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Abstract 

In this work we study the dynamical behavior of a new continuous-time 

three-dimensional autonomous chaotic system obtained from direct 

modification of the Chen equation. Equilibrium and their stability are 

discussed. Basic dynamical behaviors are briefly described. The 

possibility of circuitry realization is presented. The existence of chaotic 

attractors is justified with various numerical results which give some 

new chaotic solutions. 

1. Introduction 

In 1963, Edward Lorenz [6], described a simple mathematical model 
of a weather system that was made up of three linked nonlinear 
differential equations that showed rates of change in temperature and 
wind speed. Some surprising results showed complex behavior from 
supposedly simple equations; also, the behavior of the system of 
equations was sensitively dependent on the initial conditions of the 
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model. He spelled out the implications of his discovery, saying it implied 
that if there were any errors in observing the initial state of the system 
and this is inevitable in any real system, then prediction as to a future 
state of the system was impossible. 

Lorenz labeled these systems that exhibited sensitive dependence on 

initial conditions as having the “butterfly effect”: this unique name came 

from the proposition that a butterfly flapping its wings in Hong Kong can 

affect the course of a tornado in Texas. 

A new chaotic attractor of a three-dimensional system is coined by 

Chen and Ueta in 1999, in the pursuit of anti controlling chaos for Lorenz 

model [3], [11]. This new chaotic model reassembles the Lorenz and 

Rôssler systems [8]. The Chen model itself is modified by Aziz Alaoui [1] 

and it obtains another new “non-symmetric” chaotic attractor. 

The Chen model appears to be more complex and sophisticated [11]. 

It has the same complexity as the Lorenz equation; they are both three-

dimensional autonomous with only two quadratic terms, however it is 

topologically not equivalent to the Lorenz equation. 

The Chen model is given by the following closed-form dimensionless 

equations: 

( ),xyadtdx −=  

( ) ,xzcyxacdtdy −+−=  

,bzxydtdz −=  (1) 

which, for parameters ,0.35=a  ,0.3=b  ,0.28=c  there is a chaotic 

attractor called Chen attractor and it is shown in Fig. 1(b). 

In this work we present a new chaotic system obtained from direct 
modification of the Chen model: the term a is replaced by some real r and 

x by ( )xsgn  in the formula of ,dtdx  the terms ( )ac −  and xz in the 

dtdy  formula are replaced by ( )ac +−  and ( ),sgn zx  respectively, then 

one has a new continuous-time three-dimensional autonomous with only 
one nonlinear term which is xy. We have recently discovered that the new 
model can generate various chaotic attractors. 
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We study the following modified Chen’s system: 

( )( ),sgn xyrdtdx −=  

( ) ( ),sgn zxcyxacdtdy −++−=  

,bzxydtdz −=  (2) 

where a, b, c and r are constants parameters, ( ).sgn  is the standard 

signum function that gives the sign of its argument. 

It is interesting to compare the new attractor with the familiar 

Lorenz and Chen attractors to see the difference between them. 

 
Figure 1. Comparison between the three chaotic attractors: (a) The 

Lorenz attractor, for .,10=s  .28=r  and .,38=b  (b) The Chen 

attractor, for .,35=a  .,3=b  and .,28=c  (c) The new attractor, for 

.40.,9.,10.,2 ==== rcba  

2. Some Basic Properties 

The new chaotic attractor has several important properties with both 

the Lorenz and Chen attractors with some differences between them. It 

has a natural symmetry under the coordinate transform ( ) →zyx ,,  

( )zyx ,, −−  which persists for all values of the system parameters. 

One remarks that all trajectories that start from the z-axis do not 

remain on it and not tend towards the origin, since for such trajectories, 

,rdtdx −=  0=dtdy  and ,bzdtdz −=  thus, the z-axis ( )0== yx  is 

not invariant except for .0=r  Therefore, for system (2), the divergence 
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of the flow is given by 

.bc
z
z

y
y

x
xV −=

∂
′∂+

∂
′∂+

∂
′∂=∆  

Then one has the following proposition: 

Proposition 1. If ,bc <  then the system (2) has a bounded globally 

attracting ω-limit set. 

Then the system (2) is dissipative just like the Lorenz and Chen 

systems. Thus, all trajectories ultimately are confined to a specific subset 

having zero volume and the asymptotic motion settles onto an attractor, 

this result has been confirmed by some computer simulations. 

3. Equilibrium Point and their Stability 

Due to the shape of the vector field the phase space can be divided 

into four nonlinear regions denoted by ,4,1, =iEi  

{( ) }0,0,, 3
1 ≥≥∈= zxzyxE R  

{( ) }0,0,, 3
2 ≤≥∈= zxzyxE R  

{( ) }0,0,, 3
3 ≥≤∈= zxzyxE R  

{( ) }.0,0,, 3
4 ≤≤∈= zxzyxE R  

In each of these regions, there exists a “symmetric” point ( )zyxP ,, −−−  

for each equilibrium ( ),,, zyxP +  due to the symmetry of the vector field. 

The equilibrium point of the system (2) can be found by solving the 

three equations: ,0=== dtdzdtdydtdx  which lead to 

( )( ) ,0sgn =− xya  

( ) ( ) ,0sgn =−++− zxcyxac  

.0=− bzxy  
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Thus, one obtains that all equilibrium points of system (2) are given by 

( ) ( ) ( )
,

sgn
,sgn,eq 






=

b
xx

xxX x  

where x is the solution of the equation 

( )( ) ( ) .0sgnsgn =+++− xcxzac  

One remarks that the origin is not an equilibrium point for the system 

(2). Thus one has the following propositions: 

Proposition 2. If ,1>+ ca  then there exist four equilibrium points 

for the system (2), 

( ) 






++
±

++
±±

1
,1,

11 cab
c

ca
cP  

( ) 






−+
±

−+
±±

1
,1,

12 cab
c

ca
cP  

else there exist only two equilibrium points 

( ) .
1

,1,
11 








++
±

++
±±

cab
c

ca
cP  

One remarks that 

( ) 11 1
,1,

1
E

cab
c

ca
cP ∈








++++
+  

( ) 21 1
,1,

1
E

cab
c

ca
cP ∈








−+−+
−  

( ) 32 1
,1,

1
E

cab
c

ca
cP ∈








++
−

++
−+  

( ) 42 1
,1,

1
E

cab
c

ca
cP ∈








−+−+
−−

 

and in each region there exists only one equilibrium point. 

Let us now study their stability. For this it must compute the 

Jacobian matrix evaluated at these equilibria, as follows: 
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( ) ( ) ,0
00

















−
++−=

±

±±

bxs

ctac

r

PJ  

where ( )xs sgn=±  and ( )zt sgn=±  and P is an equilibrium point. Thus 

one has the following propositions: 

Proposition 3. The equilibrium points +
1P  and +

2P  of system (2) 

have the same type of stability. 

Proposition 4. The equilibrium points −
1P  and −

2P  of system (2) 

have the same type of stability. 

Because in each case the two equilibria have the same characteristic 

equation. The exact value of the eigenvalues is obtained by using the 

Cardan method for solving a cubic characteristic equation ( ) +λ=λ 3P  

.2 CBA +λ+λ  By setting ,
3
A−=ω  these yield 

( ) ,3 QPXXXG ++=  

where 

BAP +−=
3

2
 and .

327
2 3

CABAQ +−=  

We set ,274 23 QP +=∆  resulting the following: 

(i) If ,0>∆  then there is a unique real eigenvalue ,
3 RR XA +−=λ  

where 

31
32

31
32

27422722 












+−−+














++−= PQQPQQXR  

along with two complex conjugate eigenvalues ( ) ( ) ,±± +ω=λ CC X  where 

( ) ( ) .34
22

2
R

R
C XPiX

X +±
−

=±  
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(ii) If ,0<∆  then the system has three real and distinct eigenvalues: 

,
3

sin
3

2
31 





 θ−+−=λ PA  

,
3

2sin
3

2
32 





 θ+π−+−=λ PA  

,
3

4sin
3

2
33 





 θ+π−+−=λ PA  

where 

[ ].,0
4

27arcsin
3

2
π∈













 −=θ
P

Q  

The case 0=∆  corresponds to a measure-zero set of parameters. So, by a 

slight perturbation of parameters, without changing the behavior of the 

system, a system belonging to one of the two cases is obtained. The 

values of A, B, and C are determined for each equilibrium point as 

follows: 

For +
1P  and ,2

+P  one has 

,1 cbA −=  

( ),11 +++−= cabcB  

( ).11 ++= cabrC  

For −
1P  and ,2

−P  one has 

,2 cbA −=  

( ),12 +++−= cabcB  

( ).12 −+= cabrC  

For the parameter values ,0.40,0.9,0.10,0.2 ==== rcba  the system 

has a chaotic attractor shown in Fig. 2. In this case the equilibria are 

( ) ( ).09.0,1,9.0,075.0,1,75.0 21 ±±=±±= ±± PP  
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The eigenvalues corresponding to these equilibrium points are 

For +
1P  and ,2

+P  one has 

( ) .887.121254.9,251.19 iCR ±=λ−=λ ±  

For −
1P  and ,2

−P  one has 

( ) .918.116919.8,384.18 iCR ±=λ−=λ ±  

Then there exist, for all equilibrium points, two conjugate complex 

eigenvalues, then in each case locally the equilibrium points are not 

stable, they are attracting in one direction but repelling in the other two 

directions. 

4. Observation of New Chaotic Attractors 

Notably, this new system (2) is not diffeomorphic with any of the two 

mentioned Lorenz and Chen systems, since their eigenvalues at the 

corresponding equilibria are not the same, nor in any sense equivalent. 

In addition, the system (2) is not equivalent to the one given in [1]. Since 

the former has 2 or 4 equilibria, but the latter has only three. To see 

some chaotic behavior of the system (2) we present various numerical 

results to show its chaoticity, including its sensitive dependence on initial 

conditions. 

Thus, we fix 

.,9.,10 == cb  and .40=r  

and assume 

.bc <  

Then we vary the parameter a. 

For ,0.2=a  the system (2) has the chaotic attractor shown in Fig. 2. 

The aperiodicity of these attractors can be seen from the calculation 

of the power spectrum of the time series (here we have chosen the 

x-component). 
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It seems that the attractor is aperiodic; the spectrum is broadband 

and contains a dominant discrete pick at a low frequency that is due to 

the presence of unstable limit cycles (see Figs. 5 and 6). This noise-like 

spectrum is an essential characteristic of chaotic systems. 

The attractor in Fig. 4 resembles by its shape a “real butterfly” 

(projection into the x-z plane) and it is very sensitive to a change of the 

initial data but not for the change of parameters, it persists for a big 

region of values. 

 

 

Figure 2. The new chaotic attractor for .40.,9.,10.,2 ==== rcba  

(a) Projection into the x-y plane, (b) Projection into the x-z plane,           

(c) Projection into the y-z plane, (d) The shape of the attractor in the 

x-y-z space, (e) The time waveform of the time series ( )tx  
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Figure 3. Another chaotic attractor for .40.,9.,10.,3 ===−= rcba  

(a) Projection into the x-y plane, (b) Projection into the x-z plane,      

(c) Projection into the y-z plane 

 

Figure 4. Another chaotic attractor obtained for .,1−=a  .,45=b  

.,0=c  .40−=r  (a) Projection into the x-y plane, (b) Projection into 

the x-z plane, (c) Projection into the y-z plane, (d) The shape of the 
attractor in the x-y-z space, (e) The time waveform of the time series 
( )tx  
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In this work we reported the study of the attractors shown in Fig. 4 

and a detailed analysis for these phenomena will be provided in the near 

future. 

 

 
Figure 5. Another chaotic attractor obtained for ,0.1=a  ,0.4=b  

,0.0=c  .0.4=r  (a) Projection into the x-y plane, (b) Projection into 

the x-z plane, (c) Projection into the y-z plane, (d) The shape of the 
attractor in the x-y-z space, (e) The time waveform of the time series 
( )tx  

5. Sensitive Dependence on Initial Conditions 

To prove this assertion, we compute two orbits with initial points 
( ),,, 000 zyx  ( ),,, 001 zyx  where 0000001.001 += xx  is a very small 

perturbation of .0x  The result is shown in Fig. 6. We remark that after a 

few number of iterations the difference between them builds up rapidly 
by an enlargement in Fig. 6. 



w
w

w
.p

ph
m

j.c
om

ZERAOULIA ELHADJ and HAMRI NASR E-DDINE 196

 

Figure 6. Sensitive dependence on initial condition: x-coordinate of 

the two orbits, for system with the x-coordinates and the parameters: 

.,2=a  .,10=b  .,9=c  .40=r  and the initial conditions differs by 

,000001.0  the other coordinates kept equal 

6. Possibility of the Circuitry Realization of the New System 

An electronic circuit is designed to realize a new continuous-time 

three-dimensional autonomous system with three nonlinearities [5], it 

consists of three channels, conducting the integration of the three state 

variables, operational amplifiers, analog multipliers, and linear resistors 

and capacitors are employed to perform the required addition, 

subtraction and multiplication operations. In our case there is only single 

nonlinearity, this affects simplify the circuitry realization of the new 

system (2). 

7. A New Chaotic Attractor from a PWL Version 

A piecewise-linear version of the modified model (2) (replacing xy by 

)yx +  to be studied in the near future. This statement is very important 

because it is possible to build a simple electronic circuit with piecewise 

linear (PWL) functions, to realize chaos in differential systems [4], [10] 

(see Fig. 7). 
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Figure 7. The chaotic attractor for the linear version of system (2) 

obtained for: .42.,10.,01.10.,2 ==== rcba  (a) Projection into the  

x-y plane, (b) Projection into the x-z plane, (c) Projection into the y-z 

plane, (d) The shape of the attractor in the x-y-z space, (e) The time 

waveform of the time series ( )tx  

8. Conclusion 

In this work we prove the existence of a new chaotic attractor 

obtained from simple modification of the Chen equation; it is the 

illustration that the chaos can be occurring in simple modified systems 

with only single nonlinearity. 

Besides, the system (2) has some similar properties as the Chen 

system and others well-known modified Lorenz and Chen systems. 

More detailed dynamical analysis on the new chaotic system and the 

piecewise-linear version and the attractor shown in Fig. 4, will also be 

investigated in the near future. In addition, some similar systems will be 

studied under a more general but unified framework, which will be 

reported later. 
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