16] Y. Tao, Chaotic secure communication systems - history and new results, 
Telecommun. Review 9 (1999), 597-634. 

 [17] Zhenya Yan, Q-S synchronization in 3D Hénon-like map and generalized Hénon 
map via a scalar controller, Phys. Lett. A 342(4) (2005), 309-317. 

 [18] M. Itoh, T. Yang and L. O. Chua, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 11 
(2001), 551. 

 [19] J. Zhao and J. Lu, Parameter identification and backstepping control of uncertain 
Lu system, Chaos Soliton Fractals 17 (2003), 721-729. 


